

MODEL AGNOSTIC SEARCHES IN FINAL STATES WITH JETS AT ATLAS

ANTONIO D'AVANZO, on behalf of the ATLAS Collaboration

29° Symposium on Particles, String and Cosmology (PASCOS 2024), 09/07/2024, Quy Nhon

Introduction

- > Standard Model (SM) remarkably predictive of experimental results
 - discovery of the Higgs boson in 2012 by ATLAS and CMS
- Open questions: many Beyond Standard Model theories (Dark Matter, Gravity, Hierarchy problem ecc.)
- Search for new resonances decaying into hadronic final states jj (jets) \rightarrow localized excesses (bumps) over expected background m_{jj}

Hadronization scheme of quarks/gluons

To be or not to be model-dependent?

Model dependent approach:

- > A new well motivated physics-scenario is chosen
- The search is maximized based on signal signatures (supervised machine learning methods)
- Unlikely to be sensitive to different process

Model independent approach:

- Minimal assumptions of signal properties
- Deviations from background-only hypothesis (methods often provided by Machine Learning)
- ➤ Not optimal as model-dependent, but more prone to generality

In this review

- Full Run 2 (2015-2018, 140 fb⁻¹) of LHC data (beside n. 4), pp centre of mass energy 13 TeV
 - > Results interpreted with 95% Confidence Levels
 - 1. Search for new phenomena in dijet events using quark tagging
- 2. Weakly-supervised anomaly detection for resonant new physics in the dijet final state
- **Anomaly detection** search for new resonances decaying into a Higgs boson and a generic new particle X in hadronic final states
- 4. Search for Low-Mass Dijet Resonances Using Trigger Level Analysis

Non supervised Anomaly Detection

- > Anomaly Detection (AD) refers to Machine Learning (ML) techniques used to spot these outliers.
- ➤ Particle physics → Identification of features of detector data inconsistent with the expected background.
- Machine learning techniques exploited: semi-supervised (partial labels), weakly-supervised (noisy labels) and unsupervised (no labels)

Search for new phenomena in dijet events using quark tagging

Search of new resonances in jet pairs

- > Search for resonant decays of heavy BSM particles strongly coupled to quarks/gluons
 - \triangleright m_{ii} spectrum ranges from 1.1 to 8 TeV
 - **3 signal regions**: Inclusive jets content and 1 or 2 b-jets required
 - \triangleright Trigger efficiency cuts on jets kinematics, invariant mass and $y^* = \frac{y_1 y_2}{2}$
- \triangleright Results interpreted with many new physics scenarios, but also generic Gaussian-shaped narrow-resonance $G(m_X, \sigma_X)$

Event Tagging Efficiency **ATLAS** Simulation, √s = 13 TeV DL1r, Fixed cut 77% WP DM mediator Z'(bb), ≥ 1 b-tag b*, ≥ 1 b-tag ▲ DM mediator Z'(bb), 2 b-tag

m_{ii} [TeV]

Results

JHEP03(2020)145

- \blacktriangleright Main QCD background estimated with smoothly falling fit functions on the m_{ii} distribution
- ➤ No significant deviation from background
 - Upper limits on cross sections estimated from fit considering the several signal hypothesis

Anomaly detection search for new resonances decaying into a Higgs boson and a generic new particle X in hadronic final states

Y → XH overview

- > Search for a heavy-mass resonance Υ decaying in a Higgs boson ($H \to b\bar{b}$) and a new particle X in the fully hadronic channel
- \blacktriangleright Mass range: m_Y in I 6 TeV range, m_X in 65 3000 GeV range \to boosted regime for H boson
- > Signal regions:
 - > Model dependent: 2-prong (X \to q \bar{q}) boosted (m_X/m_Y < 0.3) and resolved (m_X/m_Y > 0.3)
 - ➤ Model independent: anomalous X hadronic decay in large-R jet

Background is mainly composed of QCD dijet events (~97%), estimated fully data-driven (Machine Learning approach) → more in backup

Model independent signal region

- \succ X and H candidate associated to pT-leading and –subleading jets, ambiguity resolved by H \rightarrow $b\bar{b}$ tagger based on Deep Neural Network
 - \triangleright Discriminant $D_{H_{hh}}$ score computed from NN outputs per jet \rightarrow H candidate chosen by highest score criteria
- \rightarrow H candidate is further tagged if $D_{H_{hh}} > 2.44$
- > X candidate tagged with discriminant from fully data-driven anomaly detection

Anomaly detection X tagging

- Fully unsupervised (<u>first in ATLAS</u>) variational recurrent neural network (VRNN)
 - > Trained over **constituents of jets** with $p_T > 1.2 \text{ TeV}$ modeled as sequence of four-vectors
- ➤ Anomaly score computed from VRNN output
 - Sensitive to alternative X decay hypothesis other than 2-prong (e.g. heavy flavor, three-prong and dark jet)

- \succ Fit performed on final state invariant mass distribution m_{jj} in SR of data, repeated several times in overlapping bins of the X candidate mass
- ➤ Calculated stat-only p-value to test compatibility with background only hypothesis
- \blacktriangleright Max deviation: 1.43 σ global significance due to the several search regions defined

Weakly-supervised anomaly detection for resonant new physics in the dijet final state

- \succ Classification Without Labels (CWoLa) method used for A \rightarrow BC search
 - > mass range: I.I ~8 TeV
- \succ 6 signal regions by m_{jj} splitting, jets mass > 30 and < 500 GeV, $|\Delta y|$ < 1.2
- ➤ Classifier trained on two samples DI and D2, mixtures of signal and background, to produce discriminant output
 - \triangleright Input variables: m_1 , m_2 (pT leading jets)

CWoLa hunting results

- > Upper limits on signal cross section, benchmark models compared with other diboson searches
 - ➤ Different values of signal selection efficiency, 0.1 and 0.01
 - ➤ QCD background estimation in SR done with functional fits
- > CWoLa performs better when local signal-to-background ratio is high

Search for Low-Mass Dijet Resonances Using Trigger Level Analysis

Trigger Level Analysis (TLA)

- ➤ Low pT jets physics (200 440 GeV) is tossed in ATLAS due to **trigger** limitations
- > ATLAS normally stores the entire detector output for triggered events, limiting the rate at which events can saved
- > Trigger Level Analysis chains record only the output of HLT reconstruction o(3kB/event) at extremely high rate o(3kHz)
 - ➤ Jets included (~15% of total trigger decisions)

TLA search in fully hadronic final states

- Electroweak-TeV scale should be studied throughtly, as W, Z, Higgs boson and top are all found there
 - > Current single jet HLT trigger (pT > 440 GeV) constraints $m_{ii} \gtrsim 1.5\,\text{TeV}$
- ➤ TLA can be used to recover sensitivity at the TeV scale! → HLT reconstructed jets and event header
 - No calorimeter cells, constituents, hits or tracks are saved, no offline reconstruction
 - > TLA jets calibrated to match offline reconstructed jets
- Model independent, benchmark model used to set upper limits on coupling constant g_{α} (29.3 fb⁻¹)

Benchmark model: DM mediator

TLA search results

- > Background estimated with functional fit of subranges with sliding window
- \triangleright No bump found \rightarrow factor 2-5x improvement in coupling constant limits w.r.t. other searches for lower masses

Conclusions

- ➤ No new interactions and particles since the Higgs boson's discovery → more generic searches opposed to the existing model-dependent analysis standard
- Model agnostic searches with jets in final state becoming a main topic in the ATLAS collaboration
- > Exploited LHC Run 2 data collected by ATLAS, also moving on to Run 3 data
 - > Run 2: TLA analysis, CWoLa, search for resonances with quark tagging, YXH
 - > Run 3: Anomaly Detection with Graph Neural Networks
- ➤ Honorable mentions: Anomaly Detection search with Run 2 data (Phys. Rev. Lett. 132, 081801), search for signatures of Soft Unclustered Energy Patterns
- > Take home message: Model agnostic searches can be a powerful tool that is complementary to beyond standard model dependent searches approach

Stay tuned and thank you for your attention!

BACKUP

Large Hadron Collider

- Largest and most powerful particle accelerator worldwide;
- 27 km long tunnel underground provided by superconductive magnets to bend and accelerate particles;
- 13.6 TeV center of mass energy (July 2022);
- 4 interaction points where main detectors are located: ATLAS, LHCb, CMS and ALICE;
- Investigate fundamental particles and forces of the universe; explore dark matter, SUSY and Higgs boson physics;
- o Luminosity, defined as $L=\frac{N_1N_2fn_b}{4\pi\sigma_x\sigma_y}$, is a geometric parameter used to measure the number of collisions that can be produced in a detector per cm² and per second.

The ATLAS experiment

Multipurpose detectors arranged in concentric layers around the collision point:

Muon spectrometers;

Magnetic system;

Hadronic calorimeter;

Electromagnetic calorimeter;

Inner detectors (trackers).

ATLAS adopts a complex **2-level trigger** system for data recording

ATLAS coordinate system

 (z,η,ϕ)

Transverse momentum

$$p_T = \vec{p}\cos(\phi)$$

Pseudorapidity

$$\eta = \frac{1}{2} \ln \left(\tan \left(\frac{\theta}{2} \right) \right)$$

Angular separation in η - ϕ plane

$$\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2}$$

Coordinate system

Jets reconstructed using tracks in ID, calorimeter deposits and anti- $k_{\rm T}$ algorithm.

- Tile hadronic calorimeter: 14 mm of iron absorber alternated to a 3 mm sparkling plates, in bunches;
- Liquid Argon end-cap hadronic calorimeter: copper and tungsten as absorbers and LAr as active component.

Anti- k_T reconstruction algorithm takes <u>topoclusters</u> (clusters of energy <u>deposits</u> in the <u>calorimeters</u>) as input and combine them to form jet cones with characteristic radius R using a distance parameter

Event Selection in Analysis I

$$y^* = \frac{y_1 - y_2}{2}$$

Category	Inclusive		1b	2b	
$\mathrm{Jet}\;p_{\mathrm{T}}$	$> 150\mathrm{GeV}$				
Jet ϕ	$ \Delta\phi(jj) > 1.0$				
Jet $ \eta $	_		< 2.0		
$ y^* $	< 0.6	< 1.2	< 0.8		
$m_{ m jj}$	$> 1100\mathrm{GeV}$	$> 1717\mathrm{GeV}$	$> 1133\mathrm{GeV}$		
b-tagging	no requirement		$\geqslant 1$ b-tagged jet	2 b-tagged jets	
	DM mediator Z'	W^*	b^*	DM mediator Z' $(b\bar{b})$	
	W'		Generic Gaussian	SSM Z' $(b\bar{b})$	
Signal	q^*			graviton $(b\bar{b})$	
	QBH			Generic Gaussian	
	Generic Gaussian				

Further results of Analysis I

Cotogory	Model	Lower limit on signal mass at 95% CL	
Category	Wiodei	Observed	Expected
Inclusive	q^*	$6.7\mathrm{TeV}$	$6.4\mathrm{TeV}$
	QBH	$9.4\mathrm{TeV}$	$9.4\mathrm{TeV}$
	W'	$4.0\mathrm{TeV}$	$4.2\mathrm{TeV}$
	W^*	$3.9\mathrm{TeV}$	$4.1\mathrm{TeV}$
	DM mediator Z' , $g_{\rm q} = 0.20$	$3.8\mathrm{TeV}$	$3.8\mathrm{TeV}$
	DM mediator Z' , $g_{\rm q} = 0.50$	$4.6\mathrm{TeV}$	$4.9\mathrm{TeV}$
1b	b^*	$3.2\mathrm{TeV}$	$3.1\mathrm{TeV}$
2b	DM mediator Z' $g_{\rm q} = 0.20$	$2.8\mathrm{TeV}$	$2.8\mathrm{TeV}$
	DM mediator Z' , $g_{\rm q} = 0.25$	$2.9\mathrm{TeV}$	$3.0\mathrm{TeV}$
	SSM Z' ,	$2.7\mathrm{TeV}$	$2.7\mathrm{TeV}$
	graviton, $k/\overline{M}_{\rm PL} = 0.2$	$2.8\mathrm{TeV}$	$2.9\mathrm{TeV}$

Further results of Analysis I

Further results of Analysis I

YXH background estimation

- ➤ Data-driven background estimation since ~97% from QCD di-jet
 - MC simulations are not precise enough!
- Performed by reweighting events with a function w(x) from CR0 to SR data:

$$w(\vec{x}) = \frac{pdf_1(\vec{x})}{pdf_0(\vec{x})}$$

- w(x) is learned by a Deep Neural Network (DNN) in the training region HSB, validated in LSB and finally extrapolated in the Higgs mass window
- \triangleright Training performed on data before D_{Tracks}^2 and AS categorization
- ➤ DNN with 3 fully-connected inner layers, 20 neurons each, implemented with Keras (Tensorflow backend)

Totally innovative background estimation technique based on DNN data-driven reweighting

Background validation

Merged Region

- \blacktriangleright Since the DNN training is inclusive in X tagging selections, reweighting is applied in AS and D^2_{Tracks} regions without retraining
- Generally good closure of the background prediction to data is observed in validation region (LSB) for each scenario
 - Occasional non-closure is taken as a systematic uncertainty of the background estimation method

before reweighting after reweighting

(d)

(c)

ATLAS trigger system

- ≥ 23 collisions per bunch crossing every 25 ns → 60TB/s to store everything!!!
- Selection applied to store only interesting physics; decision took in two steps:
 - ➤ LI trigger, hardware based (100 kHz)
 - ➤ High Level Trigger (HLT), software based (~1 kHz)
- Decisions taken based on calorimeter and muon detectors

