Observation of *tt* **production in** *p*+Pb collisions

INSTITUTE OF EXPERIMENTAL AND APPLIED PHYSICS CZECH TECHNICAL UNIVERSITY IN PRAGUE

Santu Mondal for the ATLAS Collaboration

Motivation

The top quark, the heaviest elementary particle, is shortlived and decays through $t \rightarrow Wb$ with a branching ratio of almost 100%.

In *p*-Pb collisions, top-quark production is expected to be sensitive to nuclear modifications of parton distribution functions at high Bjoerken-x values, which are difficult to access experimentally with other available probes.

Background overview

The main background contributions: \circ W+jets (ℓ +jets) o Z+jets (dilepton) o non-prompt and fake lepton background

Data driven Matrix Method has been used to estimate the fakes.

Systematic uncertainties

The result paves a new way for physicists to study Parton Distribution Functions (PDFs) – which describe how a proton's momentum is distributed among its constituent quarks and gluons – in a new kinematic domain.

Data & Monte Carlo samples

- p + Pb data at $Vs_{NN} = 8.16$ TeV collected in 2016 (165 nb⁻¹)
- Single-top, *tt* (+alternative for systematics), *W*+jets (W+b, W+c, W+light), Z+jets (Z+b, Z+c, Z+light), Diboson.

Analysis strategy

Luminosity, signal-background modelling, flavour, lepton-jet reconstructions and fake systematics.

Source	$\Delta\sigma_{tar{t}}/\sigma_{tar{t}}$			
	unc. up [%]	unc. down $[\%]$		
Jet energy scale	+4.6	-4.1		
$tar{t}$ generator	+4.5	-4.0		
Fake-lepton background	+3.1	-2.8		
Background	+3.1	-2.6		
Luminosity	+2.8	-2.5		
Muon uncertainties	+2.3	-2.0		
W + jets	+2.2	-2.0		
b-tagging	+2.1	-1.9		
Other Syst.	+2.0	-1.8		

Results

 $H_{T}^{\ell,j}$ - the scalar sum of all lepton and jet p_{T} is used a discriminating observables based on separation power study and simultaneously fitted in six signal regions

 ℓ +jets - 1b1 ℓ (ejets/ μ jets), 1 ℓ 2bincl (ejets/ μ jets) **Dilepton** - 2*l*1b, 2*l*2bincl

Event selection

Common Lepton $p_T > 18 \text{ GeV}$; Jets $p_T > 20 \text{ GeV}$

1 isolated lepton, \geq 4 jets €+jets

Dilepton 2 isolated leptons \geq 2 jets — Opposite Sign, $m_{II} > 45 \text{ GeV}$ (ee, $\mu\mu$) / 15 GeV (e μ)

The inclusive cross-section is extracted using a profile likelihood fit. The measured $\mu_{t\bar{t}}$ value is translated to the inclusive cross-section ($\sigma_{t\bar{t}}$).

 $\sigma_{t\bar{t}} = 58.1 + 2.0 (stat.) + ^{+4.8}_{-4.4} ((syst.))$

The significance is well above 5 in both individual and combined channel fits. This establishes the observation of $t\bar{t}$ production in the individual ℓ +jets and dilepton channels.

• The nuclear modification factor is defined as:

 $R_{pA} = \sigma_{pPb} / (A_{Pb}, \sigma_{pp})$

Uncertainties in *pp* and *p*+Pb measurements are considered fully uncorrelated.

 $R_{pA} = 1.090 + 0.039 (stat.) + {}^{+0.094}_{-0.087} ((syst.))$

Comparison of data and prediction

Relative statistical uncertainty ~ 3.5%

	ATLAS	<i>p</i> +Pb √s _{NN} = 8.16 TeV	, 165 nb⁻¹	ATLAS	$p + Pb \sqrt{s_{NN}} = 8.16 \text{ TeV}$	ATLAS	$p+Pb \sqrt{s_{NN}} = 8.16 \text{ TeV}$
1ℓ1 <i>b e</i> +jets		$\mu_{_{+7}} = 1.14 \stackrel{_{(tot.)}}{_{-0.29}}$	(stat.) +0.13 -0.12		Data total unc.		Data total unc.
1ℓ1 <i>b µ</i> +jets		$\mu_{t\bar{t}}^{''} = 0.69 \begin{array}{c} +0.29 \\ -0.24 \end{array}$	+0.11 -0.11	MCFM TUJU21	Data stat. unc.		
ℓ2 <i>b</i> incl <i>e</i> +jets	HeH	$\mu_{t\bar{t}} = 0.98 \ _{-0.11}^{+0.12}$	+0.06 -0.06	MCFM nNNPDF30		MCFM TUJU21	
ℓ2 <i>b</i> incl μ+jets	HeH	$\mu_{t\bar{t}} = 1.00 \ {}^{+0.11}_{-0.10}$	+0.06 -0.06	MCFM nCTEQ15HQ		MCFM nNNPDF30	
2l1b	▶ • •	$\mu_{t\bar{t}} = 1.23 + 0.31 - 0.33$	+0.19 -0.17	MCFM EPPS21		MCFM nCTEQ15HQ	
2l2bincl	H	$\mu_{t\bar{t}} = 1.23 \stackrel{+0.20}{_{-0.17}}$	+0.13 -0.12	CMS 8.16TeV <i>p</i> +Pb	PRL 119 (2017) 242001	MCFM EPPS21	
Combined		$\mu_{-0.09} = 1.04 + 0.09 + 0.09$	+0.04 -0.03	ATLAS+CMS 8TeV pp (extrap.)	JHEP 07 (2023) 213		
	0.5 1 1.5	5 2 2.5 3	3.5 μ _{tt}	0 20 40	60 80 100 σ _t [nb]		1 1.2 1.4 1.6 R _{pA}

 $H_{T}^{\ell,j}$ - the scalar sum of all lepton and jet p_{T}

The total uncertainty on the cross-section ~ 9 %

- *First observation of tt production in heavy-ion collisions by ATLAS* [1]. lacksquare
- *First observation of tt via dilepton channel in p+Pb at the LHC.*
- The **most precise** tt cross-section measurement in HI collisions.
- R_{pA} measurement has been done first time for t at the LHC. ${\color{black}\bullet}$

Take a picture to download the full paper

[1] https://arxiv.org/pdf/2405.05078

ICHEP 2024

Prague | 17 - 24 July