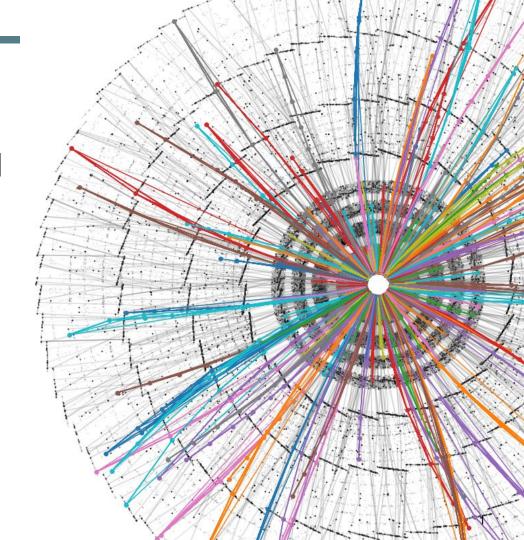
Improving Computational Performance of a GNN Track Reconstruction Pipeline for ATLAS

Daniel Murnane

On behalf of the ATLAS GNN4ITk Group and GNN Event Filter Group

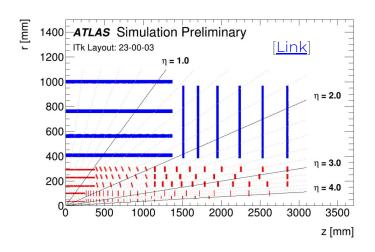


Outline

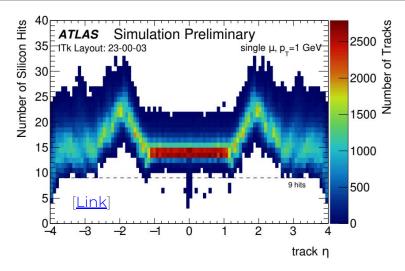
- Description of current pipeline
- Physics performance
- Acorn training, inference and evaluation framework
- Computational constraints for offline and online tracking
- Optimization research directions

Physics Performance of GNN4ITk Pipeline

Tracking in ATLAS HL-LHC Inner Tracker (ITk)



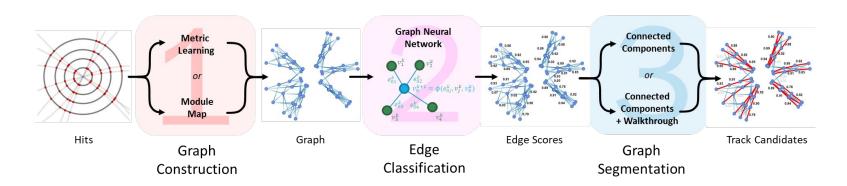
- Number of hits per ttbar ITk event: 311,000 +/- 35,000
- Number of particles per ttbar ITk event: 16,000 +/- 1,700
- Innermost pixel layer 25x100 micron^2, all other pixel layers 50x50micron^2



Layer	Radius [mm]	Channels in ϕ	Strip Pitch [µm]	Strip Length [mm]	Tilt Angle [°]
0	405	28×1280	75.5	24.1	11.5
1	562	40×1280	75.5	24.1	11.0
2	762	56×1280	75.5	48.2	10.0
3	1000	72×1280	75.5	48.2	10.0

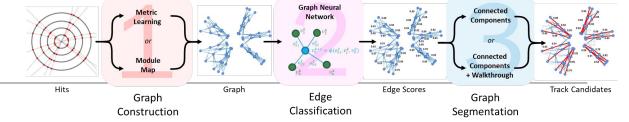
Barrel strip module dimensions[Link]

GNN4ITk Pipeline



- Pipeline receives clusters = collections of energy deposits on silicon. These are associated with 3D spacepoints, to be used as nodes for stage 1 onwards
- Out of stage 3 we obtain a set of track candidates, each is an unordered set of spacepoints
- For processing in Athena track fitting chain, we associate these back to the original clusters,
 and order in increasing distance from beamspot origin

Training Details



Run 4 ATLAS simulation, ttbar <mu>=200 pileup, ITk layout 23-00-03

Truth

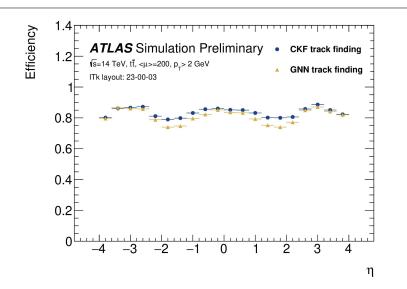
Dataset

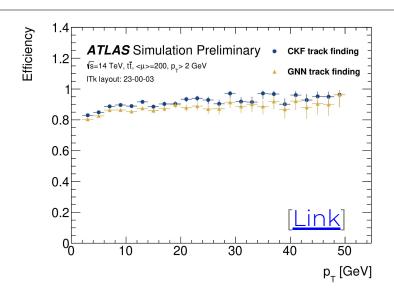
- Pairwise connections between sequential hits in target tracks treated as true
- A target track is primary, non-electron, pT>1GeV, and has at least 3 hits
- All other connections between all other tracks (or noise) considered fake

Loss Functions

- Contrastive hinge loss for metric learning
- Binary cross entropy for edge classification (GNN and edge filter)
- Data-driven adjacency matrix and geometric cuts for module map

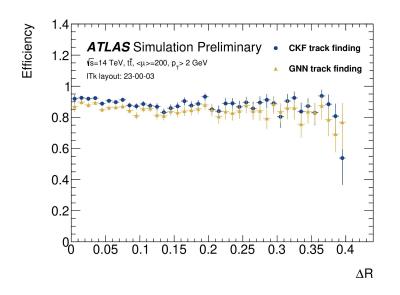
Track Reconstruction Performance

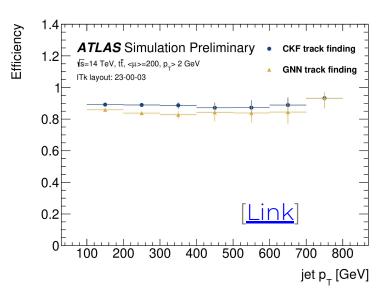




- Tracking efficiency compared with current combinatorial kalman filter (CKF) technique
- Behaviour across eta and pT similar to CKF good sanity check!

Track Reconstruction Performance





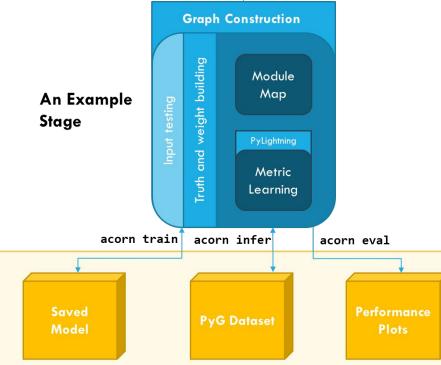
Again, similar characteristics across deltaR and jet pT

ACORN: A Charged Object Reconstruction Network

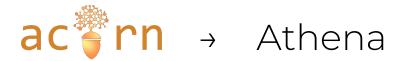
Input directory

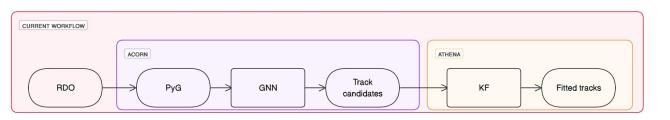
Stage directory

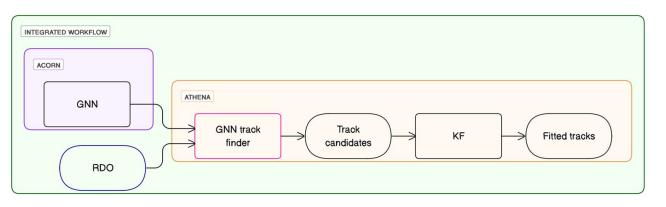
- Framework design & goals
 - A modular framework for training and R&D of ML-based tracking
 - Runs on pytorch lightning and pytorch geometric
 - Each stage self-contained, run either separately or (newly built) multi-stage inference
- Integrations
 - ATLAS ITk
 - ACTS OpenData Detector
 - TrackML



PyG Dataset







- Previously, Acorn used to build tracks, which were passed back into Athena for fitting
- Now, models trained in Acorn, translated to Onnx and TorchScript
- Loaded into Athena
 Component (c++) as
 part of tracking chain

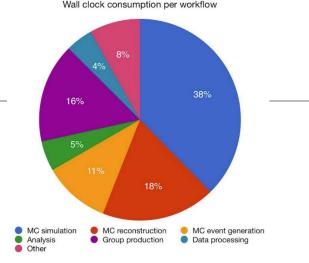
Tracking Computational Requirements

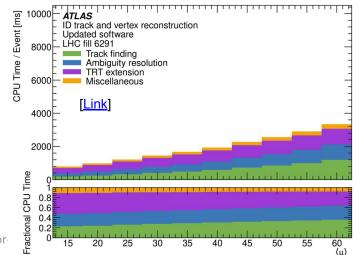
ATLAS Computing Budget

[Link]

Detector	$\langle \mu \rangle$	inner	muon spectrometer	combined	monitoring	total
		tracking	and calorimeter	reconstruction		
Run 2	90	1137	149	301	106	1693

- (Top right) Average CPU usage in 2008:Reconstruction significant piece
- (Above) Reconstruction timings for run 2
 (seconds): Tracking takes majority of time
- (Right) Run 3 track reconstruction timings:
 Track finding and ambiguity resolution take
 ~2s for <mu>=60





HL-LHC Offline & Online Track Reconstruction Needs

	LHC Run 3	HL-LHC
L0 trigger accept	100 kHz	1 MHz
Event Filter accept	1 kHz	10 kHz
Event size	1.5 MB	4.6 MB

- Event filter (high level trigger) contains tracking
- Regional tracking @ 1MHz
- Full event tracking @ 150kHz
- Current CPU proposed algorithm is optimized Fast Tracking
- 23.2 s/event single-core CPU, small drop in track efficiency: 1-2% on average, 5% for pT in [1,1.5]GeV

$\langle \mu \rangle$	Tracking	Release	Byte Stream	Cluster	Space	Si Track	Ambiguity	Total
(μ) Irackii	Hacking		Decoding	Finding	Points	Finding	Resolution	ITk
140	default	21.9	2.2	6.4	3.5	31.6	43.4	87.1
140	fast	21.9	2.2	6.1	1.0	13.4	-	22.7
200	default	21.9	3.2	8.3	4.9	66.1	64.1	146.6
200	fast	21.9	3.2	8.1	1.2	23.2	-	35.7

Fast tracking vs D	Default tracking	j timing	(s) [<u>Link</u>]
--------------------	------------------	----------	---------------------

$\langle \mu \rangle$	Tracking	Byte Stream	Cluster	Space	Si Track	Total
		Decoding	Finding	Points	Finding	ITk
140	full-scan	2.2	6.1	1.0	13.4	22.7
140	regional	0.33	0.90	0.15	1.11	2.49
200	full-scan	3.2	8.1	1.2	23.2	35.7
200	regional	0.48	1.23	0.18	1.92	3.81

Fast tracking timing (s) for regional vs full-scan [Link]

HL-LHC Offline & Online Track Reconstruction Needs

Goal is to use GNN4ITk pipeline to perform offline tracking in <1s

Target regional and full event online tracking in 10-100ms

Starting with right-hand column below (TrackML ~90k hits)

Optimizing for ITk (~300k hits)

Need improvements in all stages

<u> </u>					
	Baseline	Faiss	cuGraph	AMP	FRNN
Data Loading	0.0022 ± 0.0003	0.0021 ± 0.0003	0.0023 ± 0.0003	0.0022 ± 0.0003	0.0022 ± 0.0003
Embedding	0.02 ± 0.003	0.02 ± 0.003	0.02 ± 0.003	0.0067 ± 0.0007	0.0067 ± 0.0007
Build Edges	12 ± 2.64	0.54 ± 0.07	0.53 ± 0.07	0.53 ± 0.07	0.04 ± 0.01
Filtering	0.7 ± 0.15	0.7 ± 0.15	0.7 ± 0.15	0.37 ± 0.08	0.37 ± 0.08
GNN	0.17 ± 0.03				
Labeling	2.2 ± 0.3	2.1 ± 0.3	0.11 ± 0.01	0.09 ± 0.008	0.09 ± 0.008
Total time	15 ± 3 .	3.6 ± 0.6	1.6 ± 0.3	1.2 ± 0.2	0.7 ± 0.1

3.25 3.00-2.75-(a) 2.50-2.25-1.75-1.50-1.25-Number of spacepoints

TrackML

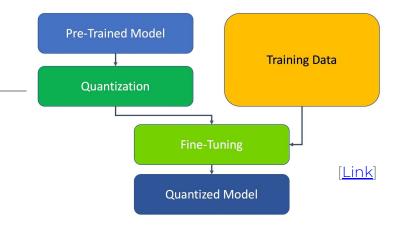
TrackML Inference time - Seconds/event [Link]

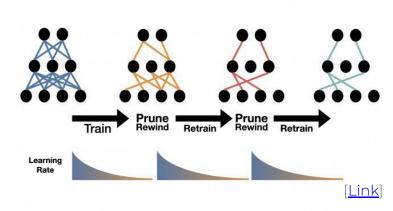
Graph Construction Optimizations

Quantization and Pruning

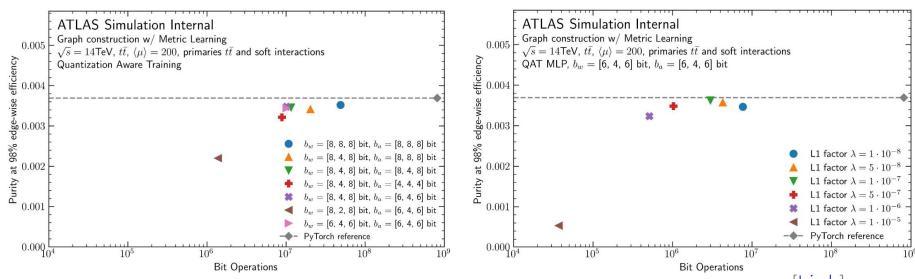
Optimizations for FPGA and GPU studied on embedding (metric learning) stage

- 1. Quantization Aware Training
- Fine-tune quantized model with differentiable notion of quantization
- FPGA can use arbitrary quantization
- GPU can exploit 8-bit quantization
- 2. Iterative (Learning Rate Rewind) Pruning
- During training, iteratively prune model
- · After each iteration, restart learning rate



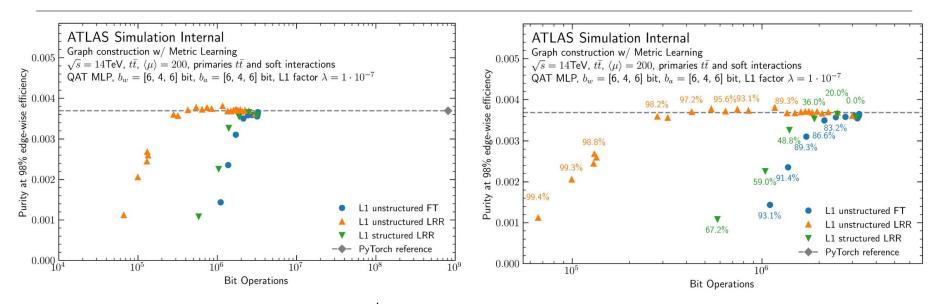


Quantization Aware Pruning Results



Can shrink to [6,4,6] bits without significant loss of purit [Link]

Iterative Pruning Results

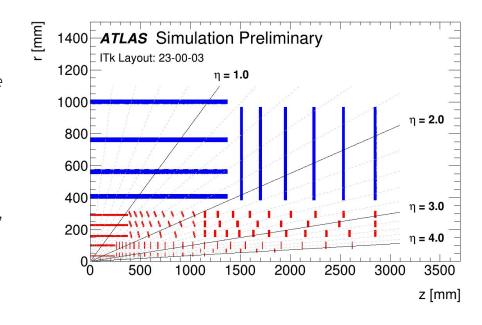


 Can prune model to 1/56 the size and maintain purity at fixed efficiency, using learning rate rewind training (LRR)

Graph Neural Network Optimizations

Regional Tracking

- To handle 150kHz-1MHz EF trigger rate, can parallelize across O(100) regions in event, or reconstruct only specific regions
- For highest flexibility, would like to train one model and infer on various topologies
- Initial tests performed very poorly, due to batch normalization in model
- Reimplementing with layer normalization, recover both original performance, and equal performance in regional track reconstruction



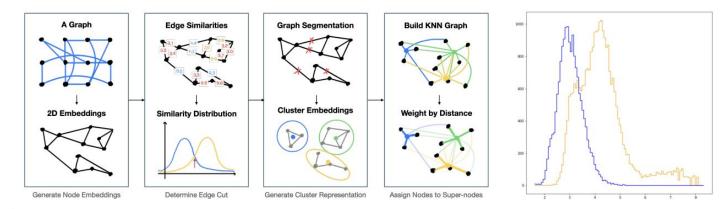
Graph Segmentation Optimizations

Hierarchical Graph Neural Network: Overview

Current Problem	Proposed Solutions			
Performance limited by input graph	Make predictions less graph-dependent			
Message passing obstructed by inefficiencies	Construct hierarchical structure			
Flat GNN Inefficient graph construction hinders message passing	Hierarchical GNN Super Nodes Long distance message passing is possible			

The selding Co. 1	E4	D:@D1	CACD1	E4D1	CMD1 ()
Tracking Goal	Feature	DiπΡοοί	SAGPOOL	EdgePool	GMPool (ours)
Subquadratic scaling	Sparse	Х	1	/	✓
End-to-end trainable	Differentiable	✓	1	/	✓
Variable event size	Adaptive number of clusters	X	X	1	1
Many hits to many particles relationship	Soft assignment	1	X	X	✓

How it works:



Hierarchical Graph Neural Network: Results

- The highest physics performance comes from HGNN with O(1) second inference
- Fastest inference still from connected components
- Latest ITk HGNN
 model combines both for
 high efficiency / high
 throughput
- We see robustness of HGNN to edge construction inefficiencies in earlier stages of pipeline

TrackML

Models	E-GNN	E-HGNN	BC-HGNN	EC-GNN	Truth-CC
Efficiency	94.61%	95.60%	97.86%	96.35% $55.58%$ 0.22	97.75%
Fake Rate	47.31%	47.45%	36.71%		57.67%
Time (sec.)	2.17	2.64	1.07		0.07

Percent Edge Removed	0%	10%	20%	30%	40%	50%
BC Efficiency	98.55%	98.39%	97.68%	96.63%	95.10%	92.79%
BC Fake Rate	1.23%	1.55%	2.13%	3.10%	4.75%	7.31%
Truth-CC Efficiency	98.72%	96.21%	92.31%	85.81%	77.26%	64.81%
Truth-CC Fake Rate	5.87%	15.53%	24.40%	33.48%	42.99%	53.12%

Summary

- GNN4ITk pipeline:
 - Stable and converged
 - Available in open-source via the ac rn framework
 - Out-of-the-box (i.e. not yet properly tuned) produces small drop in physics performance compared with Athena CKF algorithm
- HGNN, optimized module map, quantization, pruning and regional tracking all promising directions that show speed-ups with little/no drop in physics performance

