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Abstract
A Large Ion Collider Experiment (ALICE) experiment is one of the four experiments at the
Large Hadron Collider (LHC) designed to investigate the status of matter under very high
energy densities produced during heavy-ion collisions. The ALICE inner tracking system (ITS)
consists of seven concentric cylindrical layers of monolithic silicon pixel sensors known as
ALICE pixel detector (ALPIDE). The sensors are used to reconstruct the paths of charged
particles generated in the collisions. The sensor alignment of the detector must be adjusted to a
high precision standard. The adjustment objective is to obtain a detector that can undertake
high-resolution measurements. This paper introduces a method for measuring the reference
markers utilized in sensor alignment determination. Markers engraved at the chip corners have
been detected using the Hough transform, Canny edge detection, and template matching
techniques. The distances between two markers are measured to determine the accuracy of the
pixel sensor alignment before and after assembly. The proposed methods exhibit an accuracy
exceeding 99% and demonstrate high speed analysis. The average processing times for
detecting the circle and cross markers are 105.9 ms/image and 113.8 ms/image, respectively.
The sensor alignment of the detector must be adjusted to a high precision standard. However,
recent studies have shown deviations of up to 5µm above the desired value in the measured
sensor position. Such deviations do not represent a major issue, nevertheless it is important to
measure them in order to speed-up and make more accurate the recursive track-based alignment
procedure used to reconstruct the position of each pixel sensor in the tracking detector. The
proposed method offers a promising solution to deliver precise and rapid measurements for a
large number of examined objects.
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1. Introduction

A Large Ion Collider Experiment (ALICE) is a multi-purpose
heavy ion detector at European Organization for Nuclear
Research (CERN), which aims to study the status of matter at
the extremely high energy densities and temperatures reached
in heavy-ion collisions. A high-standard measurement instru-
ment is required to ensure the experiment data can be accur-
ately collected. The experiment uses a detector that is com-
posed of many silicon-based sensors. For multiple reasons, it
is important that visual inspection be incorporated into the pro-
duction process of chip-based detectors, like the ALICE pixel
detector (ALPIDE) sensors used in the ALICE experiment.
The first aspect is the quality assurance of the manufacturing
process. The main method for protecting against manufactur-
ing flaws is visual inspection. Early detection of anomalies,
such as physical damage, improper reference points, irregu-
lar component placement, or manufacturing errors, guarantees
that only high-quality detectors move on to the next phase of
the process. This is particularly important when producing pre-
cision instruments, such as detectors based on chips, because
even small flaws can affect the measurement results.

The second aspect is alignment verification. Visual inspec-
tion plays a vital role in verifying the correct alignment of
components. In the case of chip-based detectors, where precise
alignment is essential for accurate particle trajectory recon-
struction, visual inspection ensures that each component is
positioned according to specifications. Misalignments or devi-
ations can be identified and corrected before the detector
is assembled, contributing to the overall accuracy of the
detector. A third aspect relates to the detection and calib-
ration of markers. Reference markers are an essential com-
ponent in the process of establishing sensor alignment. With
the assistance of techniques for image processing such as
the Hough transform and template matching, these mark-
ers can be accurately discovered within visual inspection.
By performing this procedure, the detector can be calib-
rated and its components can be positioned with the required
precision.

The last aspect concerns the detection and correction of
errors. Visual inspection serves as a means to identify errors
or inconsistencies that may arise during the manufacturing
process. Visual inspection enables the timely identification
of various issues, including but not limited to variations in
the materials used in production, defects introduced during
the fabrication process, and problems encountered during
assembly. This early identification facilitates timely correc-
tions, preventing the production of faulty detectors and min-
imizing the need for rework. In brief, visual inspection is an
essential part of the chip-based detector manufacturing pro-
cess, serving as a critical element in ensuring quality control,
verifying alignment, and identifying errors. The implementa-
tion of this system guarantees that the detectors satisfy the high
standards that are essential for precise and consistent scientific
measurements.

The paper will report the implementation of a visual inspec-
tion of the chip sensor installation on the ALICE inner tracking
system (ITS) detector. The ALICE ITS detector modules are
composed of a hybrid integrated circuit (HIC), assembled by
gluing a flexible printed circuit (FPC) on top of nine sensor
chips aligned by an automated pick and place machine with
a precision of ±5µm. The sensor chip arrangement needs to
be mounted precisely on the support component. The precise
installation aims to obtain high resolution on the reconstruc-
ted trajectories of the charged particles that are produced in the
collision and traverse the ITS detectors. Therefore, this work is
the initial step to ensure the quality of the data samples that will
be collected. The accurate placement of the sensor chips on the
assembly vacuum table is obtained by using a vision system
and reference markers (circles at each position on the vacuum
table, and crosses at the four corners of the sensor chips).

Our research novelty includes two aspects: firstly, the pro-
posed methods can provide highly accurate measurements in
the implementation of assembly procedures for sensor chips.
Secondly, we can conduct the measurement at high speeds
without requiring a high computational load. The method con-
sists of twomain tasks: circle and cross-marker detection. Both
detections have processing times of only around 100 ms per
image, respectively. The image scaling ratio is critical to redu-
cing computing costs while maintaining accuracy levels.

The image analysis-based measurement is important
because it speeds up and provides a more accurate align-
ment status than the recursive track-based alignment proced-
ure. This procedure is the current standard for reconstructing
the position of each pixel sensor in the tracking detector. The
proposedmethod can provide a general view of chip alignment
prior to the detector’s installation stages. The proposedmethod
performs the measurement analysis based on the image data
obtained from direct acquisition of the camera from the chip
surfaces. Therefore, the proposed method directly computes
the distance parameters using the image data from the chip sur-
faces. The measurement is not calculated based on the indir-
ect parameters. Image processing methods present significant
advantages when measuring objects on the scale of micromet-
ers and millimeters [1]. One essential advantage of employing
image processing algorithms is their attainable precision. The
technique can analyze images at the pixel level to determine
detailed distances. Furthermore, the image analysis approach
allows for non-contact measurement, preventing the risk of
physical destruction to the observed object. Various inspection
procedures could apply these principles to obtain high-quality
measurements.

This paper, which consists of five sections, can be described
as follows. The context and purpose of the research work are
explained in section 1 of the paper. Section 2 mentions sev-
eral previous works. Section 3 discusses and explains the data
acquisition and analysis methods used in this research work.
The results of the algorithms and the discussion on their per-
formance are presented in section 4. Section 5 contains the
paper’s conclusion.
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2. Previous works

Object detection is widely applied in industry applications,
such as defect detection of electrical components or printed
circuit boards (PCBs) [2]. As demands in PCB process design
and quality assurance escalate, the diversity of defects found
on PCB surfaces, including spurs, mouse bites, short circuits,
and open circuits, continues to expand. Consequently, there
is a corresponding increase in the need for enhanced detec-
tion accuracy to meet these evolving quality standards [3, 4].
Experts are required to manually examine the devices, with
each sample taking a considerable amount of time. Any dif-
ferences from the original blueprints must be spotted and
evaluated [5].

Yeum and Dyke [6] describes a combination of edge detec-
tion and template matching for visual inspection of bridges.
The method demonstrated success in identifying damage to
bridge structures without controlling the angle or position of
the images, simulating real-world scenarios. However, chal-
lenges may arise in situations with fluctuating lighting condi-
tions inherent in received image datasets. In [7], the applica-
tion of Hough transform and template matching methods for
defect detection during the etching process on PCBs yiel-
ded promising results. However, limitations became evident
in scenarios of subpar image quality, including challenges
such as inadequate lighting, variations in height during image
capture, and image skew. These constraints pose difficulties
for the framework when processing images with such qual-
ity issues, highlighting the necessity for enhancements to
address diverse image conditions. This is especially crucial
when compared to template matching-based reference meth-
ods and manual detections, which suffer from drawbacks such
as inefficient defect detection, substantial errors in defect iden-
tification and localization, and limited adaptability of detection
techniques [8].

Nan and Gao [9] presents automated detection methods for
inspecting the condition of the brake beam bolt. This compon-
ent is an important locking part of the train components and
needs to be inspected regularly to ensure quality and safety.
For the bolt position detection, the template matching method
was employed, and afterwards, support vector machines were
used to classify the condition of the railroad tracks based on
the position of the bolt. The accuracies obtained for joint part
localization and fault detection are 99% and 95%, respectively.
In [10], five edge detection methods in image processing are
compared, namely Canny edge detection, Sobel edge detec-
tion, Prewitt edge detection, Robert edge detection, and zero
crossing edge detection. The result is that Canny edge detec-
tion provides higher accuracy compared to the other four
methods.

Panjaitan et al [11] applies the Hough transform, Canny
edge detection, and template matching algorithms to detect
sealring, edge, and cross markers on sensor chips. The res-
ults of the object detection are used to determine the quality
of chip cutting. The obtained accuracy is 97%. In [12], tem-
plate matching and fast Fourier transform methods were used
to detect defects in the electronic surface. The obtained accur-
acy is 100% and requires less time. The limitation of this paper

is that the templates used in the method are not comprehensive
or fail to capture the full range of possible defects.

Yang and Sun [13] proposes a convolutional neural net-
work (CNN) method for detecting semiconductor defects. The
result of that object detection provides higher accuracy but
requires significant power processing and more time to oper-
ate. In [14], the limitations of traditional surface defect detec-
tion algorithms in industrial applications and present the state-
of-the-art in surface defect inspection using deep learning,
focusing on semiconductor, steel, and fabric manufacturing
processes. The advantages of deep learning, particularly in
one-stage defect detection, automatic feature learning, and
robustness to input variations, are highlighted [15]. Despite
these advantages, challenges such as insufficient labeled train-
ing data, real-time processing requirements, and the need for
innovative algorithms persist. The study suggests that with
advancements in data augmentation, semi-supervised learn-
ing, and efficient convolution algorithms, deep learning has
the potential to replace traditional defect detection methods,
offering a promising future for surface defect inspection in
industrial settings.

As described in [16], the hybrid multi-stage system of
stacked deep neural networks offers substantial advancements
in automated visual fault inspection. The inspection detects
minute defect patterns within high-resolution imagery, with
runtime of only 5.2 ms per chip image sample. The results
demonstrate superior performance, with an F1-score of up to
99.5%, showcasing the potential of this approach to surpass
current state-of-the-art automated visual inspection methods
while meeting runtime constraints in real-time processing.

Jia et al [17] investigates the application of deep learning
for automated defect detection in smart manufacturing, high-
lighting its strengths and weaknesses. Deep learning proves
beneficial in overcoming the limitations of traditional image
processing techniques, particularly in handling background
noise and texturing variations. The study emphasizes the grow-
ing significance of deep learning in defect detection, citing
its strength in coping with complex tasks. However, chal-
lenges include the scarcity of defect data for effective imple-
mentation and the inherent complexity of deep learning mod-
els, which pose difficulties in comprehending and explaining
decision-making processes, thereby hindering deployment and
performance enhancement.

Apostolopoulos and Tzani [18] focuses on the need for
advanced defect detection in smart manufacturing by propos-
ing a specialized CNN named multipath VGG19 (MVGG19).
Utilizing six industrial image datasets, MVGG19, a modified
version of the VGG19 network, outperforms the baseline in
five datasets, demonstrating improved accuracy and robust-
ness. The proposed architecture not only contributes an innov-
ative modification to VGG19 for defect and industrial object
recognition but also establishes itself as a baseline model
with potential applications in various manufacturing domains.
However, a notable limitation of this study is the imbalance
observed between datasets containing defected materials and
those focused on actual object recognition.

Ren et al [19] provides a comprehensive overview of the
role of machine vision in industrial inspection, emphasizing
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its significant contributions to efficiency, quality, and reliab-
ility. The discussion covers the history and current state of
optical illumination, image acquisition, image processing, and
image analysis, with a particular focus on the growing impact
of deep learning in defect detection. Despite notable achieve-
ments, challenges remain, including the need for real-time in-
line detection for objects with complex features, addressing
interference in detection systems, dependency on large-scale
datasets, and enhancing the intelligence level of vision sys-
tems. The study concludes that, despite existing imperfections,
machine vision remains a crucial direction for future research
and development in defect detection.

Cai and Gong [20] investigates that inspecting FPC Boards
(FPCBs) is crucial in manufacturing activities, yet edge detec-
tion for Region of Interest (ROI) poses challenges. This study
introduces a segmentation method targeting the gold finger
area of FPCBs, addressing adhesion concerns. The approach
involves Gaussian filtering, generating a blurred edge image,
creating a binary image using adaptive thresholding, and
extracting the gold finger area using histogram statistics.
Experimental results demonstrate accurate gold finger area
localization, with the algorithm processing taking 2.654 s with
adaptive thresholding and 1.442 s without, making it suitable
for automated optical inspection of FPCBs.

Chen et al [21] addresses the challenges in PCB defect
detection, such as high costs and complex shapes. This study
proposes a novel approach combining image processing and
deep learning. By employing the pruned YOLOv5 algorithm
and various image enhancement techniques, including
straightening, denoising, sharpening, and contrast enhance-
ment, the method enhances defect identification and localiz-
ation on PCB boards, leading to improved detection accur-
acy. However, it is worth noting that this approach may
require significant computational resources, utilizing CPU:
AMD R7-5800H and GPU: NVIDIA GeForce RTX 3060,
for efficient processing. Nonetheless, experimental results
demonstrate promising outcomes, including model compres-
sion to 2.64 MB and inference time reduction to 20.53 ms,
significantly enhancing deployment efficiency and detection
speed.

The contribution of automated functions to smart man-
ufacturing is described in [22]. The operation comprises
information perception and decision-making, and relies heav-
ily on sensor data, with image recognition serving as a crit-
ical component. Leveraging deep learning architectures, such
as YOLO models, offers efficient image analysis in auto-
mated environments. Despite its advantages, this approach
may require substantial computational resources. The study
primarily focuses on YOLOv3 models, which achieve prom-
ising accuracy rates, especially when combined with data aug-
mentation techniques. However, limitations arise from the spe-
cificity of the collected image data and the need for more
diverse datasets and innovative models for future studies.
Additionally, while the region-based convolutional neural net-
work (R-CNN) model shows excellent image recognition res-
ults, it requires extensive data for training, highlighting the
importance of automatic correction mechanisms to enhance

learning outcomes. Further exploration into image prepro-
cessing methods, including binary image processing, may also
improve data quality andmodel performance in future research
endeavors.

In contrast to the discussion on YOLOv3 and R-CNN
models, this study focuses on enhancing the YOLOv8-based
method for PCB defect identification. While YOLOv3 mod-
els have been pivotal in achieving promising accuracy rates,
especially when combinedwith data augmentation techniques,
the study introduces the YOLOv8s model to address the chal-
lenge of detection speed. By implementing the CA atten-
tion mechanism for improved feature extraction, the enhanced
YOLOv8s-CA algorithm exhibits significant advancements: a
footprint of 5.79 MB, a mean average precision of 90.4%, and
a minimal parameter count increase. This highlights the poten-
tial of the YOLOv8s-CAmodel for compact industrial inspec-
tion systems and various applications, showcasing advance-
ments over traditional models like YOLOv3 [23].

3. Methodology

Our research focuses on image processing tasks involving
object detection and distance measurement. We used the
ALPIDE dataset, which contains 208 high-resolution images
with objects of interest. This dataset was specifically chosen
for its suitability for tasks involving the Hough transform,
Canny edge detection, template matching, and subsequent dis-
tance measurement.

Figure 1 shows two aligned chips on top of the module
assembly machine (MAM)4 table and a view of the back-side
of a HICwith nine aligned sensors [24]. A detailed explanation
of the research objects shown in figure 1 is given as follows.
The microscopic camera (No. 1) is installed above the chip
surfaces (No. 2). The chips are laid on the assembly table (No.
3). A total of nine sensor chips (No. 4) are constructed to form
an integrated circuit (No. 5).

The name of the camera is Basler Ace Ethernet Camera. It
has a resolution of 2,048× 2,048 pixels. In the optic part, the
lens is a navitar assembly. The microscope is equipped with a
10×microscope objective and connected with a coaxial LED
illuminator. The field of view of the camera is 1.1 mm. The
image acquisition is in an enclosed area that can minimize the
interference of the environmental illumination. This camera
arrangement provides a spatial resolution of 0.54µmper pixel.
For a comprehensive overview of the camera specifications,
please refer to table 1.

In the work presented in this paper, we applied various
image processing techniques to enhance the analysis of sensor
chip images. Initial preprocessing steps, such as noise reduc-
tion, contrast enhancement, and resizing, were conducted to
optimize the dataset. For object detection, we employed a
multi-step strategy involving the Hough transform, Canny

4 The assembly machine is supplied by IBS Precision Engineering,
Netherlands.
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Figure 1. Left: Two aligned chips on the module assembly machine table. Right: The back-side of a HIC with nine aligned sensor chips.

Table 1. Basler camera specification.

Specification Description

Resolution 1838.2 pxmm−1

Spatial resolution 0.54µm/px
Pixels 2048 px
Gain 50
Exposure time 30 µms−1

Frame rate 20 frame s−1

Light source intensity 12%
Field of view 1.1 mm

edge detection, and template matching methods. These tech-
niques were specifically employed to identify the circlemarker
on the assembly vacuum table and the cross marker on the
sensor chips. The precise positions of these markers along
horizontal and vertical coordinates were determined to assess
the accuracy of sensor alignment in the ITS Inner Barrel mod-
ules. Reference markers, exemplified in images A and B of the
left and right corners of the sensor chip in figure 2, played a
crucial role in this alignment verification process.

The algorithm presented in this work has three main pro-
cesses: (i) circle marker detection using Hough transform
and Canny edge detection; (ii) cross marker detection using
the template matching method; and (iii) measurement of the
vertical and horizontal distance between the circle and the
cross markers to characterize the chip alignment. A picture of
the reference markers that should be measured is reported in
figure 3.

This work used the main hardware device with the follow-
ing specifications:

• Processor: AMD Ryzen 5 Mobile 2500U
• Graphics: AMD Radeon™ Vega 8 Graphics
• Memory: 8192 MB RAM

The algorithm was facilitated by employing Visual Studio
Code 1.59.1, integrated with Python 3.9.1. This research made

use of the following Python packages: OpenCV2 v4.5.1,
Numpy v1.19.3, Scikit-image v0.18.1, and Matplotlib v3.3.3.
These algorithms for circle and cross marker detection were
conducted with the specific parameters outlined in table 2.

3.1. Circle and cross marker detection

For the application presented in this paper, the algorithm to
find the position of the circle marker begins by resizing the
image using a scale ratio of 0.2. Then, the image is converted
to gray scale and an image segmentation with eight threshold
levels is performed. According to [25], reducing the resolu-
tion of an image or frame of videos can improve the computa-
tional efficiency of the model to some extent. The use of eight
threshold levels is motivated by the fact that for several sensor
chips, the circle markers are not detected at a certain level. If
several (fake) circles are detected for a given threshold level,
then the circle marker radius is fixed in the detection algorithm
to the value of 38 pixels (corresponding to the expected radius
of 190 pixels in the original image before scaling) with a tol-
erance of 2 pixels.

After applying an average filter and an opening morpho-
logical transformation with a kernel size of 8× 8, which are
aimed at smoothening the image or reducing the noise caused
by the threshold [26, 27], the Canny edge detection and the
circular Hough transform are used to detect and automatic-
ally determine the circle marker position. Once the position
is known, the centroid of the circle marker is calculated. The
detection algorithm is applied for each of the eight threshold
levels, and an average value of the circle marker position is
computed considering the threshold levels for which the meas-
ured marker radius is consistent with the expected value. The
methods used in this study are schematized in the flowchart in
figure 4.

In our methodology, scaling plays a pivotal role in address-
ing variations in object size within input images. To achieve
this, our template matching algorithm incorporates a scal-
ing method that systematically reduces the size of the tem-
plate image. Specifically, this scaling approach ensures that
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Figure 2. The microscopic images of sensor chips: (a) Left side sensor chip. (b) Right side sensor chip.

Figure 3. Example of the reference markers to be measured.

Table 2. Parameters for image processing techniques.

Technique Parameter Value

Hough transform Detection method Hough gradient
Resolution ratio 1
Minimum distance of two circles 20 pixels
Upper threshold intensity 50
Threshold intensity for circle detection 30
Minimum and maximum circle radius 0 pixels (the radius before detection

is not available)
Canny edge detection Lower threshold intensity 100

Higher threshold intensity 200
Template matching Template image 41 × 41 pixels

Pad input True
Peak local maximum with threshold 0.8
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Figure 4. Object detection flowchart.

the template is approximately 20% smaller than the original
object, thereby enhancing our capacity to effectively handle
diverse object sizes encountered in input images.

Template matching involves a meticulous process of creat-
ing a representative template image. This is achieved through
the extraction of key features from the object of interest, fol-
lowed by the generation of a matrix representation. The result-
ing template image is intricately crafted to faithfully represent
the object, ensuring its suitability for robust matching in vari-
ous scenarios.

The coordinates of the cross marker are defined by the
position of the input template that provides the best match
to the marker in the image being processed. This position is
marked by the highest intensity. Once this position is known,
the centroid’s value of the cross marker is displayed in the ter-
minal output, as shown in figure 5.

It is important to note a deliberate omission in our
methodology-noise handling. This intentional exclusion is
motivated by the potential impact of noise on the pixel val-
ues of the template image. By opting not to address noise in

our approach, we aim to preserve the integrity of the template’s
representation, prioritizing accuracy and reliability in the con-
text of robust matching.

3.2. Distance measurement

Before calculating the distance between the circle and the
cross markers along the horizontal and vertical axes, we
should rescale the position of the detected centroid to prop-
erly define the ROI of the circle and the cross markers at
100% scale. The coordinates (expressed in units of pixels)
along the vertical axis of the circle and the cross markers
are denoted by iC and iR, while the horizontal coordinates
are indicated as jC and jR, as shown in figure 6. The val-
ues of DX and DY denote the horizontal and vertical distances
(expressed in µm) between the circle and the cross markers,
respectively.

DX = ( jR− jC) px× 0.544µm/px (1)

DY = (iR− iC) px× 0.544µm/px (2)

7



Meas. Sci. Technol. 35 (2024) 095016 A S Wicaksana et al

Figure 5. Display of the cross marker centroid value.

Figure 6. Centroid coordinate of the circle and the cross markers.

As shown in equations (1) and (2), the circle marker is
used as the reference position. The horizontal distance DX

between the cross and the circle markers will be negative if
the cross marker is located on the left side of the circle-marker.
Conversely, theDX will be positive if the cross marker is on the
right side of the circle-marker, as shown in figure 7.

After the distances between the circle and the cross markers
of the chip are determined, the horizontal distance (DX) is used
to measure the inter pixel distance (IpD) from a single sensor
chip to another chip in the same HIC according to:

IpD= 30.150mm− DXn chip
1000

mm+
DXn+1 chip

1000
mm. (3)

As illustrated in figure 8, the horizontal distance between
the cross markers in the left and right corners of adjacent chips
is intended to be 30.150 mm. The values of IpD character-
ize the chip alignment. These values should be in accordance
with the standard deviation (5µm) required for the assembly

procedure [24]. The accuracy (expressed in percentage) is
obtained by comparing the IpD values between references and
measurements, according to:

Accuracy=

(
1−

∣∣∣∣ Measured − Reference
Reference

∣∣∣∣)× 100% (4)

4. Results and discussion

The algorithms described in section 3 have been tested on
twelve HICs. A HIC consists of nine chips, and each chip has
two associated images, namely image A (left side) and image
B (right side) of the sensor chips, as shown in figure 2. The
algorithm is able to detect the position of the circle and the
cross markers of each HIC precisely and accurately, although
each image has a different quality, as shown in figure 9. The
average processing times for the detection of the circle and the
cross markers are 105.9 ms and 113.8 ms, respectively. The

8
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Figure 7. Two possibilities for the DX sign.

Figure 8. Inter pixel distances.

cross marker that has been detected using the template match-
ing method is highlighted by white dots around it. The bright-
est white dot in the center represents the object’s centroid.

However, even if there is just one actual circle marker, the
algorithm can detect some false circles at a particular threshold
level in some images, as shown in figure 10. These false circles
are due to a poorly detected edge point since the circle marker
has a very low gray level in the original image [28].

Table 3 summarizes theDX and theDY values measured for
the 9 chips of one HIC. The DY values of image A and image
B are consistent. As shown in figure 7, there are two possible

signs for the DX values depending on the relative position of
the cross and the circle markers. A deviation by up to 20µm
from the nominal position, resulting in values of DX different
from zero, is observed in table 3 left for some chips. These
deviations could be due to a misplacement occurring during
the gluing process between the FPC and the chip. In addition,
imprecision is also a result of the extension area on the chip
sealring [11].

Table 4 summarizes the measurement results for the inter
pixel distances for HIC E106. It can be seen that there are
almost no differences between the measured and the reference

9
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Figure 9. Position of the reference markers as detected by the algorithms.

Figure 10. The false circles detected by the algorithm.

10
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Table 3. DX and DY values from image A and image B of one HIC.

CHIP DX A (µm) DX B (µm) DY A (µm) DY B (µm)

51PK407TA2 19.04 13.60 579.36 576.64
51PK407TA4 21.76 2.72 565.76 568.48
51PK407TA6 8.16 8.16 582.08 576.64
51PK407TA7 8.16 8.16 584.40 582.08
51PK407TB2 5.44 −2.72 584.40 579.36
51PK407TB5 0 5.44 582.08 582.08
51PK407TC2 0 0 579.36 579.36
51PK407TC3 2.72 −5.44 571.20 579.36
51PK407TC5 −5.44 −8.16 584.40 579.36

Table 4. Inter pixel distances of HIC E106.

CHIP IpD Measured (mm) Reference (mm) Deviation (µm) Relative deviation (%)

51PK407BA1 IpD A−1 30.142 30.146 −4 0.0132
IpD B−1 30.142 30.147 −5 0.0165

51PK407BA3 IpD A−2 30.152 30.145 7 0.0232
IpD B−2 30.155 30.146 9 0.0298

51PK407BA5 IpD A−3 30.139 30.153 −14 0.046
IpD B−3 30.150 30.150 0 0

51PK407BA7 IpD A−4 30.150 30.144 6 0.0199
IpD B−4 30.142 30.147 −5 0.0165

51PK407BB4 IpD A−5 30.155 30.149 6 0.0199
IpD B−5 30.147 30.149 −2 0.0066

51PK407BB6 IpD A−6 30.144 30.148 −4 0.0132
IpD B−6 30.147 30.148 −1 0.0033

51PK407BB7 IpD A−7 30.147 30.151 −4 0.0132
IpD B−7 30.155 30.150 5 0.0165

51PK407BC2 IpD A−8 30.169 30.146 23 0.0762

values. The reference values are those provided by the vis-
ion system of the MAM, with a precision value of 5µm. The
average deviation between the measured and reference val-
ues is 1.13µm, corresponding to a relative average deviation
of 0.021%. The largest deviation is 23µm, whereas for one
chip, a deviation smaller than 1µm is found. The deviations
between measured and reference values for the inter pixel dis-
tances of the HIC E106 are shown in figure 11. The measure-
ment deviations relative to the reference values are shown in
figure 11(a). There is a chance that the measured value will
differ from the reference value in either direction. The his-
togram in figure 11(a) presents a summary of the deviation
values. According to the histogram, the centroid value of the
deviations is in close proximity to zero. The data indicates that
the measurement deviation falls within the acceptable range of
accuracy.

Table 5 summarizes the measurement result from the other
11 HICs that were characterized. The maximum deviation
in some HICs is larger than 5µm, which was not expected.
Indeed, for a significant fraction of the chips, the deviations
between the measured and reference values are lower than
5µm. They correspond to cases in which the noise in the image
is quite low and the algorithm is able to precisely detect the
position of the markers. Instead, the measurements deviating
by more than 5µm from the reference values are mostly cases
in which the circle marker in the original image has a very low

gray value and a large noise. This affects the determination
of the circle marker centroid, and consequently, it biases the
measured DX and DY values. The algorithm has a high accur-
acy value (>99.884%).

Table 6 compares several visual inspection methods for
a variety of electrical component-related things. The meth-
ods are compared by using four parameters: the observed
object, the image resolution, the assessment accuracy, and the
processing speed. Unfortunately, most papers do not provide
information on image resolution. Method [1] can provide high
accuracy and less processing time compared to the method
presented in this paper. However, if we add the resolution
parameter, our proposed method has more advantages than
method [1]. We use images with a more precise scale. Our
image is analyzed at a scale of 0.54µm per pixel, whereas
[1] is less precise at 3.45µm per pixel. Therefore, our method
is capable of providing high performance in terms of accur-
acy and processing speed, although we use a more precise
image. Furthermore, the developed algorithm holds poten-
tial for defect detection and quality control in electrical com-
ponents or wafers. However, in order to reduce the occur-
rence of false circle detections, future enhancements could
consider incorporating the gradient method rather than rely-
ing solely on the standard Hough transform [28]. The modi-
fied method is known as the Gerig-Klein modification to the
Hough Transform with Gradient.
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Figure 11. The deviations between the reference and measured distances of HIC E106.

Table 5. Inter pixel distances of HIC sample.

HIC
Number
of chips

Minimum
deviation (µm)

Maximum
deviation (µm)

Average
deviation (µm)

C003 5 0 6 −1.000
C201 9 1 27 2.867
D105 9 2 35 4.200
E101 9 0 14 1.933
E105 9 1 11 −0.200
E106 9 0 23 1.133
F101 9 1 11 0.133
S001 9 1 31 1.375
S004 9 0 21 −1.438
T003 9 0 30 2.200
U005 9 0 25 1.933
X006 9 1 33 −0.625

Table 6. Comparison of visual inspection methods for microscopic structure.

Reference Year Method Object Img. Res. (µm/pixel) Acc.(%) Speed (s)

[29] 2010 Template matching and 2D DWT IC wafer — — 0.91/chip
[30] 2012 Template matching and edge detection Flexible PCB — 93.50 0.124/image
[31] 2014 Template matching and DWT Optical IR cut filter — 96.44 1.05/sample
[1] 2018 Template matching Semiconductor 3.45 99.25 0.08
[32] 2019 CNN and Hough transform Bottle shape — 99.60 0.358
[33] 2021 CNN IC wire bonding — 93.60 0.078
[13] 2022 Hybrid Classical Quantum CNN Semiconductor — 99.00 —
Ours 2023 Hough transform and template matching Sensor chip 0.54 99.00 0.105/image
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Figure 12. Ablation study scheme.

4.1. Ablation study of the proposed methods

In this section, the additional ablation study has been added.
Two proposed algorithms for detecting circle and cross mark-
ers are the subject of this study. The ablation procedure util-
ized in this investigation is depicted in figure 12. The research
assesses the individual impact of detection stages on the ulti-
mate outcome. By performing the ablation study, it is possible
to identify the most crucial stage in the detection of the chip
markers.

4.1.1. Study on circle marker detection. The process of
detecting circle markers consists of five primary steps.
Simplifying the entire procedure, the steps are categorized
into five stages according to their respective substantial
contributions. The process for detecting circle markers can be
described as follows:

(i) Image scaling: This step involves reducing the image
size by a scale ratio of 0.2, aimed at enhancing compu-
tational efficiency without compromising essential image
features.

(ii) Grayscale conversion and thresholding: Following
image scaling, the image is converted to grayscale and
subjected to thresholding to emphasize relevant details
while suppressing noise.

(iii) Filtering: The averaging filter helps smooth out the
image, reducing noise and fine details that may interfere
with subsequent processing steps. Morphology opening
further aids in noise reduction by removing small objects
and fine structures while preserving larger, more signi-
ficant features. These steps collectively enhance the clar-
ity of the image and improve the accuracy of subsequent
processing.

(iv) Edge detection: This step is crucial for identifying poten-
tial circular shapes, as edges are often indicative of object
boundaries. By detecting edges, we prepare the image for
circle detection while filtering out irrelevant information.

(v) Circle detection: The final step utilizes the Hough
transform to robustly detect circular patterns within
the processed image. This step completes the circle
marker detection process, providing precise localiza-
tion and characterization of circular objects within the
image.
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Table 7. Ablation study for marker detection.

Method Step Modification Accuracy Notes

Circle marker detection 1 Image resizing 99% Significant difference in processing
time observed

2 Thresholding 99% Increase in false circles with higher
thresholds

3 Kernel filter modification 99% No change in accuracy observed
4 Canny edge detection thresholds 99% Critical for circle detection;

undetected circles if omitted
5 Hough circle parameters adjustment Varied Detection impacted significantly by

parameter adjustments
Cross marker detection 1 Image resizing 99% Consistent results observed

2 Thresholding 99% No significant impact on accuracy
3 Template matrix adjustment Varied Accuracy drop observed for IpD B;

deviations from original cross
marker structure observed

To assess the significance of each step, we conduct exper-
iments by selectively removing individual components while
retaining others. A comparative analysis is performed to eval-
uate the impact on detection accuracy and computational
efficiency.

4.1.2. Study on cross marker detection. The ablation study
for cross marker detection, as explained in the previous
section, is also conducted by evaluating the contribution of
each algorithm step. The primary stages involved in cross
marker detection are outlined below.

(i) Image scaling: Similar to circle marker detection, image
scaling is employed to reduce the computational burden
while preserving essential image features.

(ii) Grayscale conversion and thresholding: Grayscale
conversion and thresholding are performed to simplify
image representation and enhance feature extraction.

(iii) Template creation and matching: Cross marker detec-
tion involves the creation of a template representing the
characteristics of a cross marker, followed by template
matching to identify potential cross marker positions.

As with circle marker detection, an ablation study is con-
ducted to assess the individual contributions of each step in
the cross marker detection algorithm. Comparative analysis is
conducted by systematically removing and reintroducing com-
ponents to evaluate their impact on detection performance.

4.1.3. Experimental results of the ablation study.
Experimental results from the ablation study demonstrate
the effectiveness of the proposed methods for both circle and
cross marker detection. Through a quantitative analysis of
detection accuracy and computational efficiency, we elucid-
ate the significance of each step in the detection algorithms.
Additionally, qualitative assessments are provided to illustrate
the impact of individual components on the detection results.

Table 7 summarizes that in our study, we systematically
enhanced the efficiency and accuracy of our proposed method
for detecting both circle and crossmarkers.We focus primarily
on circle marker detection and conduct a series of ablation
experiments. Firstly, we resize the images using scaling factors
of 0.5 and 1.0. Remarkably, despite variations in processing
time, the accuracy remains consistently high at 99%. However,
it is important to note that as the scaling factor increases, more
false circles are detected. Next, we fine-tune the threshold
levels to maintain the same accuracy. Although this adjust-
ment ensures robust performance, it also leads to more false
circles being detected due to higher threshold values. We
explore modifications to the kernel filter size, but interest-
ingly, these changes do not significantly impact the accuracy.
Additionally, we find that adjusting the Canny edge detection
thresholds and the Hough circle parameters is crucial for circle
detection.

Similarly, for cross marker detection, resizing the image
and modifying thresholding levels maintained stable accur-
acy. We investigate the effects of modifying matrix templates
on the accuracy of image processing algorithms. Specifically,
we scaled down the template values by a factor of 0.5 and
increased them by a factor of 2. Our findings reveal that while
the accuracy for IpD A remains consistent at 99%, the accur-
acy for IpD B experiences a drastic decline to approximately
88%. Additionally, the resulting output images do not align
well with the original cross marker. The critical step iden-
tified for cross marker detection was step 3, indicating the
significance of adjusting the template matrix size for accurate
detection, particularly for IpD B.

First, the normal template size was set at 41× 41 pixels,
as shown in figure 13(a). Figure 13(b) demonstrates the out-
comes after scaling up the template values, resulting in a size
of 82× 82 pixels, while figure 13(c) depicts the results follow-
ing a scaling down of the template values , resulting in a size of
20× 20 pixels. Notably, the choice of scaling factor signific-
antly influences the accuracy of template matching algorithms,
underscoring the importance of careful selection in image pro-
cessing tasks.
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Figure 13. Template size affects the accuracy of marker detection.

5. Conclusions

The developed algorithm can be used to detect the positions
of the circle and the cross markers on the ALPIDE sensor
chip. The algorithm is supported by combining two detec-
tion algorithms, namely circle and cross marker detection. The
detection results are used to validate that the sensor position
follows the detector manufacturing standard. The accuracy of
the proposed method is better than 99%. The outcomes show
that the developed algorithm is able to verify the precision of
the sensor alignment. The algorithm is also able to provide fast
analysis. The average processing times for the circle and the
cross markers detection are 105.9 ms/image and 113.8 ms/im-
age, respectively. The ablation study finds the crucial con-
tribution of some algorithmic steps. The edge detection and
Hough transform make a significant contribution to obtain-
ing the circle marker. Meanwhile, the dominant parameter for
cross marker detection is the template size. The developed
algorithm might be used for defect detection and quality con-
trol on electrical components or wafers. This research work
could be improved in the future, especially on circle detec-
tion. The Gerig–Klein modification to the Hough Transform
with Gradient may have the capacity to be implemented. This
approach may reduce the false circle detection. In contrast to
the existing approach, which solely relies on the conventional
Hough transform. The shape and template dimension of the
pattern could vary depending on the texture of the observed
objects. Appropriate preprocessing techniques are required to
enhance the image intensity and reduce the large noise.
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