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Abstract: Highly integrated multichannel readout electronics is crucial in contemporary particle
physics experiments. A novel silicon photomultiplier readout system based on the VMM3a ASIC
was developed, for the first time exploiting this chip for calorimetric purposes. To extend the
dynamic range the signal from each SiPM channel was processed by two electronics channels with
different gain. A fully operational prototype system with 256 SiPM readout channels allowed the
collection of data from a prototype of the ALICE Forward Hadron Calorimeter (FoCal-H). The
design and the test beam results using high energy hadron beams are presented and discussed,
confirming the applicability of VMM3a-based solutions for energy measurements in a high rate
environment.
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1 Introduction

ALICE FoCal [1, 2] is a forward calorimeter which will be installed during the Long Shutdown
3 (LS3) of the Large Hadron Collider (LHC) at CERN, and will start taking data during LHC
Run 4. Several testing campaigns addressed the design and the physics performance of prototypes
of the electromagnetic (FoCal-E) and the hadronic (FoCal- H) sections of FoCal [3]. In addition,
various readout systems were used with the FoCal-H prototypes. The present study addresses the
compatibility between the FoCal-H Prototype 2 and the SRS (Scalable Readout System) with the
VMM Hybrid front-end electronics.

The SRS [4, 5] is a versatile and highly adaptable solution for data transfer between detectors
and computers. The system was developed by the RD51 Collaboration and allows use with detectors
of any size while also lowering costs due to only part of the system requiring redevelopment for
new applications. As part of the NSW (New Small Wheel) upgrade on the ATLAS experiment, the
SRS system was used to implement new specially developed ASIC, the VMM3a [6, 7], to replace
the original APV25 readout chips [8].

A VMM ASIC has 64 channels each with its own preamplifier, shaper, peak detector and ADCs.
The chip can be programmed for multiple applications as its gain, polarity, peaking time, threshold
and timing precision are all adjustable. It was originally developed for use with Micromega and
GEM gaseous detectors and is tailored towards high event rates with low channel activation rates
per event. FoCal-H prototype is designed as a plastic-absorber calorimeter with a SiPM-based light
detection. The expected event rate during test beam campaigns is of the order of 10 kHz, but a
large number of channels are activated for each event. Due to the hadronic shower’s geometry,
most of the activated channels are usually connected to a single readout chip, leading to a high
and non-uniform load. In this paper we present the results of an R&D study of the usage of the
VMM with one of the FoCal-H prototypes which may extend the applicability of the VMM ASIC
to SiPM-based calorimeters in general.
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2 Experimental setup

The FoCal-H prototype consists of 9 modules with dimensions 6.5 × 6.5 × 110 cm3 in a 3 × 3
arrangement. Each module consists of 24 × 28 copper tubes with scintillating fibers inside them,
with 4 tubes removed for the installation of supporting rods. Light detection is provided by
Hamamatsu S13360-6025PE SiPMs. The 668 fibers of each module are split into bundles. The
outer 8 modules of the prototype are split into 25 channels with ∼27 fibers per channel. The central
one which detects the most energy is split into 49 channels with ∼14 fibers per channel.

  

SiPM ( FoCal-H Prototype )
CAEN A5253 Header Adapter VMM SiPM Adapter

VMM Hybrid
 PC Readout SRS Minicrate

Figure 1. Schematic representation of the full readout setup.

The FoCal-H prototype equipped with 4 VMM Hybrids was tested at the SPS accelerator
complex at CERN. The readout setup is presented in Figure 1. It consists of the following major
components:

• The Focal-H prototype: It is represented by the Silicon Photomultipliers.

• CAEN A5253 header adapter: For facilitation, and independently of the readout system, the
SiPMs outputs from the FoCal-H back panel were connected to the CAEN A5253 64 channel
header adapter [9].

• The VMM SiPM adapter board: To test the VMM readout solution with Silicon Photomulti-
pliers, a dedicated SiPM adapter board was developed in collaboration with RD51 [10] which
can be plugged into the CAEN adapter. It acts as a 128 channel interface from the FoCal-H
detector to the RD51 VMM hybrid. A prototype was used in the FoCal test beam.

• RD51 VMM hybrid: The VMM hybrid board, shown in figure 2, right, houses two VMM3a
ASICs, for a total of 128 electronics channels. A Xilinx Spartan-6 Field Programmable Gate
Array (FPGA) ensures the ASIC configuration and the communication (including hit data
transfer) with the SRS system via micro HDMI connectors [11].
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• SRS minicrate: The SRS back-end, as described in [4], is contained in the SRS minicrate.
It acts as a data aggregator and is able to serve up to 8 hybrid boards connected via HDMI
interface. The SRS system also adds coarse timing information for time stamp calculations,
and pads then feeds the data to the readout PC.

• PC Readout: A standard PC is used. The PC allows the configuration of the SRS readout by
setting various parameters such as thresholds, gains, etc. The data, which is sent by the SRS
system via a UDP protocol, is recorded by filtering the incoming network stream, and further
storing it on disk for processing.

The SiPM Adapter board is shown in Figure 2. It transforms the SIPM signal risetime into
charge and houses 2 bias voltage generators which can provide between 0 V and 85 V (programmable
trough an I2C interface). The HV distribution is split into 2 regions of 32 SIPMs which in the
prototype, have the same bias voltage. The adapter uses a precise DAC capable of adjusting the
SiPM bias voltage in steps of 5 mV. It also has an ADC to measure the actually provided voltages
and currents for the two regions.

Figure 2. Left - A photograph of the SiPM adapter board which allows the connection between the VMM
Hybrid and the SiPMs through the CAEN A5253 header adapter. Right - The VMM Hybrid board which
houses and configures the VMM ASICs.

Initially, with the first prototype of the VMM SiPM adapter board, only 32 channels per VMM
(out of 64) were connected to the FoCal-H. However, after testing the FoCal-H prototype with a
hadron beam at CERN SPS, due to problems with ADC saturation, it was decided to make use of
the remaining 32 channels per VMM chip as Low(er) Gain channels. Therefore, the SiPM adapter
board aims to extend the original dynamic range of the VMM through the use of charge division
coupling with the same amplifier gain, resulting in High Gain (HG) and Low Gain (LG) channels.
With this setup each SiPM channel is connected to two VMM channels through identical amplifier
circuits with the only exception being their coupling capacitors, as can be seen in Figure 3.
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Figure 3. The circuit on the VMM SiPM adapter board which extends the dynamic range by splitting the
SiPM signal into High Gain and Low Gain electronics channels.

The chosen values of the capacitors are in a 16:1 ratio, resulting in the same 16:1 ratio in the
VMM output analog signals, thus giving at least one non-saturated output for input signals with
much larger amplitudes.

Eight VMM chips were used to cover the 249 channels of the detector, with each detector
channel being digitized by two VMM channels - one HG and one LG. The VMM connected to the
back of the FoCal-H is presented in Figure 4 along with a visualisation of the beam profile using
this setup with a 350 GeV hadron beam. The detector was moved such that the center of the beam
was inside the lower left prototype module, as visible on the plot.

Figure 4. Left - VMM Hybrids connected to the back of the FoCal-H prototype through the SiPM adapter
boards. Right - Cumulative charge in each FoCal-H channel in ADC units for 350 GeV beam energy.
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Eighty-seven separate runs were performed using both hadron and electron beams pointing
towards the central module of the FoCal-H prototype. The hadron beam energy was varied between
60 GeV and 350 GeV. Data for different gain and SiPM bias voltage was also collected for some of
the available energies.

3 Data analysis

A single data unit of the VMM is called a hit and is described by a 38 bit binary sequence in the
stored data. The first 2 bits are flags. The 3rd through 8th bits provide the channel ID (values from
0 to 63); next 10 bits contain the digitized charge value; 8 bits a reserved for the TDC value and the
last 12 bits - for the bunch-crossing ID (BCID) [7].

The time stamp for each hit is calculated based on the BCID, the TDC and the so-called FEC
markers as described in [7]. Afterwards, the stream is processed by bunching hits within an 8 𝜇

s time window. Each such cluster is defined as a single event. The total reconstructed charge is
computed defined as the sum total ADC units for all activated HG channels in the event:

𝑄HG
event =

𝑁∑︁
𝑖

ADCHG
𝑖 (3.1)

where 𝑁 is the number of the in-time hits. In order to suppress noise, events with 𝑁 < 6 are
rejected.

The distributions of 𝑄HG
event in ADC units for data collected with different beam energies is

presented in Figure 5.
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Figure 5. Comparison of the total charge distributions for all available beam energies between 60 GeV and
350 GeV. Distributions are normalised by the total number of events. SiPM bias voltage set to 55.4 V.

Due to the limited ADC range some of the channels in an event may saturate (ADCHG
𝑖 = 1023).

The mean number of saturated HG channels per event as a function of the beam energy is shown on
Figure 6. Even for low beam energies (𝐸beam ≤ 100 GeV) the mean number of saturated channels
is around one and above which indicates that the central channel almost always saturates. The
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Figure 6. The mean number of saturated HG channels per event as a function of the beam energy. SiPM
bias voltage set to 55.4 V.

ADC saturation affects the linearity of the charge reconstruction, as shown in Figure 7 where the
dependence of 𝑄HG

event is plotted as a function of the beam energy. A linear fit is made using the
data points with beam energy from 60 GeV to 150 GeV and the line is extrapolated to cover the full
energy range. The bottom plot shows the ratio between the reconstructed charge and the expected
charge (from the linear fit). It can be seen that for beam energies of 250 GeV and higher the
departure from linearity is larger than 2% and even reaches 10% at 350 GeV.

The saturation problem is addressed by adopting a charge reconstruction method using a
combination of the LG and the HG channels (chapter 2). In the range where a signal is present in
both the HG and the LG components of a channel, a calibrating equation is extracted through a linear
fit to the correlation between the recorded values for HG and LG. This calibration is performed
separately for each channel. The linear correlation is assumed to be respected in the range beyond
HG saturation and is extrapolated.

A new “combined” ADC value ADCMIX
𝑖 is defined as

ADCMIX
𝑖 = k𝑖 ∗ ADCLG

𝑖 + c𝑖 (3.2)

when an HG channel is saturated and data in the corresponding LG channel is available (with 𝑘𝑖

and 𝑐𝑖 being the channel-by-channel calibration parameters), and

ADCMIX
𝑖 = ADCHG

𝑖 (3.3)

when the HG channel is not saturated, or there is no available LG channel data. The final event
charge is calculated as

𝑄MIX
event =

N∑︁
𝑖

ADCMIX
𝑖 . (3.4)

Thus, whenever LG data is available, and the corresponding HG channel is saturated, we calculate
a rescaled ADC value for the HG charge from the LG data, and use that for our reconstruction,
effectively increasing the dynamic range. The effect of such a calibration can be seen in Figure 8
where the distribution of (𝑄HG

event) is compared to the distribution of 𝑄MIX
event for 200 GeV. Usage of

the rescaled LG values instead of the saturated HG values induces a shift of the total reconstructed
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Figure 7. Top panel: Dependence of the mean values of 𝑄HG as a function of the hadron beam energy.
Bottom panel: Ratio between the mean values of 𝑄HG and the values predicted by the fit as a function of the
hadron beam energy. SiPM bias voltage set to 55.4 V.

charge by about 4.7%. The relative resolution 𝜎(𝑄)/𝑄 increases from 14.8% for 𝑄HG
event to 16.6%

for 𝑄MIX
event.
The dependence of the mean of𝑄MIX

event as a function of the beam energy is presented on Figure 9
(top). Again, a linear fit is performed for the energy range 60 GeV to 150 GeV, and the function is
extrapolated to 350 GeV. In the ratios between the reconstructed 𝑄MIX

event and the fit prediction shown
on Figure 9 (bottom) the departure from linearity reaches 2% at the 300 GeV data point compared
to 250 GeV when only using HG. A loss of linearity is still observed even though the LG channels
do not saturate. This could be due to transversal and longitudinal shower leakage due to the finite
dimensions of the FoCal-H prototype and to saturation before the digitization stage at the VMM.

While not being the main focus of the presented study, the dependence of the relative energy
resolution (𝜎(𝑄MIX

event)/𝑄MIX
event) is presented in Figure 10 as a function of the beam energy.

The energy dependence of the resolution is approximated using

𝜎(𝑄)
𝑄

=
𝐴
√
𝐸

⊕ 𝐵

𝐸
⊕ 𝐶 (3.5)

where 𝐴 is the term describing stochastic effects, 𝐵 is the noise term relating to the readout
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Figure 8. Comparison between reconstructed charge distributions using 𝑄HG
event and 𝑄MIX

event, showing the
resultant shift towards larger reconstructed charge when 𝑄MIX

event is used. Distributions are normalised by the
total number of events.

electronics and 𝐶 is the constant term relating to shower leakage and miscalibration effects. The
obtained values for the resolution parameters are

𝐴 = (2.15 ± 0.01)
√

GeV, 𝐵 = 0 GeV, 𝐶 = (5.8 ± 0.2) %. (3.6)

The stochastic term is larger compared to previously tested readout systems [3] which can be
attributed to the common bias voltage applied to all SiPMs. The noise term is consistent with zero.

4 Conclusion

While primarily intended for the readout of gas detectors, the VMM ASIC can be adapted for usage
with silicon photomultipliers. The presented results confirm its applicability for calorimetry where
a higher dynamic range is required and larger number of channels are active within a single event.
The VMM dynamic range imposes restrictions on the measurable energy range and resolution, but
by splitting the signal charge into two VMM channels with a charge division of 16:1 the effective
dynamic range is extended accordingly. This principle was first implemented in a SiPM adapter
board for the VMM with which the initial effects of channel saturation with single gain were
successfully mitigated.

While the developed prototype adapter does not yet allow for individual adjustment of the
bias voltage for each detector channel, an upgraded adapter could add functionality for individual
channel tuning and current monitoring.
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