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A B S T R A C T

In view of the High Luminosity upgrade of the CERN LHC, the forward CMS Muon spectrometer will be
extended with two new stations of improved Resistive Plate Chambers (iRPC) covering the pseudorapidity
range from 1.8 to 2.4. Compared to the present RPC system, the gap thickness is reduced to lower the
avalanche charge, and an innovative 2D strip readout geometry is proposed. These improvements will allow
iRPC detector to cope with higher background rates. A new Front-End-Board (FEB) is designed to readout iRPC
signals with a threshold as low as 30 fC and an integrated Time Digital Converter with a resolution of 30 ps.
In addition, the communication bandwidth is significantly increased by using optical fibers. The history, final
design, certification, and calibration of this FEB are presented.
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1. Introduction

During the High Luminosity CERN LHC (HL-LHC) operation phase,
the instantaneous luminosity will be increased to 5 – 7.5 × 1034 cm−2

s−1, i.e., a factor 5–7.5 above the LHC design value. The projected
integrated luminosity of 300 fb−1 for Phase-1, the current LHC period,
will be increased by an order of magnitude to 3000–4000 fb−1 in the
coming two decades (Phase-2). The CMS experiment [1] at the LHC
is implementing several upgrades to the present detector to improve
the sensitivity to physics searches and to cope with: (i) the increased
backgrounds; (ii) the larger pileup event rates; and (iii) the probable
aging of the existing chambers. One upgrade includes the addition of
new chambers in the muon endcaps [2].

Presently, CMS Resistive Plate Chambers (RPC) cover pseudora-
pidity up to 𝜂 = 1.8, a region where two different muon systems
always guarantee the coverage: Drift Tubes + RPCs in the barrel and
Cathode Strip Chambers (CSC) + RPCs in the endcap. However, the
orward region, 𝜂 > 1.8, is covered only by the CSC system so it lacks
edundancy where the background is highest and the magnetic field
ending is lowest. Therefore, for the HL-LHC phase, the forward region
f CMS will be complemented by three GEM (Gas Electron Multiplier)
etector stations, and two improved RPC stations (iRPC) covering up
o |𝜂| = 2.4.

We modified the design of the iRPC chambers to cope with a higher
ackground rate; an innovative 2D readout with narrow strip pitch (less
han 1 cm) is used, taking advantage of the better timing to obtain the
article position with a centimeteric precision. The charge produced
uring the amplification process in the gas gaps is reduced to limit the
lectrode aging over time.

We designed a dedicated Front-End-Board (FEB) to read out the
nduced iRPC signal, discriminate it, and tag it in time with a precision
f 100 ps. The design of the chamber and readout system is described in
ection 2. Section 3 describes the FEB itself. The certification and cal-
bration processes are described in Sections 4 and 5. Finally, Section 6
rovides the state-of-the-art radiation tolerance details.

. The iRPC readout design

The details of the iRPC chamber are described elsewhere [3], and an
xploded view is provided in Fig. 1. In a nutshell, they are trapezoidal-
haped double gas gap chambers similar to the existing endcap RPCs
2

ith radially oriented readout strips between two gas gaps. These gaps
re made of two High-Pressure Laminate (HPL) electrodes coated with
thin graphite resistive layer. The thickness of the electrodes, as well

s the gas gaps, are reduced from 2 mm to 1.4 mm. The reduced
hickness results in a lower charge produced in the gap as well as a
ower screening effect from the thinner electrodes. The resulting pick-
p charge by the strips is a factor of three lower than for a standard
PC chamber.

The strips are located inside a three-layer trapezoidal Printed Circuit
oard (PCB) containing 48 readout strips with pitch width varying from
2.3 mm in the large base to 6 mm in the small base. Two PCBs are
sed per chamber: left and right. The signal propagates to both ends
f the strip and is carried via narrow return-lines to three Enhanced
outing Network Interconnect (ERNI) connectors per PCB located in

he wide edge of the trapezoid. This position is located furthest possible
rom the beam axis and benefits from the lowest irradiation level. The
eference. [4] provides more details about the PCB.

For each PCB, one FEB is connected via the ERNI connectors. A
opper plate is fixed on top of the FEB for temperature control. It
lays the role of local ground reference and partial Faraday cage.
n top, a stainless steel cover encapsulates the readout system nearly
ermetically and complements the Faraday cage.

. The iRPC front-end-board

The iRPC FEB version 2 (FEB v2) is a low-noise front-end electronics
oard capable of detecting signals with a charge as low as 30 fC. The
EB was designed in 2019–2020, produced in 2021, and certified in
022. A photo of the board is provided in Fig. 2 and the schematic
n Fig. 3. This version of the FEB is used for the iRPC demonstrator
nstalled at the end of the Long Shutdown 2 in 2021. The previous
ersion of the FEB is described in Ref. [5] and served as proof of
rinciple of this innovative 2D readout system and certification of the
RPC engineering prototype.

The 48 × 2 signals are transferred to FEB v2. It hosts six Petiroc
C ASIC controlled by three Cyclone-V FPGAs. The CERN GBTx chip
high radiation tolerance) is used for the data transfer through the VTRx
ransceiver to the back-end-board (BEB) [6]. This board communicates
ith the CMS Muon Level 1 trigger and stores hits for the data acqui-

ition chain. The BEB performs slow control through the CERN SCA
SIC.
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Fig. 1. Exploded view of the iRPC detector.
Fig. 2. Photo of a FEB v2 from top view.
The fast front-end ASIC, PETIROC2 [7], is a 32 channel version
developed in AMS 0.35 μm SiGe technology. It hosts a preamplifier with
a 1 GHz bandwidth and gain of 25 associated with a fast programmable
comparator.

The first version of this ASIC was designed to read out silicon
photomultipliers (SiPM) for particle time-of-flight measurement appli-
cations. It was successfully modified into version 2B, including features
to reduce the cross talk among Petiroc channels, and finally, 2C, which
can be considered a real iRPCROC. In this version, many analogical
components that are useful for SiPM, but not for RPC, are removed.
In addition, a channel-by-channel auto-reset feature is added to shut
down each Petiroc channel for a period of few dozens of ns after the
trigger signal is issued. This feature reduces retriggering effects in the
chip significantly. Using Petiroc2C and an auto-reset time of ≈ 25ns,
it is possible to reach thresholds for the pickup signal of the order of
3

30 fC, while Petiroc2A is limited to O(100 fC). The resulting deadtime
can be considered as negligible (well below 1%).

The signal received through the ERNI connector is pre-amplified
and discriminated inside the Petiroc2C chip. It is then transferred to
Altera Cyclone V FPGA, which provides the time-to-digital conversion
module. The FEB hosts 3 FPGAs, each controlling 2 Petiroc2C chips.
Each FGPA contains a Time Digital Converter (TDC) module using a
tapped-delay-line architecture [8].

The central master FPGA also serves as a concentrator of the signals
collected by all 3 FPGAs. The signal is packaged into frames and
transferred to the GBTx chip.

The FEB is supplied by 2 low voltage (LV) lines: 2 V and 4 V. The
former provides power mainly to the FPGA and consumes ≈ 6.5 A,
whereas the latter ≈ 2.3A. The total power consumption amounts to
22 W, which is efficiently evacuated using a fan in the laboratory or
cold water in CMS.
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Fig. 3. FEB v2 schematic.

4. FEB v2 certification

The certification of the FEB v2 is performed by a simplified stan-
dalone data acquisition system based on the CERN FC7 mezzanine card1

inserted into a 𝜇TCA mini-crate. This system is portable and flexible. It
is designed to read out one FEB at a time.

So far 18 FEBs have been produced: the PCB is manufactured by
French company TECHCI and assembled by another French company
FEDD.2 Among them, 8 FEBs are installed on the iRPC demonstrator in
2021, and 10 others are used for project certification.3 The certification
setup is shown in Fig. 4, and the initial test steps at IP2I laboratory
(Lyon, France) are the following:

1. Test independently each FEB electronic block: SCA, GBTx, Power
Supplies, and tests points.

2. The data integrity of the system is verified.
3. The firmware for the FPGA is flashed into the FEB and validated.
4. The Petiroc2C and FPGA are operated.
5. Simulation and system operation checks are performed using an

injection chain, including a generator, resistance, and capacitor.
This approach allows us to emulate as close as possible the
typical iRPC signal.

6. A common signal is injected into all channels to measure their
relative delays with respect to each other, which are later stored
in a look-up table. These delays are observed to be stable in
time. A typical delay of ≤ 10ns can be observed due to various
connection lengths within the FEB and firmware implementation
inside the FPGA.

5. FEB v2 calibration

In the second step, the Petiroc2C pedestals have to be individually
aligned. A unique discriminator threshold THR is set for all the ASIC
using a 10-bit Digital Analog Converter (DAC). For a given channel,
if THR is too low, the channel would continuously trigger on noise,
if it is too high the triggers count will be 0. The transition between
the two regimes is called a pedestal: PD. For each channel 𝑖 the

1 More information can be found there.
2 We thank the TECHCI and FEDD companies for their continuous and

proactive support in this project.
3 Two out of four iRPC demo chambers are equipped with an earlier FEB

version v2.1 with Petiroc2B and have a less performing design.
4

Fig. 4. A photo of the certification chain in IP2I Laboratory in Lyon, France.

PD𝑖 is individually measured. To align all PD𝑖 to a unique PD per
ASIC, each channel is supplied with a 6-bit DAC tuner: it can shift
PD𝑖 up and down. A dedicated multi-step procedure was designed to
perform a fine alignment of PD𝑖 to a median PD on the test bench or
a chamber. This procedure requires 30 mn. The obtained 6-bit DAC
constants are tabulated in a database. After one year of operation of
the iRPC demonstrator chambers, we verified that they do not change
significantly over time.

The real signal threshold THR is defined by the relation THR =
PD + eTHR, where eTHR is called effective threshold. The value of
eTHR=7 DAC [9] that we use is the minimal value possible that guar-
antees a negligible noise level in the chamber (less than 1 Hz/cm2).

The third step consists in converting the value of eTHR into an
avalanche signal charge. The same injection setup shown in Fig. 4 is
used to perform this operation. The response of the Petiroc2C in fC
depends on the sharpness of the leading edge. A dedicated study per-
formed with a high-frequency oscilloscope has shown that the typical
rising time (since the induced signal is negative, it appears as falling
time) of an iRPC signal is around 2 ns. The conversion factor for the
iRPC signal is

eTHR = 4.6 ± 0.05 fC/DAC (1)

A perfect linearity is observed between 50 and 500 fC. Below this
value, a linear extrapolation is assumed since the injection circuit did
not allow injecting a lower signal. Therefore 7 DAC converts into 32 fC.

The resolution and linearity of the TDC module were measured
using the injection circuit with two channels: one trigger channel
considered as a time reference and one test channel using the BEB
setup. The results are shown in Fig. 5. A resolution of ≈ 20ps for a
TDC channel is obtained. The difference in time 𝛥𝑇 between the two
channels is varied adding a delay line. A perfect linearity is observed.

The TDC resolution is negligible compared to the relative time
resolution between 2 strips ends of the iRPC chamber of 160 ps [6].
This quantity is fundamental since it is used to reconstruct the position
along the strip.

Furthermore the operations of the iRPC demonstrator have demon-
strated that the FEB can operate without any problems in a magnetic
field of ≈ 0.5 T. Finally, we verified that the total noise level of the
system FEB and iRPC chamber stays below 1 Hz/cm2, that is well
within the requirements.

6. FEB v2 radiation tolerance

The iRPC chamber is designed to shield the FEB from the radiation
flux as much as possible. Therefore, the FEB is located 3 m from the

https://espace.cern.ch/project-FC7/SitePages/Home.aspx
https://techci.fr/
https://www.fedd.fr/
https://www.fedd.fr/
https://www.fedd.fr/
https://www.fedd.fr/
https://www.fedd.fr/
https://www.fedd.fr/
https://www.fedd.fr/
https://www.fedd.fr/
https://www.fedd.fr/
https://www.fedd.fr/
https://www.fedd.fr/
https://www.fedd.fr/
https://www.fedd.fr/
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Fig. 5. Top: resolution of the iRPC TDC module; Bottom: linearity of the TDC module.

beam axis, which is the furthest possible distance. In this region the
radiation dose is considered ‘‘moderate’’ for the LHC. This means that
it is lower than inside the CMS tracker system where specific high
radiation tolerant components are required. However, it is still not
negligible for a standard commercial component such as Cyclone V.
A dedicated campaign is, therefore, necessary to know if FEB v2 can
withstand 10 years of HL-LHC operations.

The typical fluences and fluxes estimated by FLUKA simulation for
the iRPC FEB [10] are provided in Table 1. The certification followed
three steps with increasing severity of the irradiation.

As a first step, the FEB was operated under irradiation of an in-
tensive 60Co source at the Calliope facility located at ENEA Casaccia,
Italy. The flux was set to 6.7 Gy/h on the Petirocs, while Cyclone V was
protected by lead and received only 2.2 Gy/h. During 23 h of the test,
the HL-LHC dose with safety factor (SF) > 2.5 was collected. No aging
was observed: pedestals and gain of the Petirocs were unchanged, and
currents and temperature were stable. No Single Events Upset (SEU) or
Single Events Latchup (SEL) was identified during the test.
5

Table 1
Summary of the irradiation tests of FEB v2: 1st column is the type of particles used
in the facility; 2nd column gives the Total integrated dose (TID), fluence, or the flux
of these particles expected at HL-LHC depending on the quantity under scrutiny (high
energy neutron flux and fluence is expressed in 1 MeV neutrons equivalent); 3rd column
indicates the facility; 4th column shows the safety factor achieved during the test.

Particles HL-LHC Valid. SF
type conditions facility
60Co 𝛾 20 Gy Calliope 2.5–8
Neq 1 MeV 6e11 cm−2 FNG 3

10e3 cm−2s−1 FNG 30
ThN/HEH CHARM Ongoing

After the success of the 𝛾 test, the FEB was installed into the 14 MeV
neutron source in FNG, Enea Frascati, Italy4 [11]. At the beginning of
the test, the FEB was operated at fluxes going from a safety factor 1
up to 300 during periods of 20 min. No issues were observed below
SF = 30, whereas above, errors in the TDC output were identified,
indicating a possibility of SEU in the FPGA.

After this first phase, the FEB was set to standby mode and irradi-
ated to a total neutron fluence of HL-LHC with a safety factor of 3 for
8 h. After this period, the FEB is being operated again, and no aging
issues were observed.

The most demanding test with a mixed field of High Energy Hadrons
(HEH) and thermal neutrons (ThN) is ongoing in the CHARM CERN
facility at CERN. Additional tests using the FEB on the iRPC demon-
strator at CMS are ongoing at 20%–30% of the HL-LHC instantaneous
luminosity.

7. Conclusions

The RPC system coverage will be extended to |𝜂|= 2.4 by installing
iRPC chambers in the forward region on the 3rd endcap disk of the CMS
experiment to cope with the HL-LHC conditions where they have to
withstand much higher background and irradiation rates. A dedicated
readout system and an innovative FEB are designed, built, and certified.
The FEB fulfills the requirements to operate safely in the HL-LHC
environment. The irradiation tests carried out now are promising, and
final tests are still ongoing.
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