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Abstract: The production cross sections of D0, D+, and Λ+
c hadrons originating from beauty-

hadron decays (i.e. non-prompt) were measured for the first time at midrapidity in proton–
lead (p–Pb) collisions at the center-of-mass energy per nucleon pair of √

sNN = 5.02 TeV.
Nuclear modification factors (RpPb) of non-prompt D0, D+, and Λ+

c are calculated as a
function of the transverse momentum (pT) to investigate the modification of the momentum
spectra measured in p–Pb collisions with respect to those measured in proton–proton (pp)
collisions at the same energy. The RpPb measurements are compatible with unity and with the
measurements in the prompt charm sector, and do not show a significant pT dependence. The
pT-integrated cross sections and pT-integrated RpPb of non-prompt D0 and D+ mesons are
also computed by extrapolating the visible cross sections down to pT = 0. The non-prompt
D-meson RpPb integrated over pT is compatible with unity and with model calculations
implementing modification of the parton distribution functions of nucleons bound in nuclei
with respect to free nucleons. The non-prompt Λ+

c /D0 and D+/D0 production ratios are
computed to investigate hadronisation mechanisms of beauty quarks into mesons and baryons.
The measured ratios as a function of pT display a similar trend to that measured for charm
hadrons in the same collision system.
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1 Introduction

Measurements of heavy-flavour hadron production in hadronic collisions provide crucial tests
for calculations based on quantum chromodynamics (QCD). Due to their large masses with
respect to the QCD energy scale, heavy quarks (i.e. charm and beauty) are primarily produced
at the early stages of the collision via hard-scattering processes with large momentum transfer,
legitimising the calculations of inclusive production cross sections via perturbative QCD
(pQCD). These calculations rely on a factorisation scheme where the pT-differential production
cross sections of charm or beauty hadrons are calculated as a convolution of three terms:
(i) the parton distribution functions (PDFs) of the incoming nucleons, which describe the
Bjorken-x distributions of quarks and gluons within the incoming hadrons, (ii) the partonic
scattering cross section, calculated as a perturbative series in powers of the strong coupling
constant αS, and (iii) the fragmentation function parametrising the non-perturbative evolution
of a heavy quark into a given heavy-flavour hadron species. The fragmentation functions are
determined from measurements in e+e− collisions [1] and used to compute the production
cross section in hadronic collisions, under the assumption that the relevant hadronisation
processes are “universal”, i.e. independent of the collision energy and system.

To isolate the effects of hadronisation, heavy-flavour hadron-to-hadron production yield
ratios are especially effective, since the PDFs and the partonic interaction cross sections are
common to all charm or beauty hadron species and their effects cancel out in the yield ratios
when using the factorisation approach. Measurements of non-strange charm and beauty-
meson production cross sections in pp and p–Pb collisions at the LHC [2–12] show that
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the meson-to-meson ratios are described by the pQCD calculations at next-to-leading order
accuracy with all-order resummation of next-to-leading logarithms, such as FONLL [13, 14]
and GM-VFNS [15–18], and by PYTHIA 8 event generator using the Monash tune [19, 20],
which is tuned on e+e− collisions. However, all these calculations largely underpredict the
production of charm and beauty baryons [21–24]. In addition, charm and beauty baryon-
to-meson yield ratios, measured at mid- and forward rapidity at the LHC, show significant
deviations from the values measured in e+e− collisions [21–35], indicating that the assumption
of universality of the hadronisation process across collision systems might no longer be valid
at the LHC [6, 14, 36]. The reconstruction of prompt charm hadrons, which are produced
from the decay of excited charm states or from charm-quark hadronisation, and of non-
prompt charm hadrons, which stem from the decay of beauty hadrons, provides a good
approach for probing the distinct sectors of charm and beauty. The prompt charm baryon-
to-meson production ratios were measured in p–Pb collisions by the LHCb Collaboration at
both forward (1.5 < ylab < 4.0 in the laboratory-frame) and backward (−5.0 < ylab < −2.5)
rapidity regions [31, 37]. Comparatively, these findings indicate an augmented baryon-to-
meson yield ratios measured at forward/backward rapidity with respect to the corresponding
measurements in e+e− and ep collisions, although this is smaller compared to the enhancement
observed when considering midrapidity measurements [22, 26, 29]. In the beauty sector, the
ALICE Collaboration measured production cross sections of non-prompt D0 and Λ+

c hadrons
at midrapidity (|y| < 0.5) in pp collisions at

√
s = 13 TeV [35]. The measured baryon-to-meson

production ratio shows an enhancement similar to that observed in the charm sector, and
the enhancement at midrapidity is similar to the one observed at forward rapidity by the
LHCb Collaboration measuring the Λ0

b-baryon production relative to that of B mesons in
pp and p–Pb collisions [24, 32–34]. Modification of charm and beauty baryon-to-meson
ratios from e+e− to pp and p–Pb collisions suggests the influence of the hadronic or partonic
environment on the hadronisation process [38]. Further hadronisation effects, apart from pure
in-vacuum fragmentation, like recombination (or coalescence) of charm quarks with quarks or
di-quarks from a thermal medium [39–42], statistical hadronisation including contributions
from undiscovered higher-mass resonant states [43–45], and string formation beyond the
leading-colour approximation [46, 47], serve as examples of implementations considered by
theorists to refine the modelling of hadronisation to baryons.

Measurements of heavy-flavour hadron production in proton–nucleus collisions also allow
to study various effects related to the presence of nuclei in the colliding system, denoted
as cold-nuclear-matter (CNM) effects. In the initial state of the collisions, the PDFs of
inbound nucleons are modified by the nuclear environment as compared to free nucleons,
depending on the parton momentum fraction x, the squared momentum transfer Q2 in the
hard scattering processes, and the nucleus mass number A [48, 49]. At LHC energies and
midrapidity (|ylab| < 0.5), the most relevant effect on the PDF is called shadowing. It
corresponds to a reduction of the parton densities at x lower than 10−2, which becomes
stronger when Q2 decreases and the nucleus mass number A increases. This effect, induced
by the high phase-space density of small-x partons [50–53], can be described within the
factorisation scheme by means of phenomenological parametrisations, denoted as nuclear
PDFs (nPDFs). The modification of the small-x parton dynamics can significantly reduce
the charm and beauty hadron yield with respect to pp collisions at low pT. Furthermore,
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multiple scattering of partons in the nucleus can modify the kinematic distribution of the
produced hadrons. Partons can lose energy in the initial stages of the collision via initial-state
radiation [54] or experience transverse momentum broadening due to multiple soft collisions
before the heavy-quark pair is produced [55, 56]. These initial-state effects are expected to
have an influence on charm-hadron production at low and intermediate pT (pT < 4 GeV/c).
For this reason, measurements of the charm- and beauty-hadron production cross section
and its nuclear modification factor RpPb, which is defined as the ratio of the production
cross section in p–Pb to that in pp collisions scaled by the mass number of the Pb nucleus
(APb), down to low pT could provide important information, helping to significantly reduce
the uncertainties on the gluon nPDFs at small x [57, 58].

In addition to the aforementioned initial-state effects, final-state effects may also be
responsible for modifications of heavy-flavour hadron yields and momentum distributions.
Measurements in the light- and heavy-flavour sectors in high-multiplicity pp and p–Pb col-
lisions at different collision energies showed significant flow-like effects [21, 59, 60]. These
effects resemble those observed in high-energy nucleus–nucleus collisions and are ascribed to
quark–gluon plasma formation. In this picture, particles of larger mass are boosted to higher
transverse momenta due to a common velocity field [61]. However, baryon production at inter-
mediate pT may also be enhanced as a result of hadronisation via quark recombination [62].

The ALICE and CMS Collaborations measured the RpPb of D and B meson in p–Pb
collisions, finding values close to unity within the rapidity ranges |ylab| < 0.5 [63] and |ylab| <
2.4 [64], respectively. In contrast, the LHCb Collaboration measurements at forward (2.5
< ylab < 3.5) and backward rapidity (-3.5 < ylab < -2.5) [34], evidence a suppression of up
to 20% for beauty mesons in the forward rapidity interval and no significant suppression
in the backward rapidity interval. Model calculations based on nPDFs describe well these
observations.

In the baryon sector, the ALICE Collaboration found that the Λ+
c RpPb depends on

pT, being below unity at low pT and above unity at high pT [26]. Simulations based on
POWHEG+PYTHIA 6 [65, 66], combined with EPPS16 nPDF [53], reproduce the results at
low pT but do not describe the measured trend at intermediate pT. The Λ0

b measurements
in p–Pb collisions at large rapidities by the LHCb Collaboration are consistent with the
corresponding measurements in pp collisions within uncertainties [34].

In this article, possible effects related to the modification of hadronisation mechanisms,
and initial and final-state effects at midrapidity (|ylab| < 0.5) in p–Pb collisions in the beauty
sector are investigated. The pT-differential production cross sections and nuclear modification
factors of non-prompt D0, D+, and Λ+

c hadrons in p–Pb collisions at √
sNN = 5.02 TeV are

reported. The D0 meson is reconstructed in the interval 1 < pT < 24 GeV/c, while the
D+ and Λ+

c hadrons are reconstructed in the interval 2 < pT < 24 GeV/c. By integrating
the pT-differential results and extrapolating to pT = 0 using pQCD calculations, the pT-
integrated non-prompt D0 and D+ production cross sections are computed. The paper is
organised as follows. Section 2 describes the ALICE apparatus and the analysed data samples.
Section 3 details the analysis methods used and outlines the corrections applied to calculate
the pT-differential production cross sections. Section 4 describes the sources of systematic
uncertainty. The results are presented in section 5. Finally, a summary is given in section 6.
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2 Experimental setup and data sample

The ALICE apparatus [67] consists of a set of detectors for particle reconstruction and
identification at midrapidity (|η| < 0.9) embedded in a solenoidal magnet, a forward (−4 <
η < −2.5) muon spectrometer, and a set of forward and backward detectors for triggering
and event characterisation. Typical detector performance in pp, p–Pb, and Pb–Pb collisions
is presented in [68]. The reconstruction of heavy-flavour hadrons from their hadronic decay
products at midrapidity primarily relies on the Inner Tracking System (ITS) [69], the Time
Projection Chamber (TPC) [70], and the Time-Of-Flight detector (TOF) [71] for tracking,
primary and decay vertex reconstruction, and charged-particle identification (PID). The V0
detector arrays [72] are used for triggering and event selection.

The data sample used in this analysis are from proton–lead collisions at √
sNN = 5.02 TeV

collected in 2016. The events were recorded with a minimum-bias (MB) interaction trigger
that required coincident signals in both scintillator arrays of the V0 detector, which covers
the full azimuth in the pseudorapidity intervals −3.7 < η < −1.7 and 2.8 < η < 5.1. The V0
timing information was used together with that from the Zero-Degree Calorimeter (ZDC) [68]
for offline rejection of beam-beam or beam-gas interactions occurring outside the nominal
colliding bunches.

To ensure uniform acceptance in pseudorapidity, events were required to have a re-
constructed collision vertex located within ±10 cm from the nominal collision point along
the beam-line direction. Events composed of several interactions per bunch crossing, whose
probability was below 0.5%, were rejected using an algorithm based on track segments,
defined within the two innermost ITS layers, to detect multiple interaction vertices [68]. The
influence of potentially remaining pile-up events is on the percent level and does not have
an impact on the final results of the presented analysis. After these selections, the data
sample consisted of about 600 million events, corresponding to an integrated luminosity
Lint = 292 ± 11 µb−1 [73]. During the p–Pb data taking period, the beam energies were 4 TeV
for protons and 1.58 TeV per nucleon for lead nuclei. With this beam configuration, the
nucleon–nucleon center-of-mass system moves in rapidity by ∆ycms = 0.465 in the direction of
the proton beam. The charm-hadron analyses were performed in the laboratory-frame interval
|ylab| < 0.5, leading to a shifted center-of-mass rapidity coverage of −0.96 < ycms < 0.04.

3 Analysis technique

3.1 Non-prompt D0, D+, and Λ+
c raw yields

The D0, D+, and Λ+
c charm hadrons, along with their charge conjugates, were reconstructed via

the following hadronic decay channels: D0 → K−π+ with branching ratio BR = (3.95±0.03)%,
D+ → π+K−π+ with BR = (9.38 ± 0.16)%, Λ+

c → pK−π+ with BR = (6.28 ± 0.32)%,
and Λ+

c → pK0
S with BR = (1.59 ± 0.08)%, followed by K0

S → π+π− with BR = (69.20 ±
0.05)%) [74]. The D0-, D+-, and Λ+

c -hadron candidates were defined by combining pairs
or triplets of tracks reconstructed with the proper charge sign. While for the Λ+

c → pK0
s

candidates, the V-shaped decay of the K0
s meson into two pion-track candidates was combined

with a proton-track candidate using a Kalman-Filter vertexing algorithm [75], as described
in [21]. All daughter tracks were required to be reconstructed within |η| < 0.8, with at least
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70 associated space points in the TPC, χ2/ndf < 2 of the fit quality of the TPC tracks
(where ndf is the number of degrees of freedom involved in the track fit procedure), and a
minimum of 2 (out of 6) reconstructed clusters in the ITS, with at least one in either of
the two innermost layers. These track-selection criteria reduce the D-meson and Λ+

c -baryon
acceptance in rapidity, which drops steeply to zero for |ylab| > 0.5 at low pT and for |ylab| > 0.8
at high pT. Therefore, a pT-dependent fiducial acceptance region |ylab| < yfid(pT) was applied
to grant a uniform acceptance in the considered rapidity range. The yfid(pT) was defined as a
second-order polynomial function, increasing from 0.5 to 0.8 in the transverse momentum
range 0 < pT < 5 GeV/c, and as a constant term, yfid = 0.8, for pT > 5 GeV/c.

The D0, D+, and Λ+
c decay weakly with a mean proper decay length (cτ) of about 123,

312, and 60 µm, respectively [74]. Charm hadrons coming from beauty-hadron decays are
even more displaced from the primary vertex since their estimated cτ is about 500 µm, as for
beauty hadrons. Therefore, these analyses were based on the reconstruction of decay-vertex
topologies displaced from the primary vertex and, according to the selection applied, it is
possible not only to separate candidates from the combinatorial background, but also the
contributions of prompt and non-prompt charm hadrons.

To reduce the large combinatorial background and to separate the contributions of prompt
and non-prompt charm hadrons, a machine-learning approach with multi-class classification,
based on Boosted Decision Trees (BDT), implemented in the XGBoost library [76, 77], was
adopted. For the BDT training, signal samples of prompt and non-prompt charm hadrons
were obtained from simulations using the PYTHIA 8 event generator [19] (Monash-13
tune [20]), embedded in an underlying p–Pb collision generated with HIJING 1.36 [78], to
describe better the charged-particle multiplicity and detector occupancy observed in the
data. Background samples were extracted from candidate invariant-mass distributions within
the range of 5σ < |∆M | < 9σ in the data, where ∆M represents the difference between the
candidate invariant mass and the nominal mass of the hadron candidate, and σ represents
the invariant-mass resolution.

Before the training, loose selections were applied based on the decay kinematics and
topologies along with the PID information of the decay-product tracks. The PID selections
were based on the difference between the measured and expected detector signals for a
given particle species hypothesis, in units of the detector resolution (ndet

σ ). Protons, pions,
and kaons were selected by requiring compatibility with the respective hypothesis within
three standard deviations (3σ) for both the TPC specific energy loss and the TOF time-
of-flight. For tracks without a measured signal in the TOF, the PID selections relied only
on information from the TPC.

Independent BDT models were trained for each pT interval of the analysis of each D-
meson species and the two Λ+

c decay channels using different variables related to the displaced
decay-vertex topology and the PID information of the decay tracks. The main variables used
were (i) the distance of closest approach between the reconstructed tracks and the primary
vertex, (ii) the distance between the charm-hadron decay vertex and the primary vertex,
(iii) the charm-hadron impact parameter, (iv) the cosine of the pointing angle between the
charm-hadron candidate line-of-flight and its reconstructed momentum. In the case of the
Λ+

c → pK0
S decay, additional training variables related to the decay topology of the K0

S and
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Λ+
c were used as in [21]. The three BDT output scores are related to the candidate probability

of being a prompt charm hadron, a non-prompt charm hadron, or combinatorial background.
Selections on the non-prompt and combinatorial background BDT scores, corresponding to a
requirement of a low probability for a candidate to be combinatorial background and a high
probability to be non-prompt, were optimised to obtain a high non-prompt charm-hadron
fraction in the inclusive signals while maintaining a reliable signal extraction, meaning a
statistical significance larger than 3, as done in [2, 79].

The raw yields of D0, D+, and Λ+
c hadrons, including particles and antiparticles, were

extracted via binned maximum-likelihood fits to the invariant-mass (M) distributions of the
selected charm-hadron candidates. The raw yields were extracted in transverse-momentum
intervals in the range 1 < pT < 24 GeV/c for D0 mesons, and 2 < pT < 24 GeV/c for
D+ mesons and Λ+

c baryons. The fitting function was composed of an exponential or
polynomial term for describing the background and a Gaussian term for the signal. To
improve the stability of the fits, the widths of the charm-hadron signal peaks were fixed
to the values extracted from data samples enhanced with prompt candidates, given the
naturally larger abundance of prompt compared to non-prompt charm hadrons. As part
of the systematic uncertainty analysis, the width parameter was varied to determine its
impact on the systematic uncertainty associated with the raw-yield extraction. For the
D0 mesons, the contribution of signal candidates to the invariant-mass distribution with
the wrong mass assigned to the D0-decay tracks, referred to as reflections, was included in
the fit, and estimated as explained in [79]. The contribution of reflections to the raw yield
is about 1–2%, depending on pT. Examples of invariant-mass distributions together with
the result of the fits and the estimated non-prompt fractions (f raw

non-prompt) are reported in
figure 1, for the 3 < pT < 4 GeV/c, 5 < pT < 6 GeV/c, and 4 < pT < 8 GeV/c intervals
of the D0, D+, and Λ+

c hadrons, respectively.

3.2 Yield corrections and non-prompt fraction estimations

The pT-differential production cross sections of non-prompt D0, D+, and Λ+
c hadrons at

midrapidity were computed as:

d2σHc

dpTdy

∣∣∣∣∣
|ylab|<0.5

=
1
2 ×

f raw
non-prompt(pT) × NHc+Hc,raw(pT)

∣∣∣
|ylab|<yfid(pT)

∆pT × c∆y(pT) × (Acc × ε)non-prompt(pT)
1

BR × Lint
, (3.1)

where NHc+Hc,raw (sum of particles and antiparticles) represents the raw yields extracted in
each pT interval, and the factor 1/2 is included to account that the raw yields contain both
particles and antiparticles, while the production cross sections are given as an average of
particles and antiparticles. The f raw

non-prompt factor represents the raw non-prompt fraction
needed to account for the residual contribution of prompt charm hadrons in the extracted
non-prompt raw yields. In addition, the yields were further divided by the width of the pT
interval (∆pT), the correction factor for the rapidity coverage c∆y, computed as the ratio
between the generated hadron yield in ∆y = 2yfid and that in |ylab| < 0.5, as explained in [63],
as well as the acceptance times efficiency of non-prompt charm hadrons (Acc × ε)non-prompt,
the BR of the decay channel, and the integrated luminosity Lint.
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Figure 1. Invariant-mass distributions of D0-, D+-, and Λ+
c -hadron candidates, and their charge

conjugates in selected pT intervals. The blue solid lines show the total fit functions as described in
the text and the red dashed lines show the fit function describing the combinatorial background. For
D0-meson candidates, the solid green line represents the contribution of the reflections. The mean (µ)
and fixed standard deviation (σ) of the signal fit function, along with the raw-yield (S) values, are
reported together with their statistical uncertainties resulting from the fit. The fraction of non-prompt
candidates in the measured raw yield (f raw

non-prompt) is reported with its statistical and systematic
uncertainties.

Possible differences in the pT shape of prompt and non-prompt charm hadrons between
data and Monte Carlo (MC) simulations were corrected by weighting the simulated pT
distribution of prompt charm hadrons and of the beauty-hadron parent, respectively. For
D mesons, the weights were computed by dividing the pT spectrum predicted by FONLL
calculations and the one obtained from PYTHIA 8 simulations. The FONLL pT spectra of
prompt and non-prompt D mesons in p–Pb collisions were computed using the predictions
in pp collisions at

√
s = 5.02 TeV [13, 80], assuming that the RpPb of D and B mesons

are compatible with unity, in the rapidity range of this study. This assumption is based
on the D-meson RpPb measurements at √

sNN = 5.02 TeV at midrapidity by the ALICE
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Figure 2. Acceptance-times-efficiency factors for D0, D+, and Λ+
c hadrons as a function of pT.

Collaboration [63] and B-meson RpPb measurements at √sNN = 8.16 TeV at forward/backward
rapidity by the LHCb Collaboration [34], that are in agreement with models that predict B-
meson RpPb values compatible with unity at midrapidity, within the theoretical uncertainties.
The energy dependence of the RpPb measurement is neglected. The procedure to compute
the pT spectrum based on FONLL calculations for the prompt Λ+

c (Λ0
b) hadrons takes into

account three essential components: the FONLL predicted pT distribution for prompt D0 (B)
mesons in pp collisions at

√
s = 5.02 TeV, the prompt Λ+

c /D0 (Λ0
b/B0) ratio [21, 32] in the

same collision system and energy, and the prompt Λ+
c RpPb at √sNN = 5.02 TeV measured by

the ALICE Collaboration [21]. The weights on prompt Λ+
c (Λ0

b) pT shape were derived as the
product of these three components divided by the prompt Λ+

c (Λ0
b) MC pT distribution from

PYTHIA 8. In addition, the weights on non-prompt Λ+
c were derived from Λ0

b based on the
pT correlation between Λ0

b and non-prompt Λ+
c from Λ0

b decays simulated by PYTHIA 8.
The (Acc× ε) correction was obtained from simulations, as described in section 3.1, using

samples not employed for the BDT training. The (Acc× ε) factors, computed for non-prompt
D0, D+, and Λ+

c hadrons as a function of pT, after applying all the selections, are shown in
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figure 2. The selection applied to obtain the non-prompt enhanced samples strongly suppresses
the prompt charm-hadron efficiency. The prompt charm-hadron acceptance-times-efficiency
(Acc × ε) is smaller than the non-prompt one by factors varying from 20 to 60 for D mesons
and 5 to 13 for Λ+

c baryons, depending on the pT interval.
A data-driven procedure, based on the construction of data samples with different abun-

dances of prompt and non-prompt candidates, was used to estimate the fraction f raw
non-prompt

of non-prompt D0, D+, and Λ+
c hadrons in the extracted yields. Let i ∈ {1;n} designate a

set among n ∈ N selection sets. Each set of BDT selection i is associated with an extracted
raw-yields value (Yi), which relates to the corrected yield of prompt (Nprompt) and non-prompt
(Nnon−prompt) charm hadrons via the corresponding prompt (Acc × ε)prompt

i and non-prompt
(Acc × ε)non−prompt

i efficiency as follows:

(Acc × ε)prompt
i ×Nprompt + (Acc × ε)non-prompt

i ×Nnon-prompt − Yi = δi , (3.2)

where δi represents a residual that accounts for the equation not holding precisely due to
the uncertainties of Yi, (Acc × ε)non-prompt

i , and (Acc × ε)prompt
i . In the case of n ⩾ 2 sets,

a χ2 function can be defined based on eq. 3.2, which can be minimised to obtain Nprompt
and Nnon-prompt as explained in [2, 35].

Figure 3 shows an example of the raw-yield distribution as a function of the BDT-based
selection employed in the minimisation procedure for D0 mesons in 3 < pT < 4 GeV/c (left
panel). The leftmost data point of the distribution is the raw yield corresponding to the looser
selections on the BDT outputs related to the candidate probability of being a non-prompt
charm hadron. In contrast, the rightmost one corresponds to the tightest selections. The
right panel shows the pT distributions of the raw non-prompt fraction f raw

non-prompt obtained for
the set of selection criteria adopted in the analysis for non-prompt D0, D+, Λ+

c → pK−π+,
and Λ+

c → pK0
S. The fraction f raw

non-prompt of D0, D+, and Λ+
c hadrons ranges from 42 to 90%

depending on the decay channel and the pT interval.

4 Systematic uncertainties

The measurement of the pT-differential production cross section of non-prompt charm hadrons
was affected by the following sources of systematic uncertainties: (i) extraction of the raw yield
from the invariant-mass distribution, (ii) non-prompt fraction estimation, (iii) corrections
to the generated pT shape in simulations, (iv) charm-hadron selection efficiency, and (v)
track-reconstruction efficiency. The systematic uncertainties of the PID selection efficiency
were found to be negligible, as observed in prompt charm hadron measurements [21, 63]. In
addition, the pT-differential production cross section was affected by the uncertainties on the
branching ratios of the considered charm-hadron decays [74] and a systematic uncertainty
on the overall normalisation induced by the uncertainties on the integrated luminosity of
3.7% [73]. The values of the systematic uncertainties for some representative pT intervals
were summarised in table 1. The contributions of the different sources were considered to be
uncorrelated and were summed in quadrature to obtain the total systematic uncertainty.

The systematic uncertainty on the raw yield extraction was evaluated for each charm-
hadron species by repeating the fits to the invariant-mass distribution for each pT interval of
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Figure 3. Left panel: example of raw-yield distribution as a function of the BDT-based selection
employed in the data-driven procedure adopted to determine f raw

non-prompt of D0 mesons. Right panel:
f raw

non-prompt fractions as a function of pT obtained for the set of selection criteria adopted in the analysis
for non-prompt D0, D+, Λ+

c → pK−π+, and Λ+
c → pK0

S. The vertical bars and empty boxes represent
the statistical and systematic uncertainties, respectively.

Hadron D0 (→ K−π+) D+ (→ π+K−π+) Λ+
c (→ pK−π+) Λ+

c
(
→ pK0

S
)

pT (GeV/c) 1–2 10–12 2–3 10–12 2–4 12–24 2–4 8–12
Signal yield 3% 2% 6% 5% 7% 15% 10% 9%
Fraction estimation 3% 1% 2% 3% 10% 15% 10% 10%
pT shape in MC 7% 0% 1% 0% 5% 0% 5% 0%
Selection efficiency 5% 4% 6% 3% 8% 8% 7% 7%
Tracking efficiency 2.0% 2.5% 3.7% 4.0% 6.0% 6.0% 5.0% 5.0%
Branching ratio [74] 0.8% 1.7% 5.1% 5.0%
Luminosity [73] 3.7%

Table 1. Summary of the relative systematic uncertainties on the measurement of non-prompt D0,
D+, and Λ+

c production cross sections in different pT intervals.

the analyses, varying the fit range, the functional form of the background fit function, the bin
size of the invariant mass spectrum, and the width of the Gaussian function used to model
the signal peaks. The latter was varied within the uncertainty of the value obtained from the
fits to the prompt candidate enhanced data sample. The systematic uncertainty was defined
as the root mean square of the distribution of the signal yields obtained from the described
variations and ranged from 2 to 15% depending on the hadron species and the pT interval.

The systematic uncertainty on the value of f raw
non-prompt obtained with the data-driven

approach was estimated by varying the number of BDT selections employed in the data-
driven method as described in section 3.2. A systematic uncertainty ranging from 1 to
15% was assigned.

The systematic effect due to the dependence of the efficiencies on the generated pT
distribution of heavy-flavour hadrons was estimated by evaluating the production cross
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section after weighting the pT shape of the PYTHIA 8 generator to match the central one
predicted by FONLL calculations, as well as the upper- and lower-edge of the predictions
which account for the uncertainties due to the choice of the heavy-quark masses, factorisation
and renormalisation scales, and the uncertainties on the CTEQ6.6 PDFs [81]. The weights
were applied to the pT distributions of prompt charm hadrons and of the beauty hadron parent
in the case of non-prompt charm hadrons. The assigned systematic uncertainty, considering
the root mean square of the production cross section distributions obtained for minimal and
maximal FONLL predictions with respect to the central (default) ones, reached up to 7%.

The systematic uncertainty on the selection efficiency originates from imperfections
in the description of the kinematic and topological variables of the candidates and of the
detector resolutions and alignments in the simulation. It was estimated by comparing the
production cross sections obtained by repeating the analysis with different selections on the
BDT outputs, resulting in a significant modification of the efficiency values. The assigned
systematic uncertainty ranged from 3 to 8%.

The systematic uncertainties on the track reconstruction efficiency were estimated by
considering the uncertainty due to track quality selections and the uncertainty due to the TPC–
ITS track matching efficiency as discussed in [21, 63]. It ranged from 2 to 6%, depending
on the candidate species and pT interval.

5 Results

5.1 Production cross sections

The pT-differential production cross sections of non-prompt D0 mesons, D+ mesons, and Λ+
c

baryons in p–Pb collisions at √
sNN = 5.02 TeV, measured in the rapidity interval −0.96 <

ycms < 0.04, are shown in figure 4 in comparison to those measured for prompt hadrons
at the same center-of-mass energy [21, 63]. The measurement of prompt D+ is the one
reported in [63], scaled for the BR = (8.98 ± 0.28)% of the D+ → π+K−π+ decay reported
in [82]. The non-prompt Λ+

c -baryon production cross section was obtained by computing
a weighted average of the production cross sections measured for the two decay channels,
Λ+

c → pK−π+ and Λ+
c → pK0

S, using the inverse of the quadratic sum of the relative statistical
and uncorrelated systematic uncertainties as weights. The systematic uncertainties related
to the tracking, luminosity, and generated pT spectrum in the MC simulations are treated
as correlated between the two decay channels; the uncertainty of the branching ratios is
partially correlated as described in [74], while all the other sources of systematic uncertainties
are considered fully uncorrelated.

The production cross section integrated in pT in the visible pT interval of the analyses and
for the results extrapolated down to pT = 0 are reported in tables 2 and 3, respectively. All the
systematic uncertainties were propagated as fully correlated among the measured pT intervals,
except for the one associated with the raw-yield extraction. The visible production cross
sections were extrapolated down to pT = 0 for non-prompt D0 and D+ mesons using FONLL
predictions for beauty-hadron production in pp collisions and the PYTHIA 8 generator,
employed to describe the decay kinematics of beauty hadrons (hb) into charm mesons. These
predictions were found to be compatible with the measurements performed in pp collisions,
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Figure 4. pT-differential production cross sections of non-prompt D0, D+, and Λ+
c in p–Pb collisions

at √sNN = 5.02 TeV, in comparison with the corresponding production cross section of prompt hadrons
from [21, 63]. The measurement of prompt D+ mesons is the one reported in [63], with decay BR
discussed in the text. The vertical bars and empty boxes represent the statistical and systematic
uncertainties (without branching ratio and luminosity contributions), respectively.
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Hadron Kinematic range (GeV/c) dσvisible
pPb /dy||ylab|<0.5 (µb)

D0 1 < pT < 24 3128 ± 183 (stat.) ± 187 (syst.) ± 116 (lumi.) ± 24 (BR)
D+ 2 < pT < 24 726 ± 101 (stat.) ± 42 (syst.) ± 27 (lumi.) ± 12 (BR)
Λ+

c 2 < pT < 24 1404 ± 364 (stat.) ± 171 (syst.) ± 52 (lumi.) ± 70 (BR)

Table 2. Production cross sections in the measured pT range for non-prompt charm hadrons in p–Pb
collisions at √

sNN = 5.02 TeV.

Hadron Extr. factor to dσpPb/dy||ylab|<0.5 (µb)
pT > 0

D0 1.275+0.014
−0.048 3990 ± 234 (stat.) ± 282 (syst.) ± 148 (lumi.) ± 30 (BR) +199

−306(extr.)
D+ 2.21+0.05

−0.19 1604 ± 222 (stat.) ± 111 (syst.) ± 59 (lumi.) ± 27 (BR) +36
−140(extr.)

Table 3. Production cross sections in the range pT > 0 for non-prompt charm hadrons in p–Pb
collisions at √

sNN = 5.02 TeV.

as shown in [35]. In order to take into account the different system sizes with respect to pp
collisions, the predictions were scaled by APb, assuming a flat B-meson RpPb at unity over the
whole pT range at midrapidity, according to LHCb data [34]. The systematic uncertainties
on the extrapolation factor were estimated by considering: (i) the FONLL uncertainties, (ii)
the beauty fragmentation fractions f(b → hb), (iii) the branching ratios of the hb → D + X
decays, and (iv) the variation of the pT spectrum shape using EvtGen package for the
description of the beauty-hadron decays [83]. Contribution (ii) was estimated by considering
an alternative set of beauty fragmentation fractions measured in pp̄ collisions [1] while the
default one is from e+e− collisions. For (iii), the branching ratios implemented in PYTHIA
8 were reweighted to reproduce the measured values reported in [74]. It is not possible to
extrapolate the non-prompt Λ+

c production cross section down to pT = 0 given the absence
of model calculations in p–Pb collisions for beauty baryons. The prompt D0 has a larger
contribution from resonances, like D∗+, that do not feed the D+ meson. The branching
ratio of B meson decays to D0 is significantly higher than D+, where the production of
B0 and B+ is similar. These factors lead to a larger production of non-prompt D0 mesons
than the non-prompt D+ mesons.

5.2 Nuclear modification factors

The nuclear modification factor RpPb is computed as

RpPb =
1
APb

d2σpPb/dpTdy
d2σpp/dpTdy , (5.1)

where d2σpPb/dpTdy represents the pT-differential production cross section within −0.96 <
ycms < 0.04 in p–Pb collisions at √

sNN = 5.02 TeV. In the analysis of the non-prompt D
mesons, d2σpp/dpTdy corresponds to the production cross section in pp collisions at the
same center-of-mass energy at midrapidity (|ylab| < 0.5), taken from [2]. In the case of
the non-prompt Λ+

c analysis, the pp reference was computed adopting the non-prompt Λ+
c
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d2σpp/dpTdy measured in pp collisions at
√
s = 13 TeV at midrapidity (|y| < 0.5) [35], scaled

to account for the different collision energy. The scaling factor was computed as the ratio
of the B production cross section from FONLL at

√
s = 13 and 5.02 TeV. This is justified

given: (i) the compatible pT-dependence of the 13-to-5.02 TeV ratio of mesons and baryons
in the charm sector at midrapidity [6], (ii) the agreement with the FONLL calculations
of charm mesons at midrapidity and beauty meson at forward rapidity [84, 85], and (iii)
the assumption that the beauty baryons have a similar scaling as the beauty mesons, as
observed in the charm sector [35]. A similar behavior is found in the beauty sector [86],
though with much larger uncertainties. The shift in rapidity between pp and p–Pb collisions
was corrected by using FONLL predictions for the B meson production cross sections in the
two rapidity intervals, and applying the estimated correction to the non-prompt D0, D+,
and Λ+

c measurements. The corresponding correction ranges from 0.9 to 2.3%, increasing at
higher pT [63]. The systematic uncertainties of the p–Pb and pp measurements were treated
as uncorrelated within the same pT interval and were propagated quadratically, with the
exception of the BR which cancels out in the ratio.

The non-prompt D0 and D+ RpPb are compatible over the full pT range within the current
uncertainties. In order to have a more precise measurement, the average of their RpPb was
computed, using the inverse of the quadratic sum of the statistical and uncorrelated systematic
uncertainties as weights. The systematic uncertainty of the average was computed by
propagating the uncertainties through the weighted average while assuming the contributions
from tracking efficiency and normalisation to be fully correlated.

The left panel of figure 5 shows the average RpPb of non-prompt D0 and D+ mesons,
and the average RpPb of prompt D0, D+, and D∗+ mesons [63]. The RpPb of prompt and
non-prompt charm mesons are compatible with each other and with unity over the entire
pT interval of the measurements within the statistical and systematic uncertainties. The
comparison between the RpPb of prompt [21] and non-prompt Λ+

c baryons is shown in the
right panel of figure 5. The prompt Λ+

c -baryon RpPb shows deviation from unity, highlighting
modifications of the pT spectrum in p–Pb collisions with respect to pp collisions, due to
effects beyond nPDFs that may relate to the hadronisation process or to the presence of an
expanding medium [26]. The non-prompt Λ+

c -baryon RpPb is compatible both with unity and
with the prompt Λ+

c -baryon measurements. Given its large uncertainties, it is not possible
to conclude about a possible trend versus pT.

The pT-integrated RpPb values for non-prompt D0 and D+ mesons in −0.96 < ycms < 0.04
were calculated from the extrapolated pT-integrated production cross sections reported above
and the non-prompt D0- and D+-meson production cross sections measured in pp collisions
at

√
s = 5.02 TeV [2]. The resulting RpPb values of non-prompt D0 and D+ mesons in

p–Pb collisions are:

Rnon-prompt D0

pPb (pT > 0,−0.96 < ycms < 0.04) = 1.04 ± 0.10(stat.) ± 0.12(syst.)+0.06
−0.11(extr.) ,

Rnon-prompt D+

pPb (pT > 0,−0.96 < ycms < 0.04) = 0.86 ± 0.19(stat.) ± 0.11(syst.)+0.03
−0.11(extr.) .

The pT-integrated RpPb values of non-prompt D mesons are compatible with unity within
uncertainties, which is consistent with a not significant modification of production cross
section in p–Pb collisions compared to pp collisions, as observed in the charm sector [35].
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Figure 5. Left panel: average pT-differential RpPb of prompt D0, D+, and D∗ [63], and non-prompt
D0 and D+ mesons. Right panel: pT-differential RpPb of prompt [21] and non-prompt Λ+

c baryons.
The vertical bars and empty boxes represent the statistical and systematic uncertainties, respectively.
The black-filled box at RpPb = 1 represents the normalisation systematic uncertainty.

The left panel of figure 6 shows the pT-integrated RpPb measured at midrapidity for
non-prompt D0, D+, and J/ψ mesons by the ALICE Collaboration [87] compared to the
ones of non-prompt J/ψ and B+ mesons measured at forward (1.5 < ycms < 4.0, 2.5 <

ycms < 3.5) and backward (−5.0 < ycms < −2.5, −3.5 < ycms < −2.5) rapidity by the LHCb
Collaboration [34, 88]. The measurements of non-prompt D, J/ψ, and B mesons in p–Pb
collisions at forward, backward, and midrapidity exploring different Bjorken-x regions, are
sensitive to different levels of shadowing and saturation regimes. The experimental results of
pT-integrated RpPb are compared with model calculations of the B+ meson in p–Pb/Pb–p
collisions at √

sNN = 8.16 TeV using the HELAC-onia generator [89–91] with three different
sets of nPDFs, i.e. EPPS16 [53], nCTEQ15 [92], and EPPS16* [57]. In the calculations with
EPPS16 and nCTEQ15, the model parameters are tuned to reproduce J/ψ and ψ(2S) cross
section measurements in pp collisions at the LHC [93, 94]. A weighting based on several
heavy-flavour measurements was applied on the nPDF set EPPS16 [53], to obtain the nPDF
set EPPS16*, as explained in [57]. The uncertainties in the theoretical predictions arise
from those of the corresponding nPDF parameterisations. The measurements agree with
the model calculations within the uncertainties.

The right panel of figure 6 shows the pT-integrated nuclear modification factors of
prompt [63] and non-prompt D0 mesons measured in p–Pb collisions compared with those
measured in central (0-10%) [95] and semicentral (30-50%) [96] Pb–Pb collisions. These
measurements provide an additional tool to investigate the modification of heavy-flavour
production from pp to p–Pb and Pb–Pb collisions in the beauty sector. A pT-integrated
RpPb compatible with unity is measured for both prompt and non-prompt charm mesons,
suggesting the overall CNM effects in the charm and beauty sector are similar in p–Pb
collisions. In Pb–Pb collisions, a hint of a different behaviour between charm and beauty is
suggested, possibly due to a higher sensitivity of charm quarks to the nPDF modification
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Figure 6. Left panel: nuclear modification factors of non-prompt D0 and D+ mesons measured
in p–Pb collisions at √

sNN = 5.02 TeV compared with the measurement of non-prompt J/ψ at
midrapidity [87], and the measurements of non-prompt J/ψ and B+ mesons at forward and backward
rapidity [34, 88]. The results are also compared with B-meson RpPb calculations using different nPDF
sets [53, 57, 92]. Right panel: pT-integrated nuclear modification factor of prompt and non-prompt
D0 mesons measured in p–Pb and Pb–Pb collisions at √

sNN = 5.02 TeV [63, 95, 96]. Statistical (bars)
and systematic (boxes) uncertainties are shown. Extrapolation uncertainties of non-prompt D0 mesons
in p–Pb and Pb–Pb collisions are shown separately as shaded bands.

(shadowing). Extending the measurement of beauty hadron production down to pT = 0, both
in p–Pb and Pb–Pb collisions, will be crucial to finally achieve a complete understanding
of possible modification of the heavy-flavour production due to CNM effects and possible
different hadronisation mechanisms across collision systems.

5.3 Production cross section ratios

To probe hadronisation in p–Pb collisions and its possible modification with respect to smaller
collision systems, ratios of non-prompt D+ over non-prompt D0, and non-prompt Λ+

c over
non-prompt D0 pT-integrated production cross sections were computed. The systematic
uncertainties were propagated to the ratios as uncorrelated except for the ones related to
tracking efficiency and normalisation, which were treated as fully correlated. The ratios
are reported in tables 4 and 5, respectively.

The non-prompt D+/D0 pT-integrated yield ratios are reported in table 4, together with
the values measured in pp collisions [2] at

√
s = 5.02 TeV and with the one measured in

e+e− collisions at LEP [1], where the error includes the statistical uncertainties, systematic
uncertainties and the uncertainties from the relevant branching fractions. The results are
compatible within experimental uncertainties, and no dependence on the collision system
or energy is observed.

A possible pT dependence was investigated by computing the pT-differential ratios. The
ratios of the pT-differential production cross sections for prompt and non-prompt D+/D0

are shown in the left panel of figure 7. The non-prompt D+/D0 ratio is independent of
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System Kinematic range (GeV/c) Non-prompt D+/D0

pp at
√
s = 5.02 TeV [2] 2 < pT < 24

0.487 ± 0.090 (stat.)
± 0.055 (syst.) ± 0.009 (BR)

p–Pb at √
sNN = 5.02 TeV 2 < pT < 24

0.402 ± 0.060 (stat.)
± 0.034 (syst.) ± 0.011 (BR)

e+e− at
√
s = 209 GeV

– 0.380 ± 0.025
LEP average [1]

Table 4. Production cross section ratios of non-prompt D+ over D0 for the measured pT ranges at
midrapidty (|ylab| < 0.5) in pp collisions at

√
s = 5.02 TeV [2], p–Pb collisions at √

sNN = 5.02 TeV,
and in e+e− collisions at

√
s = 209 GeV at LEP [1].
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Figure 7. Left panel: prompt (red) [63] and non-prompt (blue) D+/D0 yield ratio as a function of pT.
Right panel: non-prompt D+/D0 yield ratios as a function of pT measured by ALICE Collaboration
in pp (red) [2] and p–Pb (blue) collisions at the same collision energy. The vertical bars and empty
boxes represent the statistical and systematic uncertainties (without the branching ratio contribution),
respectively.

pT in the measured pT range within the current experimental precision and is compatible
with the prompt D+/D0 ratio pointing to similar relative fragmentation fractions of charm
and beauty quarks into D mesons. This result is in line with what was observed in the
same rapidity interval in pp and Pb–Pb collisions at different collision energies [2, 95]. In
the right panel of figure 7, the non-prompt D+/D0 ratio measured in p–Pb collisions is
compared with the non-prompt D+/D0 ratio measured in pp collisions at the same collision
energy. The two measurements are compatible over the full pT range of the measurements
within the uncertainties, pointing to no significant modification of beauty quarks to mesons
within uncertainties.

The ratio between the pT-integrated production cross sections of non-prompt Λ+
c and D0

hadrons is reported in table 5, together with the one measured in pp collisions at
√
s = 13 TeV

(|y| < 0.5) [35] and the one measured at LEP [1]. Despite the different collision energies,
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System Kinematic range (GeV/c) Non-prompt Λ+
c /D0

pp at
√
s = 13 TeV [35] 2 < pT < 24 0.55 ± 0.07 (stat.) ± 0.06 (syst.)

p–Pb at √
sNN = 5.02 TeV 2 < pT < 24 0.78 ± 0.21 (stat.) ± 0.22 (syst.)

e+e− at
√
s = 209 GeV, LEP average [1] – 0.124 ± 0.016

Table 5. Cross sections ratios of non-prompt Λ+
c and D0 for the measured pT ranges at midrapidity

(|ylab| < 0.5) in pp collisions at
√
s = 13 TeV [35], p–Pb collisions at √

sNN = 5.02 TeV, and in e+e−
collisions at

√
s = 209 GeV at LEP [1].

an agreement within the experimental uncertainties is observed between the measurements
performed in pp and p–Pb collisions. On the other hand, a significant difference is observed
when comparing them with the e+e− measurement obtained at LEP exhibiting a significant
enhancement in the measured pT range, with respect to the meson production at midrapidity
in the beauty sector, as observed in the charm sector [35].

In order to gain further information about modification of hadronisation mechanisms in
the beauty sector, the ratio of the pT-differential production cross sections of non-prompt Λ+

c
and D0 hadrons measured in p–Pb collisions at √

sNN = 5.02 TeV is computed and shown in
the top-left panel of figure 8. It is compared to the analogous ratio measured in pp collisions
at

√
s = 13 TeV [35] and with the Λ0

b/B0 ratio measured by the LHCb Collaboration at
forward rapidity (2 < ylab < 4.5) in pp collisions at

√
s = 13 TeV [24]. The baryon-to-meson

ratio shows a decreasing trend with increasing pT in both pp and p–Pb collisions. The
baryon enhancement suggested at low pT is qualitatively similar to what was measured in pp
collisions, where it was explained by different modelling of hadronisation mechanisms beyond
pure in-vacuum fragmentation. Notable among these are the coalescence or recombination of
charm quarks with quarks from a thermal medium [39, 41, 42], the statistical hadronisation
that takes into account undiscovered higher charm resonant states [44, 45], and the string
formation beyond the leading colour approximation [46, 47]. The lack of similar models
for the beauty hadrons in p–Pb collisions, that could also account for the presence of the
Pb nucleons in the collisions, prevents any conclusion about the origin of this modification
in p–Pb collisions. Neglecting a possible dependence on the collision energy, which is not
observed in the charm sector [6], the measurement in p–Pb collisions hints at a higher
non-prompt Λ+

c /D0 yield ratio in 2 < pT < 12 GeV/c with respect to the pp one, similarly to
what is more precisely measured for the prompt Λ+

c /D0 [21] and Ξ0
c/D0 ratios [97] and for

the Λ0
b/B0 ratio (−3.5 < ylab < −2.5 and 2.5 < ylab < 3.5) [34]. This difference suggests a

possible hardening of the beauty baryon pT spectra, consistent with a radial flow scenario,
where the shift to higher pT depends on the particle mass. Similar spectrum modifications
in p–Pb collisions were also observed in the strangeness sector by the ALICE and CMS
Collaborations [59, 98], and were found to be in line with the effect of radial flow predicted
by hydrodynamic models such as EPOS LHC [99]. Future precise measurements down to pT
= 0 will be crucial to assess potential differences on the beauty baryon yields and collective
motion in pp and p–Pb collisions.

As shown in the top-right panel of figure 8, the non-prompt baryon-to-meson ratio shows a
similar trend as a function of pT, within the uncertainties, compared to the prompt Λ+

c /D0 [21]
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Figure 8. Top-left panel: non-prompt Λ+
c /D0 yield ratios as a function of pT measured by ALICE

in pp (red) [35] and p–Pb (blue) collisions compared with the Λ0
b /B0 ratio (green) [24] measured

by the LHCb Collaboration at forward rapidity (2 < ylab < 4.5) in pp collisions. Top-right panel:
prompt (red) [21] and non-prompt (blue) Λ+

c /D0 yield ratios as a function of pT measured by ALICE
in −0.96 < ycms < 0.04 together with the Λ0

b/B0 yield ratio (green) [34] measured by LHCb in
2.5 < ycms < 3.5. Bottom panel: ratios of the nuclear modification factor of non-prompt Λ+

c and
non-prompt D0 at midrapidity (blue), and the Λ0

b and B0 at forward and backward rapidity measured
by LHCb (red) [34].

in the measured pT range in p–Pb collisions at √sNN = 5.02 TeV. The results are also compared
with the Λ0

b/B0 yield ratio measured by the LHCb Collaboration at 2.5 < ycms < 3.5 [34]
in p–Pb collisions at √

sNN = 8.16 TeV. Despite the difference in collision energy, rapidity,
and the slight difference in pT coverage between the ALICE and LHCb measurement, both
sets of measurements exhibit similar dependency on pT within experimental uncertainties.
As mentioned before, the comparison between charm and beauty baryon-to-meson ratios is
useful to investigate possible similarities in the hadronisation mechanism of heavy quarks.
It is important to note that the additional effect of the hb → hc + X decay kinematics is
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expected to slightly modify the pT dependence of the non-prompt charm hadron ratios with
respect to the beauty-hadron ratios. However, interestingly, the measurements for beauty and
charm baryon-to-meson ratio show a similar trend as a function of pT, suggesting that the
hadronisation modifications for beauty quarks may mirror those for charm quarks [36]. The
Λ0

b/B0 ratio from the LHCb Collaboration is lower than the non-prompt Λ+
c /D0 ratio in the

low-pT interval when compared to both collision systems. However, the large experimental
uncertainties over the full pT ranges prevent from drawing strong conclusions.

Assuming that the modifications of hadronisation mechanisms of heavy quarks are similar
in pp and p–Pb collisions, one would expect the double ratio of non-prompt Λ+

c (Λ0
b) over D0

(B0) production in p–Pb to pp collisions (non-prompt RΛ+
c /D0

pPb or RΛ0
b/B0

pPb ) to be consistent
with unity. This quantity corresponds to the ratio of nuclear modification factors of baryons
over mesons. The bottom panel of figure 8 shows the pT-integrated (pT > 2 GeV/c) RpPb of
non-prompt Λ+

c baryons divided by that of non-prompt D0 mesons, compared with the same
ratio for Λ0

b baryons and B0 mesons measured by the LHCb Collaboration [34] as a function
of ycms. The result in −0.96 < ycms < 0.04 is consistent with unity within the uncertainties.
However, more precise measurements exploiting larger collected data samples, are required to
conclude on a possible rapidity dependence of beauty-baryon hadronisation.

6 Summary

The first measurements of non-prompt D0-, D+-, and Λ+
c -hadron production at midrapidity

in p–Pb collisions are reported. Extrapolating the visible non-prompt D meson production
cross sections down to pT = 0, the pT-integrated RpPb of D mesons is computed. Within
the uncertainties, the pT-integrated RpPb of non-prompt D mesons is consistent with unity.
Similarly, the pT-integrated RpPb of non-prompt D0 is compatible with prompt D0. The
pT-differential RpPb of non-prompt D mesons and Λ+

c is compatible with unity and the
measurements in the charm sector, in the measured pT range, within uncertainties. However,
due to the current experimental uncertainties, it remains challenging to clearly differentiate
between a flat trend compatible with unity, and the trend observed for prompt Λ+

c in p–Pb
collisions as a function of pT. The prompt and non-prompt yield ratios are compatible
within current experimental uncertainties for both D+/D0 and Λ+

c /D0. The pT-differential
non-prompt Λ+

c /D0 in p–Pb collisions is compatible with the non-prompt Λ+
c /D0 ratio

and Λ0
b/B0 ratio measured in pp collisions. The pT-integrated non-prompt RΛ+

c /D0

pPb was

measured at midrapidity and is compatible with the pT-integrated R
Λ0

b/B0

pPb measured by
the LHCb Collaboration. The results indicate no significant CNM effects in the beauty
sector within uncertainties. These novel measurements in p–Pb collisions provide important
insights, enriching the understanding of nPDF models and the modification of beauty quark
hadronisation mechanisms. In addition, these measurements represent an important input
for constraining theoretical models for heavy-flavour hadron production in p–Pb collisions,
which are still lacking at the moment. With the major upgrade of the ALICE detector
for Run 3, larger data samples, and foreseen upgrades for Run 4, ALICE will significantly
advance this field in the near future.
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A. Shabetai 103, R. Shahoyan32, A. Shangaraev 141, B. Sharma 91, D. Sharma 47,
H. Sharma 54, M. Sharma 91, S. Sharma 76, S. Sharma 91, U. Sharma 91, A. Shatat 131,
O. Sheibani116, K. Shigaki 92, M. Shimomura77, J. Shin12, S. Shirinkin 141, Q. Shou 39,
Y. Sibiriak 141, S. Siddhanta 52, T. Siemiarczuk 79, T.F. Silva 110, D. Silvermyr 75,
T. Simantathammakul105, R. Simeonov 36, B. Singh91, B. Singh 95, K. Singh 48, R. Singh 80,
R. Singh 91, R. Singh 97, S. Singh 15, V.K. Singh 135, V. Singhal 135, T. Sinha 99,
B. Sitar 13, M. Sitta 133,56, T.B. Skaali19, G. Skorodumovs 94, N. Smirnov 138,
R.J.M. Snellings 59, E.H. Solheim 19, J. Song 16, C. Sonnabend 32,97, J.M. Sonneveld 84,
F. Soramel 27, A.B. Soto-hernandez 88, R. Spijkers 84, I. Sputowska 107, J. Staa 75,
J. Stachel 94, I. Stan 63, P.J. Steffanic 122, T. Stellhorn126, S.F. Stiefelmaier 94, D. Stocco 103,
I. Storehaug 19, N.J. Strangmann 64, P. Stratmann 126, S. Strazzi 25, A. Sturniolo 30,53,
C.P. Stylianidis84, A.A.P. Suaide 110, C. Suire 131, M. Sukhanov 141, M. Suljic 32,
R. Sultanov 141, V. Sumberia 91, S. Sumowidagdo 82, M. Szymkowski 136, S.F. Taghavi 95,
G. Taillepied 97, J. Takahashi 111, G.J. Tambave 80, S. Tang 6, Z. Tang 120, J.D. Tapia

– 31 –

https://orcid.org/0000-0002-7923-3960
https://orcid.org/0000-0002-1461-3743
https://orcid.org/0000-0002-5078-3336
https://orcid.org/0000-0002-7116-899X
https://orcid.org/0000-0003-0759-2283
https://orcid.org/0009-0009-0033-8291
https://orcid.org/0000-0003-2868-2819
https://orcid.org/0000-0003-3709-5130
https://orcid.org/0000-0001-8817-5013
https://orcid.org/0009-0001-4054-2336
https://orcid.org/0000-0002-2291-6955
https://orcid.org/0000-0003-4903-9865
https://orcid.org/0009-0004-8574-2392
https://orcid.org/0000-0002-9067-0803
https://orcid.org/0000-0001-8923-4003
https://orcid.org/0000-0001-7454-4324
https://orcid.org/0000-0003-4080-6562
https://orcid.org/0000-0003-3161-9183
https://orcid.org/0009-0005-4161-7386
https://orcid.org/0000-0002-1832-595X
https://orcid.org/0009-0002-4224-5527
https://orcid.org/0000-0003-0414-5525
https://orcid.org/0000-0002-4512-9620
https://orcid.org/0000-0003-0425-5724
https://orcid.org/0000-0002-2646-6189
https://orcid.org/0000-0002-3362-7411
https://orcid.org/0009-0006-2531-9642
https://orcid.org/0000-0002-3224-7089
https://orcid.org/0000-0002-7394-8834
https://orcid.org/0000-0003-0607-2841
https://orcid.org/0000-0002-1539-9275
https://orcid.org/0000-0002-6179-150X
https://orcid.org/0000-0002-0458-538X
https://orcid.org/0000-0003-1752-4524
https://orcid.org/0000-0002-8118-9049
https://orcid.org/0009-0001-8066-416X
https://orcid.org/0000-0003-1401-5900
https://orcid.org/0000-0002-0793-8275
https://orcid.org/0000-0001-9765-5668
https://orcid.org/0009-0006-9583-114X
https://orcid.org/0000-0003-4484-6430
https://orcid.org/0000-0003-2325-8680
https://orcid.org/0000-0002-6101-5981
https://orcid.org/0000-0001-9561-2533
https://orcid.org/0000-0001-6792-7773
https://orcid.org/0000-0002-0118-3131
https://orcid.org/0009-0002-0635-0231
https://orcid.org/0000-0001-6120-4726
https://orcid.org/0000-0002-3358-7667
https://orcid.org/0000-0002-6656-2888
https://orcid.org/0000-0002-8102-9686
https://orcid.org/0000-0002-2629-1710
https://orcid.org/0000-0002-8074-3036
https://orcid.org/0000-0002-5263-3593
https://orcid.org/0009-0006-8025-735X
https://orcid.org/0000-0001-9808-1811
https://orcid.org/0009-0007-9874-9819
https://orcid.org/0000-0002-8142-6374
https://orcid.org/0000-0002-5208-6657
https://orcid.org/0009-0008-3492-3758
https://orcid.org/0000-0003-1868-8678
https://orcid.org/0009-0002-1824-0822
https://orcid.org/0009-0009-8085-4316
https://orcid.org/0009-0007-7046-9751
https://orcid.org/0000-0002-9760-645X
https://orcid.org/0009-0003-8557-9743
https://orcid.org/0000-0002-9596-1060
https://orcid.org/0000-0003-2864-8565
https://orcid.org/0000-0001-7803-9640
https://orcid.org/0000-0002-4680-4413
https://orcid.org/0000-0002-4278-5999
https://orcid.org/0000-0002-0649-2283
https://orcid.org/0000-0003-4101-0160
https://orcid.org/0000-0003-4966-9584
https://orcid.org/0000-0002-2361-2662
https://orcid.org/0000-0002-4433-2133
https://orcid.org/0009-0005-4525-6661
https://orcid.org/0000-0001-5245-8441
https://orcid.org/0000-0002-6732-2915
https://orcid.org/0000-0002-6067-6294
https://orcid.org/0000-0002-1142-3186
https://orcid.org/0009-0002-1397-8334
https://orcid.org/0000-0001-9874-7249
https://orcid.org/0000-0001-7082-5890
https://orcid.org/0000-0002-6993-0332
https://orcid.org/0000-0003-3858-4278
https://orcid.org/0000-0002-7492-974X
https://orcid.org/0000-0001-8678-6400
https://orcid.org/0009-0006-8982-9510
https://orcid.org/0000-0002-3028-8776
https://orcid.org/0000-0003-3076-0505
https://orcid.org/0009-0003-8783-0807
https://orcid.org/0000-0002-3274-9986
https://orcid.org/0000-0002-6781-416X
https://orcid.org/0000-0001-8769-0865
https://orcid.org/0000-0003-2512-5451
https://orcid.org/0009-0005-0580-829X
https://orcid.org/0000-0002-4159-3549
https://orcid.org/0000-0003-3699-0598
https://orcid.org/0000-0003-3334-0661
https://orcid.org/0000-0001-8980-1362
https://orcid.org/0000-0003-3546-3390
https://orcid.org/0000-0003-3266-9959
https://orcid.org/0000-0003-1380-0392
https://orcid.org/0000-0002-8111-5576
https://orcid.org/0000-0002-5018-6902
https://orcid.org/0009-0006-6858-7049
https://orcid.org/0000-0001-9523-8633
https://orcid.org/0000-0002-2393-0804
https://orcid.org/0000-0002-3191-4513
https://orcid.org/0000-0001-9879-1119
https://orcid.org/0000-0001-8438-3966
https://orcid.org/0000-0003-1419-2085
https://orcid.org/0009-0007-2770-3338
https://orcid.org/0000-0001-5960-6734
https://orcid.org/0000-0003-3266-1332
https://orcid.org/0000-0003-1184-9627
https://orcid.org/0009-0009-3728-8849
https://orcid.org/0000-0003-1230-4274
https://orcid.org/0009-0007-6439-2022
https://orcid.org/0000-0002-2295-6199
https://orcid.org/0000-0001-5335-1515
https://orcid.org/0000-0002-5795-4871
https://orcid.org/0000-0001-9093-4461
https://orcid.org/0000-0002-4791-5481
https://orcid.org/0000-0002-4766-5128
https://orcid.org/0000-0002-6638-2932
https://orcid.org/0000-0001-9935-6995
https://orcid.org/0000-0003-0144-0713
https://orcid.org/0000-0001-9015-9610
https://orcid.org/0000-0003-1423-6973
https://orcid.org/0009-0000-9692-8812
https://orcid.org/0000-0002-4738-6209
https://orcid.org/0000-0002-8042-4924
https://orcid.org/0000-0003-1907-9786
https://orcid.org/0000-0002-6368-3350
https://orcid.org/0000-0002-5546-6524
https://orcid.org/0000-0003-4749-5250
https://orcid.org/0000-0002-5657-5351
https://orcid.org/0000-0002-4151-1056
https://orcid.org/0000-0003-2290-9031
https://orcid.org/0000-0003-3069-726X
https://orcid.org/0000-0002-5053-7506
https://orcid.org/0000-0002-0982-7210
https://orcid.org/0009-0001-9105-0729
https://orcid.org/0000-0003-2753-4283
https://orcid.org/0000-0002-8256-8200
https://orcid.org/0000-0003-4408-3373
https://orcid.org/0000-0002-7159-6839
https://orcid.org/0000-0001-7686-070X
https://orcid.org/0000-0001-7432-6669
https://orcid.org/0000-0001-8416-8617
https://orcid.org/0009-0006-0106-6054
https://orcid.org/0000-0001-5128-6238
https://orcid.org/0000-0002-3348-1221
https://orcid.org/0000-0002-0543-9245
https://orcid.org/0000-0002-2014-5229
https://orcid.org/0000-0002-7643-2198
https://orcid.org/0000-0002-0526-5791
https://orcid.org/0000-0001-7729-5503
https://orcid.org/0000-0001-8997-0019
https://orcid.org/0009-0004-7735-3856
https://orcid.org/0009-0007-7617-1577
https://orcid.org/0000-0002-6904-9879
https://orcid.org/0000-0002-6746-6847
https://orcid.org/0009-0001-4926-5101
https://orcid.org/0000-0002-5783-3551
https://orcid.org/0000-0002-6315-9671
https://orcid.org/0000-0002-1290-8388
https://orcid.org/0009-0002-7519-0796
https://orcid.org/0000-0002-4175-148X
https://orcid.org/0000-0001-5747-4096
https://orcid.org/0000-0002-1361-0305
https://orcid.org/0000-0001-9720-0604
https://orcid.org/0000-0001-6002-8732
https://orcid.org/0000-0002-2847-2291
https://orcid.org/0000-0002-5021-3691
https://orcid.org/0000-0001-8362-4414
https://orcid.org/0000-0002-1018-0987
https://orcid.org/0009-0007-7647-1545
https://orcid.org/0000-0001-8625-763X
https://orcid.org/0000-0002-7590-7171
https://orcid.org/0000-0001-8476-3547
https://orcid.org/0000-0003-0750-6664
https://orcid.org/0000-0003-1336-4092
https://orcid.org/0000-0002-6814-1040
https://orcid.org/0000-0003-2269-1490
https://orcid.org/0000-0002-5377-5163
https://orcid.org/0000-0002-3254-7305
https://orcid.org/0009-0007-0705-1694
https://orcid.org/0009-0002-1978-3351
https://orcid.org/0000-0003-2329-0330
https://orcid.org/0000-0001-7417-8424
https://orcid.org/0000-0003-2847-6556
https://orcid.org/0000-0003-1675-503X
https://orcid.org/0000-0002-4506-8071
https://orcid.org/0000-0002-4490-1930
https://orcid.org/0009-0004-0598-9003
https://orcid.org/0000-0001-6779-208X
https://orcid.org/0000-0003-4252-8877
https://orcid.org/0000-0002-5778-9976
https://orcid.org/0000-0003-2642-5720
https://orcid.org/0000-0003-3470-2230
https://orcid.org/0000-0002-4091-1779
https://orcid.org/0000-0001-7174-3379
https://orcid.org/0000-0002-9413-9534
https://orcid.org/0000-0002-4247-0081


J
H
E
P
1
1
(
2
0
2
4
)
1
4
8

Takaki 118, N. Tapus113, L.A. Tarasovicova 126, M.G. Tarzila 45, G.F. Tassielli 31, A. Tauro 32,
A. Tavira García 131, G. Tejeda Muñoz 44, A. Telesca 32, L. Terlizzi 24, C. Terrevoli 50,
S. Thakur 4, D. Thomas 108, A. Tikhonov 141, N. Tiltmann 32,126, A.R. Timmins 116,
M. Tkacik106, T. Tkacik 106, A. Toia 64, R. Tokumoto92, S. Tomassini25, K. Tomohiro92,
N. Topilskaya 141, M. Toppi 49, V.V. Torres 103, A.G. Torres Ramos 31, A. Trifiró 30,53,
T. Triloki96, A.S. Triolo 32,30,53, S. Tripathy 32, T. Tripathy 47, V. Trubnikov 3,
W.H. Trzaska 117, T.P. Trzcinski 136, C. Tsolanta19, R. Tu39, A. Tumkin 141, R. Turrisi 54,
T.S. Tveter 19, K. Ullaland 20, B. Ulukutlu 95, S. Upadhyaya 107, A. Uras 128, M. Urioni 134,
G.L. Usai 22, M. Vala37, N. Valle 55, L.V.R. van Doremalen59, M. van Leeuwen 84, C.A. van
Veen 94, R.J.G. van Weelden 84, P. Vande Vyvre 32, D. Varga 46, Z. Varga 46,
P. Vargas Torres65, M. Vasileiou 78, A. Vasiliev 141, O. Vázquez Doce 49, O. Vazquez Rueda 116,
V. Vechernin 141, E. Vercellin 24, S. Vergara Limón44, R. Verma47, L. Vermunt 97, R. Vértesi 46,
M. Verweij 59, L. Vickovic33, Z. Vilakazi123, O. Villalobos Baillie 100, A. Villani 23,
A. Vinogradov 141, T. Virgili 28, M.M.O. Virta 117, A. Vodopyanov 142, B. Volkel 32,
M.A. Völkl 94, S.A. Voloshin 137, G. Volpe 31, B. von Haller 32, I. Vorobyev 32,
N. Vozniuk 141, J. Vrláková 37, J. Wan39, C. Wang 39, D. Wang39, Y. Wang 39, Y. Wang 6,
A. Wegrzynek 32, F.T. Weiglhofer38, S.C. Wenzel 32, J.P. Wessels 126, J. Wiechula 64,
J. Wikne 19, G. Wilk 79, J. Wilkinson 97, G.A. Willems 126, B. Windelband 94, M. Winn 130,
J.R. Wright 108, W. Wu39, Y. Wu 120, Z. Xiong120, R. Xu 6, A. Yadav 42, A.K. Yadav 135,
Y. Yamaguchi 92, S. Yang20, S. Yano 92, E.R. Yeats18, Z. Yin 6, I.-K. Yoo 16, J.H. Yoon 58,
H. Yu12, S. Yuan20, A. Yuncu 94, V. Zaccolo 23, C. Zampolli 32, F. Zanone 94, N. Zardoshti 32,
A. Zarochentsev 141, P. Závada 62, N. Zaviyalov141, M. Zhalov 141, B. Zhang 94,6,
C. Zhang 130, L. Zhang 39, M. Zhang127,6, M. Zhang 6, S. Zhang 39, X. Zhang 6, Y. Zhang120,
Z. Zhang 6, M. Zhao 10, V. Zherebchevskii 141, Y. Zhi10, D. Zhou 6, Y. Zhou 83, J. Zhu 54,6,
S. Zhu120, Y. Zhu6, S.C. Zugravel 56, N. Zurlo 134,55

1 A.I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation, Yerevan, Armenia
2 AGH University of Krakow, Cracow, Poland
3 Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, Kiev, Ukraine
4 Bose Institute, Department of Physics and Centre for Astroparticle Physics and Space Science (CAPSS),

Kolkata, India
5 California Polytechnic State University, San Luis Obispo, California, United States
6 Central China Normal University, Wuhan, China
7 Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Havana, Cuba
8 Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City and Mérida, Mexico
9 Chicago State University, Chicago, Illinois, United States

10 China Institute of Atomic Energy, Beijing, China
11 China University of Geosciences, Wuhan, China
12 Chungbuk National University, Cheongju, Republic of Korea
13 Comenius University Bratislava, Faculty of Mathematics, Physics and Informatics, Bratislava, Slovak

Republic
14 Creighton University, Omaha, Nebraska, United States
15 Department of Physics, Aligarh Muslim University, Aligarh, India
16 Department of Physics, Pusan National University, Pusan, Republic of Korea
17 Department of Physics, Sejong University, Seoul, Republic of Korea
18 Department of Physics, University of California, Berkeley, California, United States
19 Department of Physics, University of Oslo, Oslo, Norway
20 Department of Physics and Technology, University of Bergen, Bergen, Norway

– 32 –

https://orcid.org/0000-0002-0098-4279
https://orcid.org/0000-0001-5086-8658
https://orcid.org/0000-0002-8865-9613
https://orcid.org/0000-0003-3410-6754
https://orcid.org/0009-0000-3124-9093
https://orcid.org/0000-0001-6241-1321
https://orcid.org/0000-0003-2184-3106
https://orcid.org/0000-0002-6783-7230
https://orcid.org/0000-0003-4119-7228
https://orcid.org/0000-0002-1318-684X
https://orcid.org/0009-0008-2329-5039
https://orcid.org/0000-0003-3408-3097
https://orcid.org/0000-0001-7799-8858
https://orcid.org/0000-0001-8361-3467
https://orcid.org/0000-0003-1305-8757
https://orcid.org/0000-0001-8308-7882
https://orcid.org/0000-0001-9567-3360
https://orcid.org/0000-0002-5137-3582
https://orcid.org/0000-0002-0392-0895
https://orcid.org/0009-0004-4214-5782
https://orcid.org/0000-0003-3997-0883
https://orcid.org/0000-0003-1078-1157
https://orcid.org/0009-0002-7570-5972
https://orcid.org/0000-0002-0061-5107
https://orcid.org/0000-0002-6719-7130
https://orcid.org/0009-0008-8143-0956
https://orcid.org/0000-0003-0672-9137
https://orcid.org/0000-0002-1486-8906
https://orcid.org/0009-0003-5260-2476
https://orcid.org/0000-0002-5272-337X
https://orcid.org/0009-0003-7140-8644
https://orcid.org/0000-0002-0002-8834
https://orcid.org/0000-0001-9554-2256
https://orcid.org/0000-0001-9398-4659
https://orcid.org/0000-0001-7552-0228
https://orcid.org/0000-0002-4455-7383
https://orcid.org/0000-0002-8659-8378
https://orcid.org/0000-0003-4041-4788
https://orcid.org/0000-0002-5222-4888
https://orcid.org/0000-0003-1199-4445
https://orcid.org/0000-0003-4389-203X
https://orcid.org/0000-0001-7277-7706
https://orcid.org/0000-0002-2450-1331
https://orcid.org/0000-0002-1501-5569
https://orcid.org/0000-0002-3160-8524
https://orcid.org/0009-0000-1676-234X
https://orcid.org/0000-0001-6459-8134
https://orcid.org/0000-0002-6365-3258
https://orcid.org/0000-0003-1458-8055
https://orcid.org/0000-0002-9030-5347
https://orcid.org/0000-0002-2640-1342
https://orcid.org/0000-0003-3706-5265
https://orcid.org/0000-0002-1504-3420
https://orcid.org/0000-0002-0983-6504
https://orcid.org/0000-0002-8324-3117
https://orcid.org/0000-0002-8850-8540
https://orcid.org/0000-0003-0471-7052
https://orcid.org/0000-0002-5568-8071
https://orcid.org/0009-0003-4952-2563
https://orcid.org/0000-0002-8982-5548
https://orcid.org/0000-0002-3478-4259
https://orcid.org/0000-0002-1330-9096
https://orcid.org/0000-0002-2921-2475
https://orcid.org/0000-0002-3422-4585
https://orcid.org/0000-0002-2218-6905
https://orcid.org/0000-0002-2784-4516
https://orcid.org/0000-0002-5846-8496
https://orcid.org/0000-0001-5383-0970
https://orcid.org/0000-0002-6296-082X
https://orcid.org/0000-0003-0273-9709
https://orcid.org/0000-0002-3155-0887
https://orcid.org/0000-0002-3495-4131
https://orcid.org/0000-0003-1339-286X
https://orcid.org/0009-0001-9201-8114
https://orcid.org/0009-0005-9617-3102
https://orcid.org/0000-0001-5584-2860
https://orcid.org/0000-0003-0689-2858
https://orcid.org/0009-0000-9939-3892
https://orcid.org/0009-0007-2759-5453
https://orcid.org/0000-0002-2207-0101
https://orcid.org/0009-0006-9351-6517
https://orcid.org/0000-0003-2991-9849
https://orcid.org/0000-0003-4674-9482
https://orcid.org/0009-0008-3651-056X
https://orcid.org/0009-0003-9300-0439
https://orcid.org/0009-0009-3842-7345
https://orcid.org/0000-0002-5563-1884
https://orcid.org/0000-0003-4532-7544
https://orcid.org/0000-0002-2835-5941
https://orcid.org/0000-0001-7676-0821
https://orcid.org/0000-0001-9696-9331
https://orcid.org/0000-0003-3128-3157
https://orcid.org/0000-0002-2608-4834
https://orcid.org/0009-0005-9061-1060
https://orcid.org/0009-0006-3929-209X
https://orcid.org/0000-0002-3502-8084
https://orcid.org/0000-0002-8296-2128
https://orcid.org/0000-0003-0419-321X
https://orcid.org/0000-0001-6097-1878
https://orcid.org/0000-0002-6925-1110
https://orcid.org/0000-0002-5806-6403
https://orcid.org/0009-0005-5459-9885
https://orcid.org/0000-0003-2782-7801
https://orcid.org/0000-0002-1881-8711
https://orcid.org/0009-0006-9719-0104
https://orcid.org/0000-0002-2858-2167
https://orcid.org/0000-0002-6021-5113
https://orcid.org/0009-0009-2528-906X
https://orcid.org/0000-0002-7868-6706
https://orcid.org/0000-0001-9358-5762
https://orcid.org/0000-0002-3352-9846
https://orcid.org/0000-0002-7478-2493


J
H
E
P
1
1
(
2
0
2
4
)
1
4
8

21 Dipartimento di Fisica, Università di Pavia, Pavia, Italy
22 Dipartimento di Fisica dell’Università and Sezione INFN, Cagliari, Italy
23 Dipartimento di Fisica dell’Università and Sezione INFN, Trieste, Italy
24 Dipartimento di Fisica dell’Università and Sezione INFN, Turin, Italy
25 Dipartimento di Fisica e Astronomia dell’Università and Sezione INFN, Bologna, Italy
26 Dipartimento di Fisica e Astronomia dell’Università and Sezione INFN, Catania, Italy
27 Dipartimento di Fisica e Astronomia dell’Università and Sezione INFN, Padova, Italy
28 Dipartimento di Fisica ‘E.R. Caianiello’ dell’Università and Gruppo Collegato INFN, Salerno, Italy
29 Dipartimento DISAT del Politecnico and Sezione INFN, Turin, Italy
30 Dipartimento di Scienze MIFT, Università di Messina, Messina, Italy
31 Dipartimento Interateneo di Fisica ‘M. Merlin’ and Sezione INFN, Bari, Italy
32 European Organization for Nuclear Research (CERN), Geneva, Switzerland
33 Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split,

Split, Croatia
34 Faculty of Engineering and Science, Western Norway University of Applied Sciences, Bergen, Norway
35 Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague,

Czech Republic
36 Faculty of Physics, Sofia University, Sofia, Bulgaria
37 Faculty of Science, P.J. Šafárik University, Košice, Slovak Republic
38 Frankfurt Institute for Advanced Studies, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt,

Germany
39 Fudan University, Shanghai, China
40 Gangneung-Wonju National University, Gangneung, Republic of Korea
41 Gauhati University, Department of Physics, Guwahati, India
42 Helmholtz-Institut für Strahlen- und Kernphysik, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn,

Germany
43 Helsinki Institute of Physics (HIP), Helsinki, Finland
44 High Energy Physics Group, Universidad Autónoma de Puebla, Puebla, Mexico
45 Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania
46 HUN-REN Wigner Research Centre for Physics, Budapest, Hungary
47 Indian Institute of Technology Bombay (IIT), Mumbai, India
48 Indian Institute of Technology Indore, Indore, India
49 INFN, Laboratori Nazionali di Frascati, Frascati, Italy
50 INFN, Sezione di Bari, Bari, Italy
51 INFN, Sezione di Bologna, Bologna, Italy
52 INFN, Sezione di Cagliari, Cagliari, Italy
53 INFN, Sezione di Catania, Catania, Italy
54 INFN, Sezione di Padova, Padova, Italy
55 INFN, Sezione di Pavia, Pavia, Italy
56 INFN, Sezione di Torino, Turin, Italy
57 INFN, Sezione di Trieste, Trieste, Italy
58 Inha University, Incheon, Republic of Korea
59 Institute for Gravitational and Subatomic Physics (GRASP), Utrecht University/Nikhef, Utrecht,

Netherlands
60 Institute of Experimental Physics, Slovak Academy of Sciences, Košice, Slovak Republic
61 Institute of Physics, Homi Bhabha National Institute, Bhubaneswar, India
62 Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
63 Institute of Space Science (ISS), Bucharest, Romania
64 Institut für Kernphysik, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany
65 Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Mexico City, Mexico
66 Instituto de Física, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
67 Instituto de Física, Universidad Nacional Autónoma de México, Mexico City, Mexico
68 iThemba LABS, National Research Foundation, Somerset West, South Africa

– 33 –



J
H
E
P
1
1
(
2
0
2
4
)
1
4
8

69 Jeonbuk National University, Jeonju, Republic of Korea
70 Johann-Wolfgang-Goethe Universität Frankfurt Institut für Informatik, Fachbereich Informatik und

Mathematik, Frankfurt, Germany
71 Korea Institute of Science and Technology Information, Daejeon, Republic of Korea
72 KTO Karatay University, Konya, Turkey
73 Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS-IN2P3,

Grenoble, France
74 Lawrence Berkeley National Laboratory, Berkeley, California, United States
75 Lund University Department of Physics, Division of Particle Physics, Lund, Sweden
76 Nagasaki Institute of Applied Science, Nagasaki, Japan
77 Nara Women’s University (NWU), Nara, Japan
78 National and Kapodistrian University of Athens, School of Science, Department of Physics , Athens,

Greece
79 National Centre for Nuclear Research, Warsaw, Poland
80 National Institute of Science Education and Research, Homi Bhabha National Institute, Jatni, India
81 National Nuclear Research Center, Baku, Azerbaijan
82 National Research and Innovation Agency - BRIN, Jakarta, Indonesia
83 Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
84 Nikhef, National institute for subatomic physics, Amsterdam, Netherlands
85 Nuclear Physics Group, STFC Daresbury Laboratory, Daresbury, United Kingdom
86 Nuclear Physics Institute of the Czech Academy of Sciences, Husinec-Řež, Czech Republic
87 Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States
88 Ohio State University, Columbus, Ohio, United States
89 Physics department, Faculty of science, University of Zagreb, Zagreb, Croatia
90 Physics Department, Panjab University, Chandigarh, India
91 Physics Department, University of Jammu, Jammu, India
92 Physics Program and International Institute for Sustainability with Knotted Chiral Meta Matter (SKCM2),

Hiroshima University, Hiroshima, Japan
93 Physikalisches Institut, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
94 Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
95 Physik Department, Technische Universität München, Munich, Germany
96 Politecnico di Bari and Sezione INFN, Bari, Italy
97 Research Division and ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung

GmbH, Darmstadt, Germany
98 Saga University, Saga, Japan
99 Saha Institute of Nuclear Physics, Homi Bhabha National Institute, Kolkata, India

100 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
101 Sección Física, Departamento de Ciencias, Pontificia Universidad Católica del Perú, Lima, Peru
102 Stefan Meyer Institut für Subatomare Physik (SMI), Vienna, Austria
103 SUBATECH, IMT Atlantique, Nantes Université, CNRS-IN2P3, Nantes, France
104 Sungkyunkwan University, Suwon City, Republic of Korea
105 Suranaree University of Technology, Nakhon Ratchasima, Thailand
106Technical University of Košice, Košice, Slovak Republic
107The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Cracow, Poland
108The University of Texas at Austin, Austin, Texas, United States
109Universidad Autónoma de Sinaloa, Culiacán, Mexico
110Universidade de São Paulo (USP), São Paulo, Brazil
111Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
112Universidade Federal do ABC, Santo Andre, Brazil
113Universitatea Nationala de Stiinta si Tehnologie Politehnica Bucuresti, Bucharest, Romania
114University of Cape Town, Cape Town, South Africa
115University of Derby, Derby, United Kingdom
116University of Houston, Houston, Texas, United States

– 34 –



J
H
E
P
1
1
(
2
0
2
4
)
1
4
8

117University of Jyväskylä, Jyväskylä, Finland
118University of Kansas, Lawrence, Kansas, United States
119University of Liverpool, Liverpool, United Kingdom
120University of Science and Technology of China, Hefei, China
121University of South-Eastern Norway, Kongsberg, Norway
122University of Tennessee, Knoxville, Tennessee, United States
123University of the Witwatersrand, Johannesburg, South Africa
124University of Tokyo, Tokyo, Japan
125University of Tsukuba, Tsukuba, Japan
126Universität Münster, Institut für Kernphysik, Münster, Germany
127Université Clermont Auvergne, CNRS/IN2P3, LPC, Clermont-Ferrand, France
128Université de Lyon, CNRS/IN2P3, Institut de Physique des 2 Infinis de Lyon, Lyon, France
129Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France, Strasbourg, France
130Université Paris-Saclay, Centre d’Etudes de Saclay (CEA), IRFU, Départment de Physique Nucléaire

(DPhN), Saclay, France
131Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France
132Università degli Studi di Foggia, Foggia, Italy
133Università del Piemonte Orientale, Vercelli, Italy
134Università di Brescia, Brescia, Italy
135Variable Energy Cyclotron Centre, Homi Bhabha National Institute, Kolkata, India
136Warsaw University of Technology, Warsaw, Poland
137Wayne State University, Detroit, Michigan, United States
138Yale University, New Haven, Connecticut, United States
139Yonsei University, Seoul, Republic of Korea
140 Zentrum für Technologie und Transfer (ZTT), Worms, Germany
141 Affiliated with an institute covered by a cooperation agreement with CERN
142 Affiliated with an international laboratory covered by a cooperation agreement with CERN

I Deceased
II Also at: Max-Planck-Institut fur Physik, Munich, Germany

III Also at: Italian National Agency for New Technologies, Energy and Sustainable Economic Development
(ENEA), Bologna, Italy

IV Also at: Dipartimento DET del Politecnico di Torino, Turin, Italy
V Also at: Yildiz Technical University, Istanbul, Türkiye

V I Also at: Department of Applied Physics, Aligarh Muslim University, Aligarh, India
V II Also at: Institute of Theoretical Physics, University of Wroclaw, Poland

V III Also at: An institution covered by a cooperation agreement with CERN

– 35 –


	Introduction
	Experimental setup and data sample
	Analysis technique
	Non-prompt D0, D+, and Lc raw yields
	Yield corrections and non-prompt fraction estimations

	Systematic uncertainties
	Results
	Production cross sections
	Nuclear modification factors
	Production cross section ratios

	Summary
	The ALICE collaboration

