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Introduction

In the CMS Higgs boson mass measurement, in the H—yy channel using 2016 data [1], one of the dominant systematic
uncertainties is the non-uniformity of the light collection along the length of the ECAL crystals, which reflects into an
uncertainty on the Higgs mass of 110 MeV.

In order to reduce the impact of the non-uniformity uncertainty, a new approach was pursued. In particular, an additional
correction of the photon energy scale is computed using simulation, and applied to the data. A systematic uncertainty is
associated to the mismodeling of the simulation. Thanks to this new approach the impact of the non-uniformity of the light
collection on the photon energy scale is reduced.



https://cds.cern.ch/record/2709657
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Front-Non-Uniformity corrections

Front-Non-Uniformity, “FNUF”, corrections are computed and applied to the fully calibrated photon energy in data to take
into account the impact of the radiation on the difference of the shower profiles between electrons and photons inside the
ECAL crystals. An additional energy scale correction is computed, to compensate for the non uniform profile of the radiation
damage along the crystal axis. This induces on the light collection efficiency a bias dependent on the shower profile. The
energy scale correction factor F is computed as follows:

[ ESep(2)LCE(2)dz
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where E*Ydep(z) is the shower profile inside non-irradiated crystals for electrons and photons, simulated using GEANT4. The
radiation damage profile is based on fluences simulated by FLUKA and the light collection efficiency, LCE(z) is simulated
with the optical-tracer framework called Litrani, for different scenarios of crystal transparency, R/RO, where z is the depth in
the crystal along its axis. The correction is computed as a function of photon energy, impact point onto the detector and the
crystal transparency measured with the laser-based monitoring system.

F =




Electron and photon shower profiles
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Electron and photon shower profiles >
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Simulated shower profiles for electrons and photons of different energies, measured with a 7x7 matrix of ECAL
crystals centred in n = 1.03 and ¢ = 1.15 (ECAL barrel). Electrons and photons are generated from the nominal
centre of CMS and points to the centre of the crystal matrix. The full CMS geometry and nominal magnetic field are
used. Electrons are selected by requiring low emitted bremsstrahlung using the topology of the energy deposits,
and photons are selected by vetoing conversions. As expected from first principles, photon showers start deeper in
the crystals. The profiles were measured at different n, showing variations on the position of the maximum of less

than 1%.




Estimation of electron and photon shower profiles difference D
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Estimation of electron and photon shower profiles difference A

|
Simulated shower profiles for electrons and photons of different energies, measured with a 7x7 matrix of ECAL crystals
centred in n = 1.03 and ¢ = 1.15 (ECAL barrel). Electrons and photons are generated from the nominal centre of CMS and
points to the centre of the crystal matrix. The full CMS geometry and nominal magnetic field are used. Electrons are selected
by requiring low emitted bremsstrahlung using the topology of the energy deposits, and photons are selected by vetoing
conversions. As expected from first principles, photon showers start deeper in the crystals. The profiles were measured at
different n, showing variations on the position of the maximum of less than 1%.

The difference in shower profiles is estimated comparing the shower maximum (t,,_ ) for different simulated energies
between photons and electrons. The shower maximum is estimated fitting the shower profile with the Longo-Sestili function

[2]:

y —q - thMaw e—bz

The resulting evolution of t,,  as a function of the energy is fitted with the empirical function:
_ E

and the difference in shower maxima is estimated as: At,, =~ Af = 0.85 X
where E. = 7.94 MeV is the critical energy, and X, = 0.89 cm the radiation length of PbWO



https://www.sciencedirect.com/science/article/pii/0029554X75906795

Light Collection Efficiency 5

The Light Collection Efficiency (LCE) is the efficiency with which a scintillation photon, produced at point z in the
crystal, is measured taking into account also the photodetector efficiencies.

The LCE is simulated for various values of the integrated luminosity, and therefore the change in the ECAL crystal
transparency in different n bins is simulated using FLUKA+Litrani, including both electromagnetic and hadronic
damage. This simulation is performed in different n bins since there are variations in the hadronic and
electromagnetic doses, different photo-detectors in the barrel and the endcaps, and differences in the crystal
geometry in n.

Thanks to the simulation, for any integrated luminosity scenario the ECAL crystal transparency is simulated and
used as reference to predict the LCE in data. In particular, the crystal transparency measurements, R/R , taken
using the laser monitoring system [3] are used to evaluate the simulated crystal LCE to be used in the computation
of the “FNUF” correction. The plots show the LCE as function of the crystal depth, where z=0 cm is the front of the
crystal and z = 23 cm (22 cm in EE) is the back of the crystal, for the simulation of different R/R scenarios and
different n regions. In particular, the LCE is normalized to LCE, at z = 8X;, where LCE is the LCE for non-irradiated
crystals.

The mismodeling of this simulation w.r.t. to the data is studied using measurements in [4], resulting in a relative
systematic uncertainty of 20% (35%) assigned to the final “FNUF”-correction for EB (EE).



https://cds.cern.ch/record/2668200?ln=en
https://www.sciencedirect.com/science/article/abs/pii/S0168900206006577?via%3Dihub
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| Light Collection Efficiency for 0.9<|n|<1.0 CMS‘
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| “FNUF”-corrections

Final FNUF-correction is computed as follow:

| E§.,(2)LCE(2)dz
Il ES,,(2)dz

1l B, (2 LCE( Ydz

f dep

and applied to the calibrated energy of the photons in data. The correction is evaluated as function of the photon
calibrated energy, n and the average R/R0 of the crystals in the photon cluster, estimated using a transparency
monitoring system based on laser light injection.

F =

The plots show the FNUF-corrections as function of the particle energy for different R/R scenarios and different n
regions.
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| FNUF-correction for 0.9<|n|<1.0
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| FNUF-correction for 1.4<|n|<1.5
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| FNUF-correction for 2.0<|n|<2.1
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