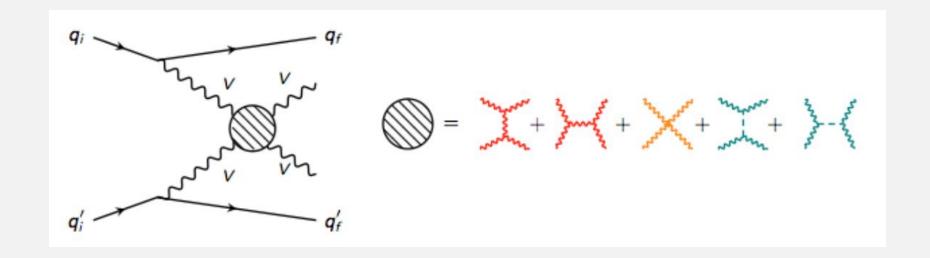


VBF and **VBS** Measurements in **ATLAS**

Zhen Wang

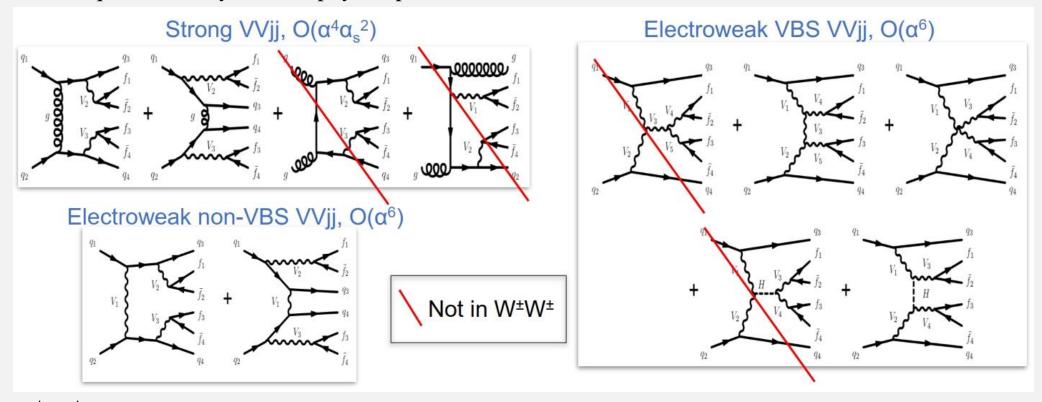
Tsung-Dao Lee Institute

On behalf of the ATLAS Collaboration



Motivation

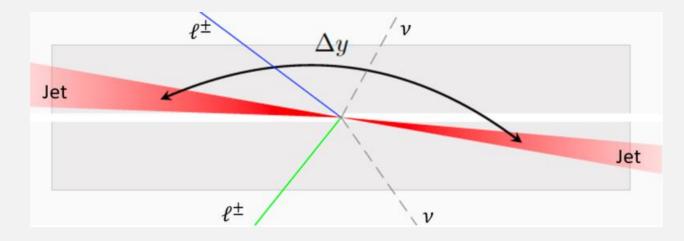
• Vector boson fusion (VBF) and vector boson scattering (VBS) are direct probes of boson interactions, both in standard model and beyond



- VBS allows to test SM predictions to triple and quartic gauge couplings
- Topics in this talk: same-sign $W^{\pm}W^{\pm}jj$, opposite sign $W^{+}W^{-}jj$, differential ZZjj, VBS $W\gamma jj$, VBS WZjj

Same-sign W[±]W[±]jj

- Motivation:
 - Massive vector boson scattering (VBS) probes mechanism of electroweak symmetry breaking (EWSB) in the Standard Model (SM)
 - Unique sensitivity for new physics phenomena



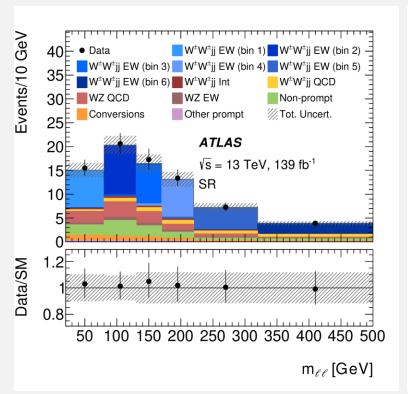
- $W^{\pm}W^{\pm}jj$ final states has largest EW to QCD xsection ratio because of the suppression of QCD-induced background
- EW measures both VBS and non-VBS process, inclusive measurements include EW + QCD + interference

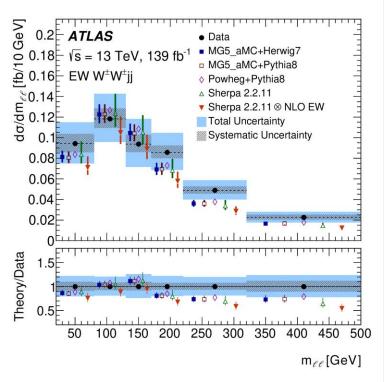
Same-sign W[±]W[±]jj Strategy

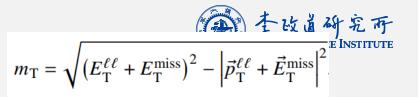
- SR selections:
 - Two isolated same-sign leptons with transverse momentum $p_T > 27 \text{ GeV}$
 - Large missing energy due to presence of neutrinos $E_T^{miss} > 30 \text{ GeV}$
 - Jet transverse momentum $p_T^{leading} > 65 \text{ GeV } p_T^{sub-leading} > 30 \text{ GeV}$ and b-veto
 - VBS signature: $m_{jj} > 500 \text{ GeV } \& |\Delta y_{jj}| > 2$
- WZ CR (improve modelling from QCD-induced $W^{\pm}Zjj$ events):
 - One more lepton with $p_T > 15 \text{ GeV}$
 - $m_{ij} > 200 \text{ GeV } \& m_{lll} > 106 \text{ GeV } \text{(suppress radiative Z decay)}$
- Low- m_{ij} CR (control uncertainties of major background in signal extraction fit):
 - $200 \ GeV < m_{ij} < 500 \ GeV$

- Backgrounds modelled with MC and data-driven method:
 - WZ/γ^*jj
 - Non-prompt lepton & lepton charge mis-identification
 - Remaining background...

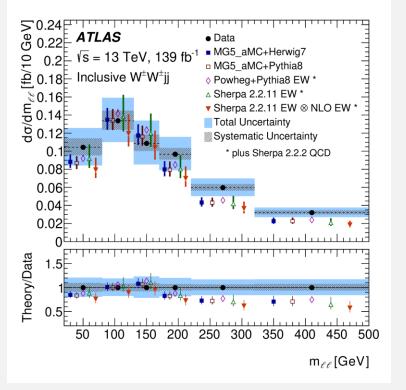
• Same-sign $W^{\pm}W^{\pm}jj$ Fiducial Cross Section


- Fiducial region defined as closely as possible to the analysis selections
- Separate maximum likelihood fits with free parameter μ_{sig}^{EW} ($\mu_{sig}^{EW+Int+QCD}$) performed to measure the EW and inclusive cross sections. $\mu^{QCD\ WZ}$ used as normalization coefficient for QCD $W^{\pm}Zjj$
- SR and CRs are split into four regions depending on lepton flavors : ee, $e\mu$, μe , $\mu \mu$

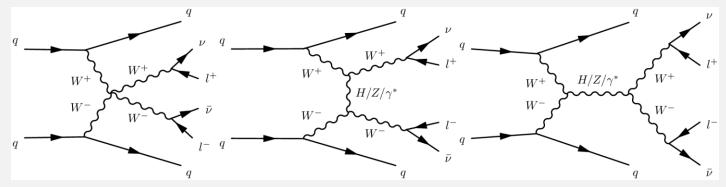

Description	$\sigma_{ m fid}^{ m EW}$ [fb]	$\sigma_{ m fid}^{ m EW+Int+QCD}$ [fb]
Measured cross section	2.92 ± 0.22 (stat.) ± 0.19 (syst.)	3.38 ± 0.22 (stat.) ± 0.19 (syst.)
MG5_AMC+Herwig7	$2.53 \pm 0.04 \text{ (PDF)} ^{+0.22}_{-0.19} \text{ (scale)}$	2.92 ± 0.05 (PDF) $^{+0.34}_{-0.27}$ (scale)
MG5_AMC+Pythia8	$2.53 \pm 0.04 \text{ (PDF)} ^{+0.22}_{-0.19} \text{ (scale)}$ $2.48 \pm 0.04 \text{ (PDF)} ^{+0.40}_{-0.27} \text{ (scale)}$	2.90 ± 0.05 (PDF) $^{+0.33}_{-0.26}$ (scale)
Sherpa	$2.48 \pm 0.04 \text{ (PDF)} + 0.40 \text{ (scale)}$	$2.92 \pm 0.03 \text{ (PDF)} + 0.60 \text{ (scale)}$
Sherpa \otimes NLO EW	$2.10 \pm 0.03 \text{ (PDF)} ^{+0.34}_{-0.23} \text{ (scale)}$	$2.54 \pm 0.03 \text{ (PDF)} ^{+0.50}_{-0.33} \text{ (scale)}$
Powheg Box+Pythia	2.64	


- Predictions agree with the observed data within uncertainties generally
- Observed cross section is slightly higher than predicted cross section

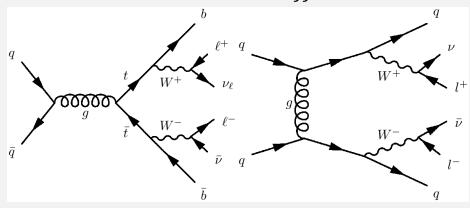
Same-sign W[±]W[±]jj Differential Cross Section


- Same fiducial space is used for extraction of differential cross section
- A maximum-likelihood fit is performed to do the cross section unfolding
- Five observables m_{ll} , m_T , m_{jj} , $N_{gapjets}$ and ξ_{j3} are studied

$$\xi_{j_3} = \left| \frac{\eta_{j_3} - \frac{1}{2}(\eta_{j_1} + \eta_{j_2})}{\eta_{j_2} - \eta_{j_1}} \right|$$

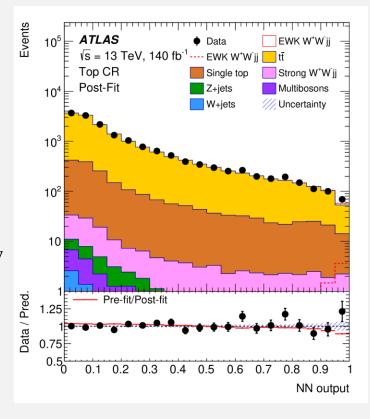


• Prediction underestimates data but is in good agreements within uncertainties


Opposite-sign W⁺W⁻jj

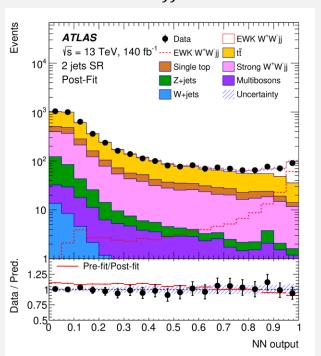
- First observation of EW W^+W^-jj in ATLAS
- Opposite-sign W^+W^-jj has small cross sections and large background contributions
- Two neural networks trained to separate signal from $t\bar{t}$ and Strong W^+W^-jj backgrounds
- Interesting events should contain two leptons, two or three jets and missing transverse energy

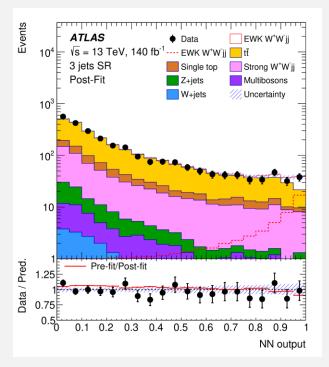
EWW^+W^-jj

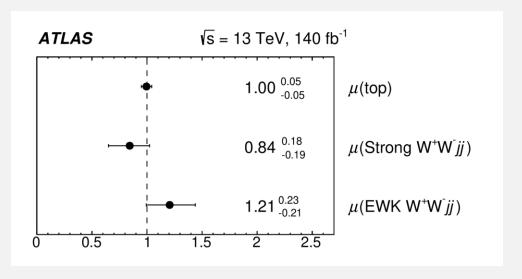


 $t\bar{t}$ and Strong W^+W^-jj

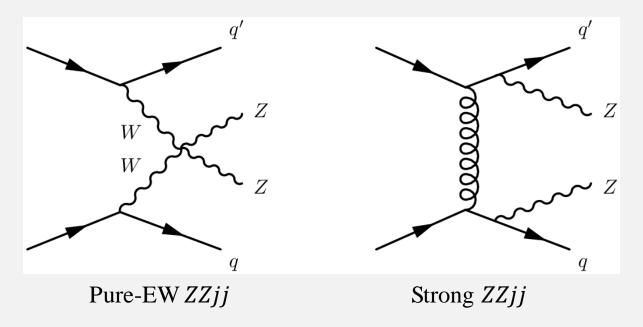
Opposite-sign W⁺W⁻jj Strategy


- One signal region, one control region to constrain top backgrounds
- Apply cuts before the neural network training:
 - Two opposite sign tight isolated leptons with $p_T > 27 \; GeV$ (one electron one muon) and third lep veto
 - $p_T^{miss} > 15 \ GeV$ and two or three jets with $p_T > 25 \ GeV$
 - Centrality cuts to improve NN performance, $m_{ll} > 80 \; GeV$ to suppress VBF HWW backgrounds
 - B-jet veto in SR and b-tag (one of the two leading jets) in CR
- Two NNs for two-jet and three-jet cases in SR, validation checks performed in low NN-score region (<0.6) on:
 - DATA/MC agreement and correlations between variables
- Uncertainty estimations:
 - Experimental uncertainties: jet energy scale, b-tagging efficiency, jet flavor composition and jet energy scale dependence on pile-up
 - Theoretical uncertainties on signal, top and QCD
 - Statistical uncertainties




• Opposite-sign W^+W^-jj Fiducial Cross Section

- A profile likelihood fit is performed on the NN output simultaneously in the SR and CR
- The fiducial region is defined with selections similar to reconstructed signal region with extra cut on $m_{ij} > 500 \, GeV$



- The NN modelling is in good agreement with data
- The observed (expected) significance is 7.1σ (6.2 σ), for both 2 and 3 jets combined.

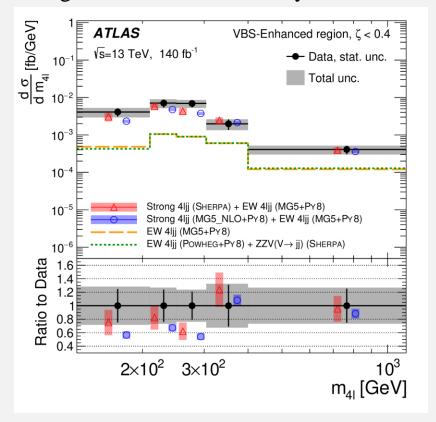
Differential ZZjj

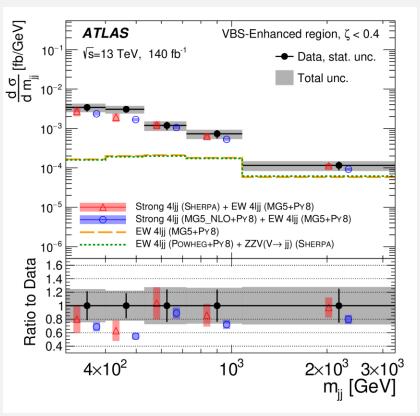
- Sensitive to diverse range of physics Beyond the Standard Model
- EW ZZjj sensitive to WWZ and WWZZ weak-boson self-interactions
- Theoretical prediction of QCD ZZjj sensitive to the accuracy of perturbative QCD calculation (overall production rate and kinematic properties of the final states)

- Goals:
 - Unfolded differential cross section measurement of interesting kinematic observables
 - Limits on dim-6 and dim-8 EFT operators

Differential ZZjj Strategy

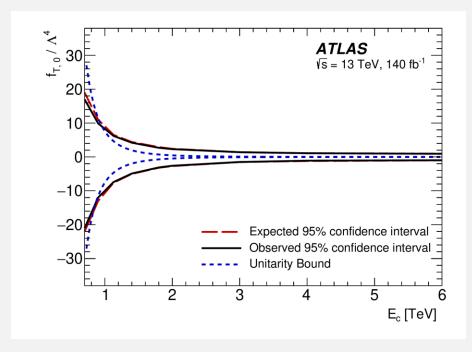
- Selections:
 - Same-flavor opposite-charge (SFOC) lepton pairs ordered by $|m_{ll} m_Z|$
 - Four lepton system invariant mass $m_{4l} > 130 \ GeV$
 - Leading (sub-leading) jets with transverse momentum > 40 (30) GeV, dijet invariant mass and separation angle m_{ij} > 300 GeV & $|\Delta y_{ij}|$ > 2.0


$$\zeta = \frac{(y_{4l} - 0.5(y_{j_1} + y_{j_2}))}{\Delta y_{jj}}$$


- Events further categorized into VBS-enhanced ($\zeta < 0.4$) and VBS-suppressed ($\zeta > 0.4$) regions
- Inclusive measurements on both EW and strong *ZZjj* production
- Samples:
 - Nominal strong *ZZjj* : SHERPA
 - Alternative strong *ZZjj* : MG5_NLO+PY8
 - Nominal EW *ZZjj* : MG5+PY8
 - Alternative EW ZZjj : POWHEG+PY8

Differential ZZjj Differential Cross Section

- Particle-level measurements in both VBS-enhanced and VBS-suppressed fiducial regions
- Unfolding done with iterative Bayesian method to correct the detector effect


- Generally good agreement between Data and MC prediction
- MG5_NLO+PY8 underestimates the observed data especially in low m_{4l} and m_{jj}

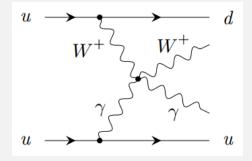
Differential ZZjj EFT Interpretation

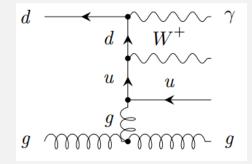
- Unfolded distribution for the search of physics beyond the SM
- m_{4l} and m_{jj} are used to set limits on dim-8 and dim-6 EFT operators

Wilson	$ \mathcal{M}_{d8} ^2$	95% confidence interval [TeV ⁻⁴]		
coefficient	Included	Expected	Observed	
$f_{\mathrm{T},0}/\Lambda^4$	yes	[-0.98, 0.93]	[-1.00, 0.97]	
	no	[-23, 17]	[-19, 19]	
$f_{\mathrm{T,1}}/\Lambda^4$	yes	[-1.2, 1.2]	[-1.3, 1.3]	
	no	[-160, 120]	[-140, 140]	
$f_{\mathrm{T,2}}/\Lambda^4$	yes	[-2.5, 2.4]	[-2.6, 2.5]	
	no	[-74, 56]	[-63, 62]	
$f_{\mathrm{T,5}}/\Lambda^4$	yes	[-2.5, 2.4]	[-2.6, 2.5]	
	no	[-79, 60]	[-68, 67]	
$f_{\rm T,6}/\Lambda^4$	yes	[-3.9, 3.9]	[-4.1, 4.1]	
	no	[-64, 48]	[-55, 54]	
$f_{\mathrm{T,7}}/\Lambda^4$	yes	[-8.5, 8.1]	[-8.8, 8.4]	
	no	[-260, 200]	[-220, 220]	
$f_{\mathrm{T,8}}/\Lambda^4$	yes	[-2.1, 2.1]	[-2.2, 2.2]	
	no	$[-4.6, 3.1] \times 10^4$	$[-3.9, 3.8] \times 10^4$	
$f_{\mathrm{T,9}}/\Lambda^4$	yes	[-4.5, 4.5]	[-4.7, 4.7]	
	no	$[-7.5, 5.5] \times 10^4$	$[-6.4, 6.3] \times 10^4$	

Expected and observed interval of $f_{T,0}$ Wilson coefficient as a function of cut-off scale E_c

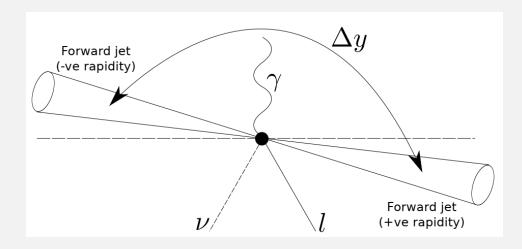
 Wilson coefficients are consistent with zero when pure D8 contribution is included


VBS Wγ jj


Analysis targets:

- Observation of EWK Wy+jj production
- Differential cross-section measurements of EWK Wy+jj production
- Unfold m_{jj} , p_T^{jj} , $\Delta \phi_{jj}$, p_T^{lep} , $\Delta \phi_{l\gamma}$, $m_{l\gamma}$
- EFT Interpretation targeting dimension-8 operators

Signal:



QCD Background:

Typical diagrams

Measurements performed in VBS-enhanced phase-space

No hadronic activity in central region between two jets, γ and W boson produced in central regions.

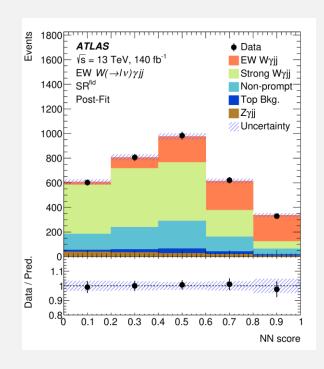
Apply high-dijet mass, large forward jet rapidity gap...

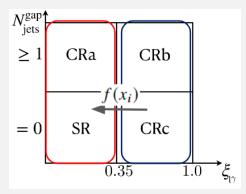
VBS Wγ jj Strategy

• Selections:

- Single lepton and missing momentum with $p_T^l > 30 \ GeV \ \& E_T^{miss} > 30 \ GeV$
- One photon with $p_T^{\gamma} > 22 \ GeV$ and two jets with $p_T^j > 50 \ GeV$
- VBS signature with large $m_{ij} > 500 \; GeV$ and $|\Delta y_{ij}| > 2$
- Data-driven background estimations:
 - Jet faking photons with template fit method
 - Jet faking electron/muons with fake factor method
 - Electron faking photons with tag and probe method

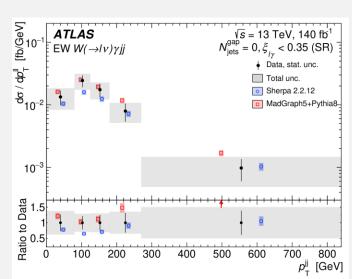
Observation:

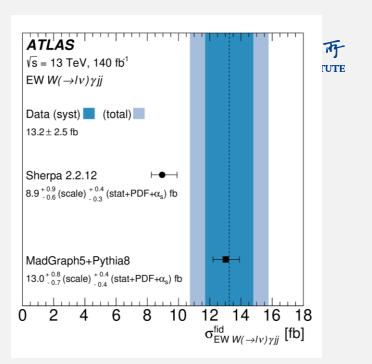

- NN trained using events after $m_{jj} > 500 \ GeV \ \& \ N_{gapjets} = 0$
- Profile likelihood fit to the NN score

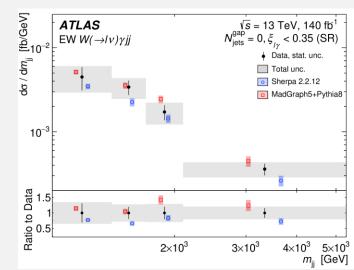

• Differential measurement:

- Extract signal + constrain QCD simultaneously
- Use bootstrapping to evaluate statistical significance of systematic uncertainties
- Gaussian kernel smoothing for bootstrapped systematics

• EFT interpretation:

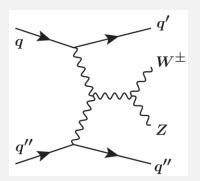

- Iterative Bayesian unfolding to correct detector effects
- Unfolded distribution for setting limits on dim-8 operators

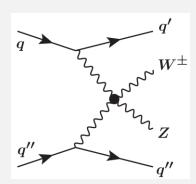


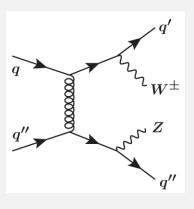


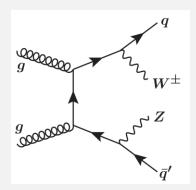
• VBS $W\gamma$ jj Measurements

- Fiducial measurements:
 - The observed significance is well above 6 standard deviation compared to the expected significance of 6.3σ
 - Measured signal strength is $\mu_{EW} = 1.5 \pm 0.5$
 - MadGraph5+PYthia8 is in good agreements with data while Sherpa underestimates data within 2 standard deviations
- Differential measurements:
 - Cross sections as a function of m_{jj} , p_T^{jj} , $\Delta \phi_{jj}$, p_T^{lep} , $\Delta \phi_{l\gamma}$, $m_{l\gamma}$ are studied
 - Both Sherpa and Madgraph are in good agreement with data within uncertainties
 - MG overshoot at high $m_{jj} \& p_T^{jj}$
 - Sherpa underestimates all six observables
- Analysis is sensitive to 16 dim-8 EFT operators.
 Aim to set limits on couplings in Warsaw basis.
- Using EFT samples with Eboli model. With full detector simulation






• VBS WZ jj



- First observation using 2015-2016 data
- EWK *WZjj* production:
 - Better precision on fiducial cross section measurement
 - Perform the first EW WZjj differential cross section measurement
 - Simultaneously measure $\sigma_{WZjj-EW}$ and $\sigma_{WZjj-strong}$ in the SR
- Inclusive *WZjj* production:
 - Better precision on differential cross section measurements
 - Unfold BDT score distribution
- Interpretation of results on EFT frame:
 - Detector level limits using 2D template of $M_T^{WZ} BDT$ score

VBS WZ jj Strategy

李战道研究所 TSUNG-DAO LEE INSTITUTE

Same BDT score distribution is used in all SRs

- WZjj EW and WZjj Strong integrated measurements:
 - Goal: Simultaneous measurement of the integrated $\sigma_{WZjj-EW}$ and $\sigma_{WZjj-Strong}$ cross section in SR
 - Separate the signal region into two categories of different N_{jets}
 - Maximum likelihood fit performed on BDT score distribution

$$\begin{array}{lll} \sigma_{WZjj-\mathrm{EW}} & = & \mu_{WZjj-\mathrm{EW}} \cdot \sigma_{WZjj-\mathrm{EW}}^{\mathrm{th.\,MC}} \,, \\ \sigma_{WZjj-\mathrm{strong}} & = & \mu_{WZjj-\mathrm{QCD}} \cdot \sigma_{WZjj-\mathrm{QCD}}^{\mathrm{th.\,MC}} + \mu_{WZjj-\mathrm{INT}} \cdot \sigma_{WZjj-\mathrm{INT}}^{\mathrm{th.\,MC}} \,, \\ & = & \mu_{WZjj-\mathrm{QCD}} \cdot \sigma_{WZjj-\mathrm{QCD}}^{\mathrm{th.\,MC}} + \sqrt{\mu_{WZjj-\mathrm{EW}}} \cdot \sqrt{\mu_{WZjj-\mathrm{QCD}}} \cdot \sigma_{WZjj-\mathrm{INT}}^{\mathrm{th.\,MC}} \,, \end{array}$$

- WZjj EW and WZjj Strong differential measurements:
 - SR separated into bins of N_{jets} and m_{jj}
 - Simultaneous fit to the data of the BDT score distribution of events in each bin is performed

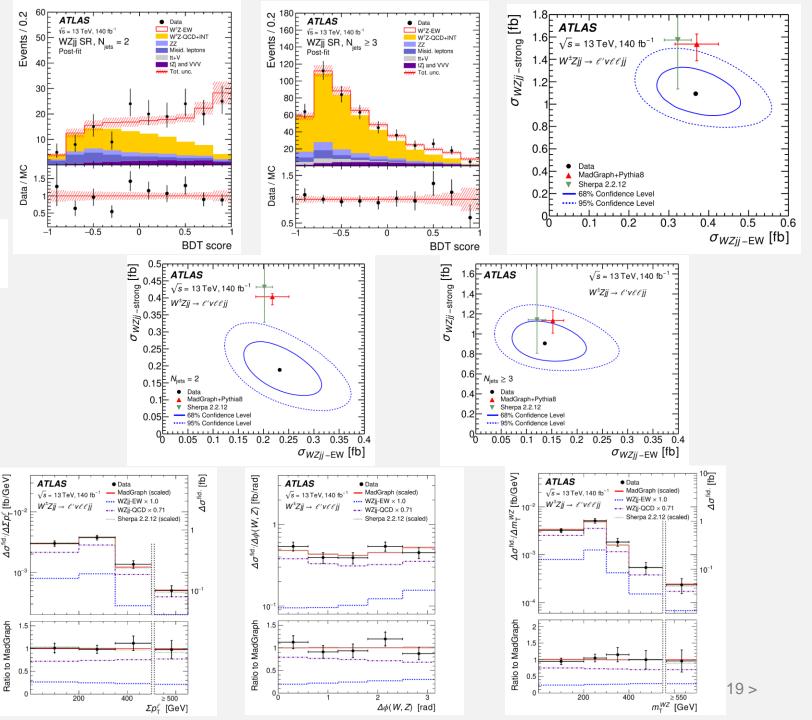
$$\sigma_{WZjj-\text{EW}}^{i} = \mu_{WZjj-\text{EW}}^{i} \cdot \sigma_{WZjj-\text{EW}}^{i, \text{ th. MC}} = \frac{N_{\text{fit}}^{i}}{\mathcal{L} \cdot C_{i}}, \quad C_{i} = \frac{N_{\text{MC, det.}}^{i}}{N_{\text{MC, part.}}^{i}}$$

- Differential *WZjj* measurements:
 - Iterative Bayesian method with 3 iterations used to correct detector effects
 - MC scaled to data to better model the data and minimize unfolding uncertainty
 - Variables: M_T^{WZ} , $\Delta \phi(W,Z)$, N_{jets} , m_{jj} , Δy_{jj} , $\Delta \phi_{jj}$, $N_{jets(gap)}$, Z_{j3} , BDT score

VBS WZ jj Results

• WZjj – EW and WZjj – Strong integrated measurements:

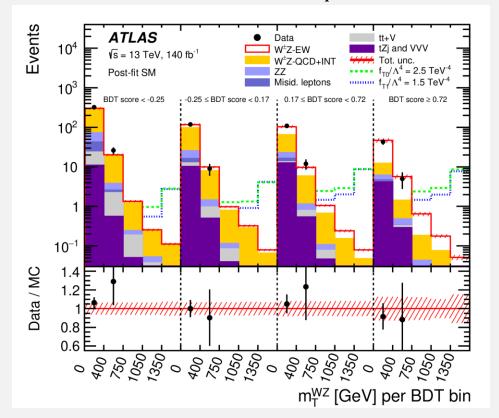
```
\sigma_{WZjj-\text{EW}} = 0.368 \pm 0.037 \text{ (stat.)} \pm 0.059 \text{ (syst.)} \pm 0.003 \text{ (lumi.)} \text{ fb}


= 0.37 \pm 0.07 \text{ fb},

\sigma_{WZjj-\text{strong}} = 1.093 \pm 0.066 \text{ (stat.)} \pm 0.131 \text{ (syst.)} \pm 0.009 \text{ (lumi.)} \text{ fb}

= 1.09 \pm 0.14 \text{ fb},
```

 WZjj – EW and WZjj – Strong differential measurements:


• Differential *WZjj* measurements:

VBS WZ jj Results EFT

- No deviation with respect to the SM predictions is observed
- Two dimensional distribution $M_T^{WZ} BDT$ used for extraction of limits

	Expected	Observed
	$[{ m TeV}^{-4}]$	$[{ m TeV}^{-4}]$
$f_{ m T0}/\Lambda^4$	[-0.80, 0.80]	[-0.57, 0.56]
$f_{\mathrm{T1}}/\Lambda^4$	[-0.52, 0.49]	[-0.39, 0.35]
$f_{ m T2}/\Lambda^4$	[-1.6, 1.4]	[-1.2, 1.0]
$f_{ m M0}/\Lambda^4$	[-8.3, 8.3]	[-5.8, 5.6]
$f_{ m M1}/\Lambda^4$	[-12.3, 12.2]	[-8.6, 8.5]
$f_{ m M7}/\Lambda^4$	[-16.2, 16.2]	[-11.3, 11.3]
$f_{\mathrm{S}02}/\Lambda^4$	[-14.2, 14.2]	[-10.4, 10.4]
$f_{\mathrm{S1}}/\Lambda^4$	[-42, 41]	[-30, 30]

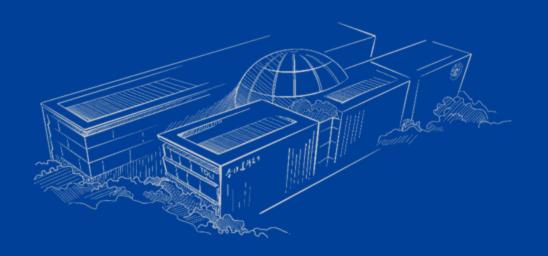
Expected and observed lower and upper 95% CL limits on the Wilson coefficients

Binning optimization:

BDT: [-1.0, -0.25, 0.17, 0.72, 1.0]

 M_T^{WZ} : [0, 400, 750, 1050, 1350, ∞]

Coefficients associated to T0 and T1 are the most tightly constraint


Summary

- Several measurements are reported about EW or inclusive production of different final states
- Generally the observed data has good agreements with predictions
- Limits on EFT operators are set in most cases
- Results are bringing challenge to electroweak cross section calculations and kinematic modellings

谢谢!

Backup

Same-sign W[±]W[±]jj Samples

Process, short description	ME Generator + parton shower	Order	Tune	PDF set in ME
EW, Int, QCD $W^{\pm}W^{\pm}jj$, nominal signal	MadGraph5_aMC@NLO2.6.7 + Herwig7.2	LO	default	NNPDF3.0nlo
EW, Int, QCD $W^{\pm}W^{\pm}jj$, alternative shower	MadGraph5_aMC@NLO2.6.7 + Pythia8.244	LO	A14	NNPDF3.0 _{NLO}
EW $W^{\pm}W^{\pm}jj$, NLO QCD approx.	SHERPA 2.2.11	+0,1j@LO	Sherpa	NNPDF3.0nnlo
EW $W^{\pm}W^{\pm}jj$, NLO QCD approx.	Powheg Boxv2 + Pythia8.230	NLO (VBS approx.)	AZNLO	NNPDF3.0nlo
QCD $W^{\pm}W^{\pm}jj$, NLO QCD approx.	Sherpa2.2.2	+0,1j@LO	Sherpa	NNPDF3.0nnlo
VV (leptonic)	Sherpa2.2.2	+0,1j@NLO; +2,3j@LO	Sherpa	NNPDF3.0nnlo
VVV	Sherpa2.2.1 (leptonic) & Sherpa2.2.2 (one $V \rightarrow jj$)	+0,1j@LO	Sherpa	NNPDF3.0nnlo
W/Z + jets	MadGraph5_aMC@NLO2.3.2.p1 + Pythia8.210	+0,1,2,3,4j@LO	A14	NNPDF3.0 _{NLO}
$t\bar{t}$ Single t (s - and Wt -channel)	Powheg Boxv2 + Pythia8	NLO	A14	NNPDF3.0nlo
Single <i>t</i> (<i>t</i> -channel)	POWHEG BOXV2 + PYTHIA8	NLO	A14	NNPDF3.0nlo4f
$t\bar{t}V$	MadGraph5_AMC@NLO2.3.3.p0 + Pythia8.210	NLO	A14	NNPDF3.0 _{NLO}
$V\gamma$	SHERPA 2.2.11	MEPS@NLO	A14	NNPDF3.0nnlo

Same-sign W[±]W[±]jj Post-fit Yields

Process	ee	eμ	ı	μ	e	μ	μ	Comb	oined
$W^{\pm}W^{\pm}jj$ EW	32.9 ± 3.4	81	±8	73	±7	90	±9	277	± 26
$W^{\pm}W^{\pm}jj$ QCD	1.7 ± 0.5	8.0	± 2.4	7.1	± 2.1	9.7	± 2.9	27	± 8
$W^{\pm}W^{\pm}jj$ Int	1.00 ± 0.22	2.4	± 0.5	2.1	± 0.4	2.7	± 0.6	8.2	± 1.7
$W^{\pm}Zjj$ QCD	5.5 ± 0.7	18.2	± 2.1	18.2	± 2.2	14.0	± 1.7	56	± 6
$W^{\pm}Zjj$ EW	1.69 ± 0.14	4.9	± 0.4	4.1	± 0.4	4.2	± 0.4	14.9	± 1.2
Non-prompt	8.4 ± 1.6	14.9	± 2.4	10.2	± 1.6	21	± 5	55	±9
$V\gamma$	1.5 ± 0.7	6.1	± 2.4	5.5	± 2.8	_	_	13	± 5
Charge misid.	4.3 ± 2.0	5.4	± 1.2	1.4	± 0.4	_	_	11	± 4
Other prompt	0.99 ± 0.25	2.5	± 0.5	1.9	± 0.5	1.4	± 1.4	6.8	± 2.1
Total	58 ± 4	143	± 7	123	± 6	143	± 8	468	± 21
Data	52	14	9	12	27	14	17	47	75

• Opposite-sign W^+W^-jj Selections

Category	Requirements			
Leptons	$p_{\rm T} > 27 {\rm GeV}$ $ \eta < 2.47 {\rm excluding} 1.37 < \eta < 1.52 ({\rm electrons})$ $ \eta < 2.5 ({\rm muons})$			
	Identification: Tight Isolation: Gradient (electrons), Tight_FixedRad (muons)			
	$ d_0/\sigma_{d_0} < 5$ (electrons), $ d_0/\sigma_{d_0} < 3$ (muons) $ z_0 \sin \theta < 0.5$ mm			
<i>b</i> -jets	$p_{\rm T} > 20{\rm GeV}$ and $ \eta < 2.5$ (DL1r <i>b</i> -tagging with 85% efficiency)			
Jets	$p_{\mathrm{T}} > 25\mathrm{GeV}$ and $ \eta < 4.5$			
Events	One electron and one muon with opposite electric charges No additional lepton with $p_{\rm T}>10{\rm GeV}$, Loose isolation, Tight/Medium (electrons) and Loose (muons) identification $m_{e\mu}>80{\rm GeV}$ $E_{\rm T}^{\rm miss}>15{\rm GeV}$ No b -jet Two or three jets $\zeta>0.5$			

Selection cuts on physics objects that define the signal region

VBS Wγ jj EFT

EFT Interpretation

- Analysis is sensitive to 16 dim-8 EFT operators. Aim to set limits on couplings in Warsaw basis.
- 8 tensor-like operators containing field strength tensors: T0,T1,T2,T3,T4,T5,T6,T7
- 7 "mixed scaler" operators containing field strength tensor and M0,M1,M2,M3,M4,M5,M7 covariant Higgs derivatives.
- Using EFT samples with Eboli model. With full detector simulation
- Sample decomposed between SM + interference + EFT

c	Expected 95% CL Limit (Asymptotic)	Expected 95% CL Limit (Toys)	Observed 95% CL Limit
f_{T0}	[-3.86,4.09]	[-4.32,4.32]	[-3.29,3.5]
f_{T1}	[-2.35,2.67]	[-2.67,2.67]	[-1.99,2.27]
f_{T2}	[-5.66,6.67]	[-6.68,6.68]	[-4.76,5.69]
f_{T3}	[-4.9,5.63]	[-5.8,5.8]	[-4.14,4.79]
f_{T4}	[-4.14,4.34]	[-4.64,4.64]	[-3.5,3.69]
f_{T5}	[-2.73,2.8]	[-3.25,3.25]	[-2.34,2.4]
f_{T6}	[-1.99,2.08]	[-2.22,2.22]	[-1.69,1.77]
f_{T7}	[-5.08,5.4]	[-5.74,5.74]	[-4.3,4.59]
f_{M0}	[-46.22,44.2]	[-51.47,51.47]	[-39.29,37.55]
f_{M1}	[-68.14,71.61]	[-60.69,60.69]	[-58.23,61.0]
f_{M2}	[-16.46,16.17]	[-17.93,17.93]	[-13.99,13.81]
f_{M3}	[-24.57,25.43]	[-26.55,26.55]	[-20.85,21.56]
f_{M4}	[-27.95,27.76]	[-30.02,30.02]	[-23.85,23.85]
f_{M5}	[-22.42,27.68]	[-26.16,26.16]	[-19.09,23.33]
f_{M7}	[-124.07,120.06]	[-145.48,145.48]	[-105.42,102.04]

Fit all 6 extracted distributions for expected limits

Madgraph is used for EFT samples production. Limits set using unfolded distribution

Table 57: Expected limits on dimension-8 operators modifying the $WW\gamma\gamma$ coupling when fitting $M_{l\gamma}$. Work in progress