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Abstract
In this paper, we propose the Coupled Axial and Transverse currents (I) (CATI) method, as an
efficient and accurate finite element approach for modelling the electric and magnetic behavior
of periodic composite superconducting conductors. The method consists of a pair of
two-dimensional models coupled via circuit equations to account for the conductor geometrical
periodicity. This allows to capture three-dimensional effects with two-dimensional models and
leads to a significant reduction in computational time compared to conventional
three-dimensional models. After presenting the method in detail, we verify it by comparison
with reference finite element models, focussing on its application to twisted multifilamentary
superconducting strands. In particular, we show that the CATI method captures the transition
from uncoupled to coupled filaments, with accurate calculation of the interfilament coupling
time constant. We then illustrate the capabilities of the method by generating detailed loss maps
and magnetization curves of given strand types for a range of external transverse magnetic field
excitations, with and without transport current.

Keywords: reduced order method, LTS, finite element method, AC losses.

1. Introduction

Today, almost 40 years after the discovery of high-temperature
superconductors (HTS), low-temperature superconductors
(LTS) still completely dominate the market of superconduct-
ing applications in terms of the installed base for conductor
manufacturing and the total number of magnets produced. For
many applications, the LTS option has a lower cost when com-
bined capital and operating costs are considered [1].
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Although the dominance of LTS continues, the justification
for using them is under increasing pressure due to the rising
cost of helium. The LTSmagnet industry is transitioning to use
cryogenic configurations with reduced helium amount to off-
set its rising cost [2]. A common feature of these new cooling
configurations is a reduced ability to absorb transient power
loss, as there is no longer a large amount of helium able to
provide the thermal buffer during periods of increased power
loss, for example, during magnet ramp-up or down.

Besides, there is a continuous effort to develop high-
field magnets based on LTS, particularly Nb3Sn conductors
and accelerator magnets [3]. Such magnets typically have
an increased stored magnetic energy density, which in turn
requires higher performance quench protection methods to
ensure safe operation during sudden loss of superconducting
state. As the magnetic field and stored energy density increase,
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the quench protection transients become generally shorter with
much higher current and field change rates. In addition, there
is an increased interest in and application of quench protec-
tion methods that rely on inducing a high current and/or field
change rate in a magnet to quickly transition a large part of it
to a normal state [4–6].

This ongoing change in cryogenic systems and quench pro-
tection methods brings renewed interest in calculating the
power loss (AC loss) of LTS conductors, usually composite
superconducting strands made of a large number of twisted
superconducting filaments, or filament bundles, embedded in
a conducting matrix. Their modelling is already served by a
spectrum of methods.

There are long-established analytical methods that rely on
simplifying assumptions [7–12] and have in general low com-
putational cost. It comes, however, at the price of neglecting
many details about the conductor, for example, the exact shape
of the conductor or its filaments, the presence, location and
thickness of diffusion barriers, the spatial distribution of the
purity (RRR) of the copper stabilizer, and the local variation
of the critical current of the filaments. To some degree, some of
the analytical methods account for these features. However, if
this is combined with a more complex excitation, for example,
simultaneous change of transport current and transverse mag-
netic field, the analytical methods quickly reach their lim-
its and, in practice, result in lower accuracy. The achievable
accuracy may no longer be adequate for magnets that operate
with a reduced amount of helium and/or rely on a quench pro-
tection method dominated by and designed with reliance on a
specific magnitude of AC loss. As a result, methods account-
ing for more conductor details and being more accurate are
needed.

These detailed models rely on the three-dimensional (3D)
finite element (FE) method [13, 14]. The computational power
of modern computers enables such an approach, but model
preparation and solution times remain challenging in practical
use [15, 16]. Parallelization methods are being considered to
reduce the simulation time by sharing the work among numer-
ous processing units [16–18]. However, the computational cost
is still high, and methods based on 3D FEmodels are currently
not practical for in-depth analysis of multiple scenarios, which
often need to be considered for the optimization of the con-
ductor as part of the magnet design.

Between these two ends of the spectrum of AC loss calcula-
tion are the so-called reduced order methods, which represent
more details about the conductor than analytical methods, but
with some special approach to reduce the computational cost
compared to 3D FE models.

Reduced order models based on a helicoidal change of vari-
ables [19–21], leading to special two-dimensional (2D) mod-
els, are one possibility, but they are limited to helicoidally
symmetric conductor cross sections and remain challenging
to implement in the case of transverse field excitation, i.e. per-
pendicular to the strand axis, with nonlinear materials [21].
Treating such excitations is however crucial in the context of
AC loss calculation.

Other reduced order models include the use of a Frenet
frame to simplify the geometry definition [22], or homogen-
ization techniques with anisotropic material properties [13].
Nonlinear circuit models were also proposed in [23], with
lumped circuit elements evaluated with preliminary FE res-
olutions [24].

The method proposed by T. Satiramatekul and F. Bouillault
in [25–27] reproduces the effect of coupling currents in
the conducting matrix by introducing equivalent resistances
between the filaments, accounting for the twist pitch length
of the wire. This allows to reproduce uncoupled, partially
coupled, and coupled filament regimes without using a 3D
model, but a simple, yet appropriate, 2D approach. The
method presented in this contribution is inspired by that work.

We propose to consider a pair of 2D models: one for cal-
culating axial currents, flowing along the wire axis, and one
for modelling coupling currents, or transverse currents, flow-
ing perpendicular to the wire axis, in the matrix in-between the
superconducting filaments.We then couple thesemodels using
circuit equations that represent the effect of the periodic geo-
metry of the conductor. We refer to this approach as the CATI
method, standing for Coupled Axial and Transverse currents
(I) method.

A key feature of the CATI method is that it is not only
applicable to helicoidally symmetric conductors, like round
twisted composite conductors, but more generally to all con-
ductors with a periodic geometrical structure. We show that it
produces accurate results, with a drastic reduction of compu-
tational cost for performing the simulation compared to con-
ventional 3D models.

Another advantage of the method is the relative ease of its
implementation. It can be implemented in any FE software
allowing for field-circuit coupling. In this work, the method
is implemented in GetDP [28] within FiQuS [29], developed
at CERN as part of the STEAM framework [30]. Geometry
and mesh generation is performed by Gmsh [31]. All the soft-
ware is open-source and free to use4. The input files for the
simulations are provided in [32] so that the CATI results can
be reproduced.

In section 2, we present the CATI method, describe in
detail its practical implementation, and highlight its underly-
ing assumptions and limitations. We then verify and assess
the range of applicability of the approach in two steps.
First, in section 3, we consider a linear problem with con-
stant material properties, and discuss the accuracy of the
method, focussing on the coupling current dynamics. Second,
in section 4, we consider a nonlinear problem with realistic
field-dependent material parameters and verify the predic-
tion of the CATI method against those of a 3D FE reference
model. Finally, in section 5, we exploit the method and demon-
strate its capabilities on a helicoidally symmetric strand and on
a non-helicoidally symmetric, but periodic, wire-in-channel
geometry.

4 [Online] https://cern.ch/fiqus.
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Figure 1. Computational domain for the cross section of a
superconducting strand (Nf = 54). The 3D geometry is generated by
a rotated extrusion of the cross section along êz with twist pitch
length p (see figure 2). The curved arrow represents the rotation of
filament i to filament S(i) along the periodicity length ℓ= p/6.

Figure 2. 3D representation of the 54-filament composite strand
whose transverse cross section is represented in figure 1. The
cylindrical outline represents the boundary of the conducting matrix
in which the filaments are embedded.

2. CATI method

We consider a 2D cross section of a periodic composite con-
ductor, perpendicular to the conductor main axis êz. The
cross section contains Nf ∈ N0 filaments Ωf,i, with i ∈ F=
{1, . . . ,Nf}. The filament positions are assumed to be period-
ically appearing in exactly the same locations after a given dis-
placement along êz. For a round strand such as the one shown
in figures 1 and 2, this is achieved after twisting the strand with
a twist pitch length p.

The union of the filaments defines the domain Ωf =
∪i∈FΩf,i, embedded in a conducting matrix Ωm. The conduct-
ing domain Ωc =Ωf ∪Ωm is surrounded by a non-conducting
domain ΩC

c , whose external boundary is Γout.
The CATI method is based on the assumption that there is

a periodicity of the cross sections along êz. Let ℓ be the peri-
odicity length, that is, the distance along êz after which every
filament takes the position of another one. Let the link between
the positions in successive cross sections, separated by a dis-
tance ℓ, be described by a permutation operator S, defining a
bijection of the set of filaments onto itself,

S : F→ F, i →S (i) . (1)

For example, with the geometry in figures 1 and 2, the smallest
possible value of ℓ is p/6, and filament Ωf,S(i) is the image of
filament Ωf,i under a 2π/6 rotation around the strand center
(see the dashed arrow in figure 1).

The periodicity does not need to be created by twisting
the geometry; the method only requires a periodic struc-
ture of the cross sections. Examples of such periodic, but
not twisted, cross sections include common cable types, like
Rutherford [33] or Roebel [34]. The general concept of the
method applies to them. However, they are outside of the scope
of this contribution.

In the following, vectors parallel to êz are referred to as axial
vectors, whereas those that are perpendicular to êz are referred
to as transverse vectors.

In section 2.1, we define the strong and weak forms of
the method and discuss the assumptions that are made. In
sections 2.2 and 2.3 we propose two improvements of the
method. Both are optional in the implementation, but both
improve significantly the accuracy of the model. Finally, in
section 2.4, we focus on the practical implementation of the
method, by describing in detail the spatial discretization of the
unknown fields with finite elements.

2.1. CATI method equations

The CATI method consists of a pair of 2D models: (i) a model
describing axial currents (along êz) in Ωc =Ωf ∪Ωm, and the
associated transverse magnetic field (perpendicular to êz) in
Ω= Ωc ∪ΩC

c , and (ii) a model describing transverse currents
(perpendicular to êz) in Ωm only. This is illustrated in figure 3.
In the following, we refer to them as the AI and TI mod-
els, standing for axial currents and transverse currents mod-
els, respectively. Net currents and voltages are defined for
each filament in both models, they are referred to as global
quantities. The AI and TI models are coupled via these global
quantities using circuit equations that are defined in order to
account for the periodicity of the geometry, hence of its three-
dimensional aspect. In particular, the periodicity length ℓ is
explicitly present in the governing equations.

In this section, we define the strong and weak forms of the
problem in the continuous setting. We successively introduce
the AI model, the TI model, and the circuit equations. We con-
clude by discussing the assumptions behind the equations.

2.1.1. Axial currents formulation. The AI model is governed
by Maxwell’s equations in the magnetodynamic (or magneto-
quasistatic) regime [35], whose strong form reads:

divb= 0,

curlh= j,

curle=−∂tb,

with

{
b= µh,

e= ρ j,
(2)

with b, h, j, e, µ, and ρ, the magnetic flux density (T), the
magnetic field (A/m), the current density (A/m2), the electric
field (V/m), the permeability (H/m), and the resistivity (Ωm),
respectively. In the non-conducting domain, ρ→∞ and j= 0,
and Ampère’s law reads curlh= 0.
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Figure 3. Illustration of the AI and TI models fields. (Left) AI
model: solves for axial currents j in Ωc and transverse magnetic field
h in Ω. (Right) TI model: solves for transverse currents jcc in Ωm

only. Global quantities (currents Ii and Ĩi, and voltages Vi and Ṽi)
interface both models via circuit-coupling equations.

We define j and e as axial vectors, and h and b as trans-
verse vectors. The chosen weak form of the model is that of a
classical 2D h-ϕ-formulation, in order to ensure the numerical
efficiency in the treatment of the superconductor power law
for the resistivity [36]. The 2D formulation is integrated along
êz over a length 2ℓ, assuming that the solution is constant over
this length.

Denoting by (f ,g)Ω the integral over Ω of the dot product
of any two vector fields f and g, the weak form reads: from an
initial solution at t= 0, find h ∈H(Ω) such that, for t> 0 and
∀h ′ ∈H0(Ω), we have [36]

(
2ℓ∂t (µh) ,h

′)
Ω
+
(
2ℓρcurlh ,curlh ′)

Ωc

= VtIt
(
h ′)+∑

i∈F
ViIi

(
h ′) . (3)

The function space H(Ω) is the subspace of H(curl;Ω) con-
taining transverse vector functions that are curl-free inΩC

c and
fulfill appropriate boundary conditions. This space, together
with its link with global variables will be defined explicitly in
the spatial discretization step. The space H0(Ω) is the same
space as H(Ω) but with homogeneous boundary conditions.

The operator Ii(h) gives the circulation of h around fila-
ment Ωf,i, which is the net current, denoted by Ii, flowing in
that filament. The associated voltage is denoted by Vi. It has
units volt (V) because of the multiplication by 2ℓ, which dif-
fers from the usual 2D AI formulations where the voltage is in
volt per unit length (V/m). The operator It(h) is the net cur-
rent flowing in the whole conductor, i.e. the transport current,
denoted by It, which is the sum of the currents in all the fila-
ments and in the conductor matrix. The associated voltage is
denoted by V t, it is the voltage applied by the power generator
over a length 2ℓ. Currents and voltages Ii, Vi, i ∈ F, It, and V t,
are referred to as the AI model global quantities.

In reality, the solution is not constant over the distance 2ℓ,
but rather varies smoothly along the wire. We discuss how
to correct for this assumption in section 2.2. Also, integrat-
ing over 2ℓ is a choice. Integrating over ℓ instead leads to an
equally valid model and is discussed in section 2.1.3.

2.1.2. Transverse currents formulation. The TI model is gov-
erned by direct current flow (electrokinetics) equations [35]
whose strong form reads:

{
div jcc = 0,

curlecc = 0,
with jcc = σ ecc, (4)

with jcc the coupling current density (A m−2), ecc the coupling
current electric field (V m−1), and σ = ρ−1 the electric con-
ductivity (S m−1). The model is solved in Ωm only, and both
jcc and ecc are defined as transverse vectors.

The TI model is written in terms of the electric scalar
potential v ∈ U(Ωm), with ecc =−gradv, so that the equation
curlecc = 0 is satisfied by construction. The function space
U(Ωm) is a subspace of H1(Ωm) containing functions that
are region-wise constant on filament boundaries ∂Ωf,i (this is
justified in section 2.1.4). We denote these voltage values as
v|∂Ωf,i = Ṽi(v) = Ṽi, for i ∈ F. Together with their associated
current, Ĩi, for i ∈ F, defined in the following, they constitute
the TI model global quantities.

The TI model is a weak form of the divergence-free condi-
tion on the current density jcc, with

jcc =−σgradv, (5)

integrated along êz over a length 2ℓ, assuming that the solution
is z-independent over this length. We write, in Ωm, and ∀v ′ ∈
U0(Ωm),

− (2ℓ div (σgradv) ,v ′)Ωm
= 0, (6)

⇔(2ℓσgradv ,gradv ′)Ωm
+ ⟨2ℓ jcc ·n ,v ′⟩∂Ωm

= 0, (7)

with n the unit outer normal vector to the wire matrix surface
and ∂Ωm the boundary of Ωm, including ∂Ωf,i, ∀i ∈ F, and the
external matrix boundary. The second term of the left-hand
side is zero on the external matrix boundary because jcc ·n= 0
on this surface. On the filament boundaries ∂Ωf,i, i ∈ F, we
define

Ĩi = 2ℓ
ˆ
∂Ωf,i

jcc ·ndS, (8)

that is, Ĩi is the net current entering filament i over the length
2ℓ. Using the fact that v′ is constant on ∂Ωf,i, the weak form
can therefore be stated as follows: find v ∈ U(Ωm) such that,
∀v ′ ∈ U0(Ωm), we have

(2ℓσgradv ,gradv ′)Ωm
+
∑
i∈F

Ĩi Ṽi (v ′) = 0. (9)

Note that Ĩi are currents in ampère (A) and not currents per
unit length (A/m) due to the multiplication by 2ℓ in the weak
formulation.
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Figure 4. Interpretation of equations (10) and (11) on a 6-filament
periodic geometry, with ℓ= p/6, i= 1, j = S(i) = 2, and
k= S(S(i)) = 3.

2.1.3. Circuit-coupling equations. The AI and TI models
involve 4Nf + 2 global quantities. There are already 2Nf + 1
equations linking them in equations (3) and (9), so that only
2Nf + 1 equations are still to be defined. One equation consists
in setting directly either the transport current It or the asso-
ciated voltage V t. The remaining 2Nf equations are defined
below; they couple the AI and TI models and are the core of
the CATI method. They rely on the periodicity of the geometry
of the conductor.

Using the permutation operator S, for every i ∈ Fwe define
j = S(i) ∈ F, and k= S( j) = S(S(i)), and we write:

Ĩj = Ik− Ii, (10)

Vj = Ṽk− Ṽi. (11)

We illustrate the meaning of equations (10) and (11) on a
simple example with Nf = 6 filaments in figure 4. Using the
periodicity of the cross sections, the difference between the
currents I3 and I1 is equal to the current Ĩ2, accumulated over
the length 2ℓ. Similarly, the difference between the voltages
Ṽ3 and Ṽ1 is equal to the voltage V2, accumulated over the
length 2ℓ. The AI and TI models can therefore be interpreted
as being solved on staggered cross sections. By periodicity, all
these cross sections are equivalent, which allows us to consider
only one of them.

Note that it is possible to reduce the integration along z from
2ℓ down to ℓ, so that the AI and TI models are solved on dis-
tinct cross sections. In the case of figure 4, this leads to TI cross
sections that are rotated by an angle of π/6 with respect to the
AI ones. For the geometries considered in this contribution,
we observed that the obtained results (with adapted corrected
length, as discussed in section 2.2) are almost identical.

2.1.4. Underlying assumptions. The CATI method requires
a periodic geometry of the conductor, whose cross section
repeats itself after a given length in the main direction of the
conductor êz. Along this length, filaments must move from
one location to another, and hence be tilted with respect to êz.
Because purely 2D models are used to describe the fields, one
main assumption of the CATI method is that the effect of the
tilt angle on the field distribution can be neglected.

With twisted conductors, this is valid provided that the
twist pitch length p is sufficiently large with respect to the
radius of the outermost filament layer. This will be discussed

in section 3. In particular, it will be shown that for realistic
twist pitch lengths, this approach is justified.

The CATI method also assumes that the filament resistiv-
ity is sufficiently small compared to the matrix resistivity for
considering that the TI model voltage v is constant on each
filament boundary. However, if this is not the case, axial cur-
rents will be more evenly shared among the matrix and the
filaments, and the contribution of coupling currents to total
losses is therefore expected to decrease. In the extreme case
of a quench, when the filaments become relatively highly res-
istive, most of the current flows in the matrix, and coupling
currents become negligible. These situations can be handled
by the CATI method, as it describes the axial current flow in
the matrix.

The heart of the method lies in the circuit-coupling
equations. They describe the evolution of fields and global
quantities in the filaments along êz. This evolution is represen-
ted by the global quantities of distinct filaments within a single
cross section, exploiting the periodicity of it. For the example
in figure 4, the evolution of global quantities of filaments can
be decomposed in up to 6 steps before a complete rotation is
performed. A minimum of 2 steps is necessary for the method
to be relevant.

Finally, the method presented here does not allow for mod-
elling excitation with an external axial magnetic field. Further
extensions are necessary to include axial external field effects
in the method.

2.2. Length correction factor

The connections between twisted filaments are fully imple-
mented by the circuit coupling equations. The twist pitch
length appears in the weak formulations of the AI and TI mod-
els, via the multiplication by 2ℓ in equations (3) and (9).

The use of 2D models leads to assuming that the filaments
carry constant currents Ii and maintain constant voltages Ṽi
over a distance 2ℓ along the wire, in the AI and TI models,
respectively, after which the position of one filament suddenly
changes to the next one, and so do the values of the currents
and voltages. Similarly, the voltages Vi and the currents Ĩi are
obtained by simple multiplication of 2D solutions by 2ℓ.

In reality however, the variation of the global quantities
is smooth and continuous. In round-shape conductors, these
quantities are expected to vary in a sinusoidal manner along
êz [37]. As illustrated in figure 5, a pure 2D approach there-
fore leads to an overestimation of the integrated quantities.

To account for this effect, a correction factor can be eval-
uated analytically. With α= 2π/p, at a given position z̄, we
have

´ z̄+ℓ

z̄−ℓ
cos(αz) dz´ z̄+ℓ

z̄−ℓ
cos(αz̄) dz

=
sin(α(z̄+ ℓ))− sin(α(z̄− ℓ))

2αℓcos(αz̄)

=
2cos(αz̄)sin(αℓ)

2αℓcos(αz̄)

=
sin(αℓ)

αℓ
=

sin(2πℓ/p)
2πℓ/p

, (12)
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Figure 5. Illustration of the overestimation factor due to the
modelling of the AI and TI models as pure 2D models, in the case
2ℓ= 2p/6, for two different positions z̄. The rectangles of width 2ℓ
and height cos(αz̄), with α= 2π/p, represent the integrated global
quantities in the CATI method, modelled as piecewise constant
functions. The light-gray areas below the curve represent the actual
integrated global quantities for round-shape twisted conductors,
assuming a sinusoidal evolution.

where integrands are symmetrically integrated around z̄ due
to the symmetry of the circuit coupling equations. The fact
that equation (12) does not depend on z̄ is convenient, as this
implies that the overestimation of the twist effect is identical
for all filaments, and can then in principle be corrected by a
single correction factor. For many conductors used in practice,
the filament structure is hexagonal, so that ℓ= p/6 and the
correction factor is equal to ≈0.8270.

To implement this correction in the model, the periodicity
length ℓ in equations (3) and (9) can be replaced by a reduced,
or corrected, length ℓc, whose value is given by

ℓc =
sin(2πℓ/p)

2πℓ/p
ℓ. (13)

The effect of the modification is to directly rescale the global
quantities. We will show in section 3 that this correction
strongly improves the accuracy of the model, helping to bet-
ter reproduce the analytical time constant associated with the
coupling currents.

In the alternative case where the equations are integrated
over length ℓ instead of 2ℓ, leading to the AI and TI mod-
els to be solved on rotated distinct cross sections, 2ℓ must be
replaced by ℓ in equation (12). In the common case in which
ℓ= p/6, this leads to a correction factor of ≈0.9549.

A similar approach can be followed for other conductor
types, for which quantities are expected to follow a non-
sinusoidal evolution along the conductor. It is however not
guaranteed in such cases that a common correction factor can
be derived for the whole cross section, as is the case abovewith
the invariance of equation (12) with respect to z̄. An average
correction factor may be considered in such cases.

2.3. Coupling current dynamics

The transverse coupling current flow is described by dir-
ect current flow equations. These equations do not describe
eddy currents, and the transverse current flow is therefore
static (ohmic). This is a good approximation at low frequen-
cies. However, at higher frequencies, coupling currents can

no longer be described solely by an electrostatic potential,
because of the inevitable appearance of non-negligible trans-
verse eddy currents. This is illustrated by reference solutions
in figure 12(b) in section 3, where coupling currents at a fre-
quency of 1 kHz are localized on the outer part of the matrix.
Such a current flow clearly cannot be described by the gradi-
ent of a scalar potential, as in equation (5). If nothing is done
to correct for this, an error on the coupling current loss con-
tribution is expected to increase as the frequency increases, as
shown later in section 3.4.

Note that this effect is different from the classical skin
effect in the matrix, associated with axial currents (for trans-
verse external field considered here), which is already prop-
erly accounted for by the AI model. The axial currents flow-
ing close to conductor surface due to the skin effect constitute
the dominant loss contribution at high frequencies, so that the
above-mentioned error on coupling current dynamics is expec-
ted to be detrimental on a limited frequency range only, as it
is shown later.

As explained below, a rigorous treatment of a dynamic
coupling current flow using magnetodynamics equations can
however only be done with a full 3D approach.

Let hcc be the magnetic field associated with the transverse
coupling current density jcc in the matrix Ωm via the relation
curlhcc = jcc. Such amagnetic field is not purely axial. Indeed,
a purely axial field cannot generate net transverse currents exit-
ing or entering a filament. The field hcc must therefore also
have z-dependent transverse components. Coupling currents
are indeed a result of the twist, and are 3D effects by nature.
As a result, while we will show that coupling currents, and
particularly their power dissipation, can be well approximated
using the 2D direct current flow equations and circuit-coupling
equations, the associatedmagnetic field hcc cannot be retrieved
using 2D models only. For a rigorous treatment of dynamic
effects in the TI model, such a field is however necessary, as
it appears in Faraday’s law.

In order to evaluate the importance of dynamic effects in the
coupling current distribution (and the resulting power loss), we
therefore only propose an approximate correction method. It
corrects the solution a posteriori and does not interfere with
the resolution of the AI and TI models. It can be seen as an
optional post-processing correction, giving an estimation of
the dynamic effect contribution.

The method consists in projecting the static transverse
coupling current distribution jcc =−σgradv on the curl of an
axial field function space [38]. To this end, we define a static
magnetic field hs ∈H⊥(Ωm) that satisfies, ∀h ′

s ∈H⊥(Ωm),
the following weak form:

(
σgradv ,curlh ′

s

)
Ωm

+
(
curlhs ,curlh

′
s

)
Ωm

= 0, (14)

with H⊥(Ωm) the subspace of H(curl;Ωm) containing axial
vector fields (parallel to êz). In practice, we gauge the func-
tion space by imposing a zero average value of hs over Ωm,
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via a Lagrange multiplier [39]. Note that, locally, curlhs ̸=
−σgradv. Indeed, as mentioned above, an axial field alone
cannot reproduce a transverse coupling current distribution
with net current exchanges between the filaments. The field
hs is only an approximation of hcc that belongs to H⊥(Ωm).

Next, we solve for a dynamicmagnetic field correction hd ∈
H⊥,0(Ωm) of this static magnetic field that satisfies a weak
form of Faraday’s law, i.e. ∀h ′

d ∈H⊥,0(Ωm),(
∂t (µ(hs +hd)) ,h

′
d

)
Ωm

+
(
ρcurlhd ,curlh

′
d

)
Ωm

= 0. (15)

The function space H⊥,0(Ωm) is the subspace of H⊥(Ωm) of
functions that vanish on the external matrix boundary, so that
curlhd ·n= 0 on this boundary and hd only induces circula-
tions of currents inside the wire. Note the absence of hs in
the curl-curl integral of equation (15), because hs is associ-
ated with a static current flow so that the associated electric
field ρcurlhs should be curl-free.

Finally, we replace the static coupling current density jcc,
from equation (5), by the following (dynamic) coupling cur-
rent density,

jcc,d =−σgradv+ curlhd. (16)

The second term is the dynamic correction. It lets the global
currents Ĩi unchanged by construction (an axial magnetic field
cannot generate a net current entering or exiting a filament).
This correction produces more realistic coupling current dis-
tributions and improves the accuracy of power loss evaluation
at frequencies of the order of 1 kHz. This is illustrated and
discussed in section 3.

2.4. Discretization and implementation details

For a numerical resolution, the AI and TI formulations are
solved on a discretized representation of the geometry, called
a mesh. The continuous function spaces H(Ω) and U(Ωm),
introduced in formulations equations (3) and (9), are replaced
by discrete functions spaces Hδ(Ω)⊂H(Ω) and Uδ(Ωm)⊂
U(Ωm), whose generating functions are associated with ele-
mentary entities of the mesh (nodes, edges, or groups of them),
using Whitney shape functions [40]. We denote byN (Ωi) and
E(Ωi), the set of nodes and edges, respectively, of the mesh in
a given domain Ωi, including entities on the boundary of Ωi.

2.4.1. Axial currents function space. The magnetic field h
of the AI model is discretized as in a usual h-ϕ-formulation
[36], but with a special treatment at the filament boundaries to
extract the filament currents Ii directly: the filament boundar-
ies ∂Ωf,i are put formally in the non-conducting domain ΩC

c .
Hence, the domain ΩC

c contains the exterior of the strand and
the union of the filament boundaries.

Then, as usual, edge functions we are used in Ωc\∂Ωc,
gradients of node functions wn are introduced in ΩC

c , and cut
functions [41] are defined for the net currents. There is one cut
function per filament, ci, and one cut function for the whole

strand, ct. The magnetic field is therefore expressed as the fol-
lowing linear combination:

h=
∑

e∈E(Ωc\∂Ωc)

he we+
∑

n∈N (ΩC
c )

ϕn gradwn

+ It ct +
∑
i∈F

Ii ci, (17)

where coefficients he, ϕn, It, and Ii are the degrees of free-
dom (DOFs) defining the magnetic field h in the discrete func-
tion spaceHδ(Ω). As a scalar field ϕ is introduced on filament
boundaries that are not connected to the external ΩC

c domain,
the field ϕ should be gauged on each filament boundary, e.g. by
setting it to zero at an arbitrary point on each ∂Ωf,i. It also has
to be gauged in the external ΩC

c domain.
Note that equation (17) leads to an identical function space

(just with a different basis) to that of a usual h-ϕ-formulation
in which the filament boundaries are kept in the conducting
domainΩc. In the usual case however, there are no explicit cut
functions ci for each i ∈ F and the filament currents can only
be extracted via a combination of several DOFs, i.e. via the
signed sum of coefficients he associated with oriented edges
e ∈ E(∂Ωf,i). This leads to a less convenient implementation
in GetDP, but may be considered as an alternative in other
software.

2.4.2. Transverse currents function space. The electric
scalar potential v is discretized with node functions wn as
follows:

v=
∑

n∈N (Ωm\∂Ωf)

vn wn+
∑
i∈F

Ṽi qi, (18)

where the global shape function qi for i ∈ F is defined as the
sum of node functions associated with the nodes on filament
boundary ∂Ωf,i. This grouping of shape functions ensures that
v is constant on each filament boundary ∂Ωf,i, with value Ṽi.
The coefficients vn and Ṽi are the DOFs defining the scalar
potential v in the discrete function space Uδ(Ωm).

2.4.3. Equivalent circuit. Equations (10) and (11) can be
either introduced as is, or alternatively implicitly imposed
via the definition of an electrical circuit linking the global
quantities. The latter option is chosen for the implementation
in GetDP. The circuit is defined explicitly as a network of
nodes and branches linking distinct filaments in accordance
with the permutation operator S of the considered geometry.
The circuit network creates a system of 2Nf equations to be
solved together with the equations resulting from the AI and
TI formulations.

3. Verification with linear materials

As a first verification step, we consider a linear problem with
the superconducting filaments modelled with very low con-
stant resistivity. We fix the resistivity in the matrix to the

7
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Table 1. Geometrical parameters of the 54-filament strand.

Number of filaments (Nf) 54
Filament diameter 90 µm
Filament center-to-center
spacing

110 µm

Strand diameter (d) 1 mm
Twist pitch length (p) 5–100 mm

constant value ρCu = 1.81× 10−10 Ωm, and that of the fila-
ments to ρSC = 10−5ρCu. Such a linear model does not allow
to describe hysteresis effects in superconducting filaments,
but it contains the coupling current physics. We choose this
configuration in order to have an efficient reference case (see
section 3.1), to assess the length correction and the coupling
current dynamic correction. The case of a nonlinear problem
will be discussed in section 4, as a second verification step.

We consider the 54-filament strand geometry represented
in figure 1, in which the filaments are arranged in a hexagonal
lattice with center-to-center spacing of 110 µm. The filaments
diameter is 90 µm, the wire diameter is d= 1 mm, and the
external air boundary is placed at a distance of 15 mm from
the center of the strand. The twist pitch length of the wire is
denoted by p. The geometrical parameters of the strand are
summarized in table 1.

The transport current It is fixed to zero and the wire is
subject to a sinusoidally-varying spatially-uniform transverse
magnetic flux density along êy of amplitude b= 1 T and fre-
quency f. Parameters f and p are the main parameters of the
verification study.

Since the problem is linear, it can be solved in the frequency
domain. For this, the AI model is written in terms of the aux-
iliary complex quantity ĥ(x), the phasor of the magnetic field,
with x the position vector. The phasor is related to the phys-
ical magnetic field by h(x, t) = ℜ

(
ĥ(x)eiωt

)
, with i =

√
−1

and ω = 2π f, and we replace all time derivatives in the for-
mulation by a multiplication by iω. Similarly, the TI model is
written in terms of the phasor of the electric scalar potential,
v̂(x), with v(x, t) = ℜ

(
v̂(x)eiωt

)
.

From the complex solution of the CATI method, the time-
average power loss (or total AC loss) per unit length Ptot, in
W/m, is defined as

Ptot =
1
2

ˆ
Ωf

ρ ĵ
⋆
· ĵdΩ︸ ︷︷ ︸

Pfilament

+
1
2

ˆ
Ωm

ρ ĵ
⋆
· ĵdΩ︸ ︷︷ ︸

Peddy

+
1
2

ˆ
Ωm

ρ ĵ
⋆

cc,d · ĵcc,d dΩ︸ ︷︷ ︸
Pcoupling

, (19)

with ĵ the axial current density phasor and ĵcc,d the transverse

current density phasor (with dynamic correction), and with ĵ
⋆

and ĵ
⋆

cc,d their complex conjugates, respectively.
The total AC loss Ptot can be decomposed into the three

distinct contributions Pfilament, Peddy, and Pcoupling, as defined in
equation (19). Multiplying these quantities by the period 1/f

gives the AC loss per cycle and per unit length, Qtot, Qfilament,
Qeddy, and Qcoupling, in J/m.

3.1. Reference model

As a reference model, we consider the helicoidal transform-
ation method proposed in [21], using the change of variables
introduced in [19] and applied on the h-ϕ-formulation. The
method developed in [21] allows for an exact treatment of
transverse magnetic fields in the case of linear materials. We
refer to this reference method as the helicoidal method, and
we also solve it in the frequency domain. The total loss is also
decomposed into three components, similarly to equation (19),
as defined in [21].

We consider the same 2D geometry and mesh of the cross
section for the CATI and helicoidal methods. The chosenmesh
leads to a number of 63k DOFs with the CATI method and
113k DOFs with the helicoidal method.

Note that the two models do not define exactly the same
physical problem. Indeed, the helicoidal model describes tilted
filaments rigorously, with three-dimensional current flow,
whereas this is neglected with the CATI method, as the fila-
ments are modelled as straight conductors. As a result, the fil-
aments in the helicoidal method have a reduced effective cross
section compared to the circular section in the x-y-plane. For
real strands however the importance of this effect is limited.
The effective cross section reduction of a filament is of the
order of 1− cosθ with θ the tilt angle of that filament with
respect to the êz direction. For the typical value p/d= 20,
θ < 9◦ and a maximum difference of the order of 1.2% is
therefore expected locally on the geometry.

3.2. Results and error map

In this section, we first consider the CATI method includ-
ing both the corrected length ℓc and the dynamic correction
described in sections 2.2 and 2.3, respectively. In the next two
sections, we then discuss the benefits brought by these two
corrections individually.

The AC loss per cycle and their different contributions for
p/d= 20 are given in figure 6, for both the CATI method and
the reference helicoidal method. The agreement between the
models is excellent at all frequencies.

The CATI method reproduces the characteristic bell shape
curve of the coupling loss, associated with transverse currents,
or coupling currents, flowing in the matrix between the fila-
ments. Analytical models describe the coupling loss per cycle
as follows [12]:

Qcoupling =
πd2

4
b2

2µ0

πωτc
(ω2τ 2c + 1)

, (20)

with µ0 = 4π× 10−7 H/m and the interfilament coupling time
constant τc defined by

τc =
µ0

2ρeff

( p
2π

)2
, (21)
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Figure 6. Total AC loss per cycle and separate contributions versus
the frequency f of an applied transverse magnetic field (of
amplitude 1 T), for p/d= 20 and the 54-filament strand with linear
material properties. Solid curves are results of the CATI method.
Dashed curves are results of the reference helicoidal method.

where ρeff is an effective resistivity of the matrix, that accounts
for the presence of the filaments [8]. Assuming no insulation
between the filaments and the matrix [42]:

ρeff = ρCu
1−λ

1+λ
, (22)

with λ the filling factor of the filaments in the wire. With the
strand considered here, τc = 90 ms for p= 20 mm. The associ-
ated frequency is fc = (2πτc)−1 = 1.8 Hz, which roughly cor-
responds to the position of the peak of the coupling loss per
cycle in figure 6.

The second peak in total AC loss per cycle is related
to axial eddy currents, and the associated skin effect. They
first increase as ∼ f, and then decrease as ∼ 1/

√
f, with a

change of regime arising when the diffusion skin depth δCu =√
2ρCu/ωµ0 is comparable with the thickness of the outer

sheath of the matrix dos ≈ 80 µm [21]. Here, we have
δCu/dos = 1 for frequency f = 7.2 kHz, which is close to the
position of the peak of the eddy loss per cycle in figure 6.

To further illustrate these regimes and the ability of the
CATI method to reproduce them, the power loss density per
cycle in the matrix, qeddy + qcoupling, in J m−3, with

qeddy =
ρ

2f
ĵ
⋆
· ĵ, qcoupling =

ρ

2f
ĵ
⋆

cc,d · ĵcc,d, (23)

is represented in figure 7 at four different frequencies. It
depicts how the energy loss density is progressively pushed
towards outer parts of the matrix as the frequency increases.

The shape of the curve describing filament losses is that of
linear resistive filaments with their associated skin effect [21].
It therefore does not describe the hysteresis power loss of
superconducting filaments, described by a nonlinear resistiv-
ity. The response of superconducting filaments is qualitatively
different (see, e.g. figure 16), and is discussed in section 5.1.

The total AC loss is now compared for different p/d ratios,
in figure 8. The results of the CATI method match very
well with the reference results in most cases. The differ-
ence between both methods becomes noticeable for low p/d
ratios only (p/d≲ 10), which is expected. Indeed, for p/d= 5,
the tilt angle of filaments in the outer layer is 26◦, so that

Figure 7. Energy loss density per cycle qeddy + qcoupling in the matrix
for p/d= 20 with linear material properties, at four different
frequencies. Each case is represented on one quarter of the cross
section, dash-dotted lines represent symmetry lines. The color map
is in a log-scale.

Figure 8. Total AC loss per cycle and per unit length as a function
of the frequency f of an applied transverse magnetic field, for
different twist pitch lengths to diameter ratios p/d for the
54-filament strand with linear material properties. Solid curves are
results of the CATI method. Dashed curves are results of the
reference helicoidal method.

1− cos(26◦)≈ 10%, and the validity of describing the geo-
metry with 2D models is questionable.

In order to quantify the difference between the CATI and
helicoidal methods, the relative difference between their res-
ults is represented in figure 9, as a function of the frequency f
and the twist pitch length over diameter ratio p/d. The largest
error is observed for small p/d ratios, in the 0.2–2 kHz range.
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Figure 9. Relative difference between the total AC loss predicted
by the CATI method and the reference values of the helicoidal
method, as a function of the frequency f of an applied transverse
magnetic field, and of the twist pitch length to diameter ratio p/d of
the 54-filament strand with linear material properties. Dashed
curves are ±1% contour lines, solid black curves are ±2% contour
lines and solid red curves are ±5% contour lines.

Figure 10. Effect of the length correction factor. Solid curves are
results of the CATI method without the length correction, i.e. using
ℓ and not ℓc in equations (3) and (9). Dashed curves are reference
results of the helicoidal method.

For p/d≈ 20 and above, the relative error is smaller than 5%
in the entire frequency range.

3.3. Discussion of the length correction factor

The corrected length ℓc was introduced in section 2.2 in order
to correct for an overestimation of the integrated quantities
along êz. Using the periodicity length ℓ instead of the correc-
ted length ℓc leads to much higher error compared to the ref-
erence solution of the helicoidal method. This is illustrated in
figure 10.

The use of ℓ instead of ℓc is equivalent to overestimating the
twist pitch length p, and hence the time constant τc = (2π fc)−1

associated with the coupling currents, equation (21). With

Figure 11. Effect of the dynamic correction. Solid curves are results
of the CATI method without the dynamic correction. Dashed curves
are reference results of the helicoidal method.

equation (20), one can see that this shifts the coupling current
loss curve towards lower frequencies, leading to loss overes-
timation for f < fc and underestimation for f > fc. At higher
frequencies (for f≳ 3 kHz for this wire), the eddy current loss
associated with axial currents in the outer sheath of the matrix
starts to dominate, so that the contribution of the coupling loss
to the total loss decreases. This reduces the error in figure 10,
but the error in the coupling loss is still there.

3.4. Correction for dynamic effects in the matrix

The dynamic correction introduced in section 2.3 is a proposal
to account for eddy current effects on the transverse coup-
ling current density distribution. Without this correction, we
observe a higher difference between the CATI method and
the reference helicoidal solution in the 0.1–10 kHz frequency
range, as shown in figure 11.

To illustrate the effect of the dynamic correction, the aver-
age power loss density generated by the coupling currents in
the strand matrix is shown in figures 12(a) and (b) for two fre-
quencies, using the reference helicoidal method, for p/d= 20.
The time-average power loss density, in W m−3, is computed
as

pcoupling =
1
2
ĵ
⋆

cc ·
(
ρ ĵcc

)
, (24)

with ĵcc the transverse current density phasor and ĵ
⋆

cc its com-
plex conjugate. For the reference helicoidal method, ĵcc is the
projection of the full current density phasor on the x-y-plane, in
the Cartesian coordinate system. At the frequency f = 100 Hz,
the coupling currents are distributed uniformly in-between the
filaments, whereas at f = 1 kHz, they are mostly localized in
the outer part of the strand, with non-negligible contributions
in the outer sheath of the matrix.

Without the dynamic correction, the CATI method repro-
duces accurately the coupling current distribution at low fre-
quencies, e.g. at f = 100 Hz, when the current flow is mostly a
curl-free field. However, this is not the case at higher frequen-
cies, e.g. at f = 1 kHz, as illustrated in figure 12(c). Correcting

10



Supercond. Sci. Technol. 37 (2024) 095002 J Dular et al

Figure 12. Power loss density pcoupling due to transverse coupling
currents in harmonic regime for p/d= 20 in four different cases
with linear material properties. Each case is represented on one
quarter of the cross section, dash-dotted lines represent symmetry
lines. The color map is in a log-scale. (a)–(b) Reference helicoidal
solutions on the plane z= 0, at f = 100 Hz and f = 1 kHz,
respectively. (c)–(d) CATI method solutions at f = 1 kHz, without
and with the dynamic correction, respectively.

the current flow with the contribution from a dynamic mag-
netic field hd leads to redistributed coupling currents jcc,d that
are closer to reality, as shown in figure 12(d). Still, as can
be seen from the error map in figure 9, the match is not
perfect. The proposed dynamic correction is only approxim-
ate. Improving it with 2D models only is however not obvi-
ous because the coupling current dynamics is a 3D effect in
essence.

It is important to stress that the dynamic correction has a
noticeable effect on the total loss in a limited range of frequen-
cies only.When the frequency is high enough for the axial skin
effect to dominate (f ≳ 3 kHz, here), the axial eddy currents
dominate the total loss, and the contribution of the coupling
losses to the total loss, with or without dynamic correction,
becomes negligible.

4. Verification with nonlinear materials

As a second verification step, we consider the 54-filament
strand geometry defined in table 1, with p = 19 mm, but
now with realistic field-dependent material properties for
both the Nb-Ti filaments and the copper matrix5. We fix the

5 A version of GetDP compiled with these material functions can be found
online at https://cern.ch/cerngetdp.

temperature to 1.9 K. The resistivity of the Nb-Ti filaments is
described by the power law [43]:

ρSC (j,b) =
ec

jc (∥b∥)

(
∥ j∥

jc (∥b∥)

)n−1

, (25)

with ec = 10−4 Vm−1, n= 30, and a field-dependent critical
current density jc(∥b∥) (A m−2) obtained from the STEAM
material library [44]. The resistivity of the copper mat-
rix, ρCu(b), accounting for magneto-resistance, is also taken
from [44], with residual resistivity ratio RRR= 100. Themag-
netic flux density b= µ0h in the material parameter functions
is expressed from the magnetic field h of the AI model. This
introduces an additional coupling between both models.

The strand is subject to a uniform transverse magnetic flux
density field along êy, varying sinusoidally with an amplitude
b and a frequency f. The transport current is fixed to zero.

As the problem is now nonlinear, it can no longer be solved
in the frequency domain. An implicit (backward) Euler time-
stepping is used for time integration [45]. In addition, an iter-
ative algorithm has to be used in order to solve the resulting
nonlinear system of equations at each time step. A Newton-
Raphson technique is chosen to this end, as it leads to effi-
cient resolutions for problems involving the power law res-
istivity [36].

The instantaneous AC loss per unit length, Ptot (W/m), is
evaluated as follows:

Ptot =

ˆ
Ωf

ρ j · jdΩ︸ ︷︷ ︸
Pfilament

+

ˆ
Ωm

ρ j · jdΩ︸ ︷︷ ︸
Peddy

+

ˆ
Ωm

ρ jcc · jcc dΩ︸ ︷︷ ︸
Pcoupling

. (26)

It is decomposed in three distinct contributions, defined by the
three terms of equation (26), as was done in equation (19).
This decomposition for AC loss components is typical in the
literature and helps to better interpret the simulation results.

The AC loss per cycle per unit length is defined as the loss
per cycle of applied field, Qtot, in J/m. Numerically, it is eval-
uated as follows [46], with T= 1/f,

Qtot = 2
ˆ T

T/2
Ptot (t) dt. (27)

4.1. Reference model

As a reference, we consider a classical 3D FE model with
the h-ϕ-formulation [21], as represented in figure 2. Periodic
boundary conditions are imposed on the bases of the cyl-
indrical wire so that only a length of p/6 needs to be mod-
elled. A structured prismatic mesh is used in the filaments,
whereas an unstructured mesh is used in the matrix and air
domains. To resolve the potentially small penetration depth of
the induced currents, a sufficiently fine spatial discretization is
necessary, which leads to a high computational cost, compared
to the CATI method.
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Figure 13. Comparison of the AC losses in the composite strand
obtained from the CATI method (solid lines) and the reference 3D
model (dashed lines). The strand is subject to 1.25 cycles of a
sinusoidally varying transverse magnetic flux density, of amplitude
0.5 T at frequencies of (a) 10 Hz and (b) 1 kHz.

4.2. Comparison and validity of the CATI method

The CATI method and the reference 3D method are compared
at a field amplitude of b= 0.5 T at frequencies of f = 10 Hz
and f = 1 kHz. These conditions represent non-trivial solu-
tions where the filament loss is of the same order of mag-
nitude as the coupling loss for f = 10 Hz, and as the eddy
loss for f = 1 kHz. The chosen field amplitude also avoids
computational challenges associated with both low and high
field amplitudes in the 3D reference model, where low fields
require substantial mesh refinement to capture the field penet-
ration close to the surface of the filaments, and high fields face
convergence difficulties associated with the non-linear mater-
ial properties, requiring substantial time step refinement. Both
the corrected length ℓc and the dynamic correction are included
in the CATI method.

Figure 13 shows comparisons of the computed AC losses
between the CATI method (solid lines) and the reference 3D
method (dashed lines) over the span of 1.25 cycles of the
applied field, with frequencies of 10 Hz and 1 kHz. At the
10 Hz frequency, the relative error on the total AC losses
per cycle is −3.44%, with contributions from the filament,
coupling, and eddy losses of +3.05%, −5.9%, and −0.59%,
respectively. At the 1 kHz frequency, the relative error on
the total loss is +2.38%, with contributions from the fila-
ment, coupling, and eddy losses of +3.17%, −0.82%, and
+0.03%, respectively. Figure 14 provides a qualitative com-
parison of the axial current density distributions in the wire
at time t= 1.25/f, for the CATI method and the reference

Figure 14. Comparison of the axial current density distributions at
the last time step of the simulations, t= 1.25/f, for the CATI
method and the reference 3D model (at z= 0), for a field amplitude
of 0.5 T and a frequency of (a)–(b) f = 10 Hz and (c)–(d) f = 1 kHz.

method, at 10 Hz and 1 kHz. Both locally and globally, the
CATI method produces accurate results.

A significant difference in computational time is observed
between the 3D reference model, with 970k DOFs, and the
CATI method, with 28.5k DOFs. These simulations each took
more than a week (168 h) to complete for the reference 3D
model, while they only took about 1 h with the CATI method.
The reference model is also quickly limited in terms of mesh
refinement and by convergence difficulties. This is not the case
with the CATI method.

Considering a transport current in addition to the transverse
field does not bring new difficulties. The CATI method pro-
duces reliable results in that case as well.

5. Applications

In this section, we demonstrate two applications of the CATI
method. The first application consists in the analysis of the
response of a helicoidally symmetric strand to transverse fields
of various frequencies and amplitudes, in terms of power loss
and magnetization. The low computational cost of the CATI
method compared to that of full 3D models, enables to per-
form detailed parameter sweep studies in a reasonable compu-
tational time, and with a reasonable amount of computational
resources.
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Figure 15. Total loss per cycle and per unit length as a function of
the frequency and amplitude of an applied transverse field, and no
transport current. Dashed curves are contour lines of equal loss.
Solid curves delimit areas of distinct dominant loss contributions
(filament, coupling, or eddy losses). The four points are at positions
where the solution is represented in figures 17(a)–(d). This loss map
is inspired from the work of A M Campbell in [12].

The second application consists in the computation of
losses in a wire-in-channel geometry subject to DC transport
current and magnetic field, under the application of external
AC field ripples. This application illustrates the possibility of
modelling periodic, but non-helicoidally symmetric conductor
geometries with the CATI method.

We consider nonlinear materials for both applications.

5.1. Loss map and magnetization curves

As a first application of the CATI method, we consider the 54-
filament strand (see table 1) with the same material properties
as in section 4. We model its response to an external trans-
verse magnetic field, varying sinusoidally with frequencies f
ranging from 0.01 Hz to 10 kHz, sampled with 25 values, and
amplitudes b from 1 mT to 5.6 T, sampled with 16 values. We
fix the twist pitch length to p= 19 mm. A loss map, inspired
by the work of A M Campbell in [12], is plotted in figure 15
and gives the total AC loss per cycle and per unit length of
the strand, interpolated from the results (400 simulations) in
this parameter space. The AC loss per cycle is computed as
described in section 4. The different loss contributions are also
illustrated as a function of frequency in figure 16 for field amp-
litudes of 0.02 T, 0.2 T, and 2 T.

The black lines in figure 15 delimit four distinct regions
in the map, with distinct dominant loss contributions.
Figures 17(a)–(d) gives the current density distribution at spe-
cific locations in these four regions.

The frequency dependence of the coupling and eddy loss
contributions in figure 16 is comparable to that obtained with
linear materials in section 3. The coupling loss follows a typ-
ical bell curve [12], and the shape of the eddy loss curve is

Figure 16. Total loss per cycle and separated loss contributions as a
function of the frequency f, for three different field amplitudes. The
legend is the same for the three subfigures.

associated with skin effect in the matrix. A good match with
the analytical model is obtained at low field amplitudes (b≲
0.1 T). At higher field amplitudes, saturation effects in the fil-
aments affect the dynamics, which is no longer well described
by the analytical model.

The filament loss curve of superconducting (nonlinear) fil-
aments is qualitatively different from that of resistive (linear)
filaments. In the nonlinear case, the evolution of the filament
loss with frequency can be decomposed in four regimes, see
figures 17(a)–(d). First, at the lowest frequencies, filaments
are fully uncoupled and exhibit hysteresis losses that are, per
cycle, almost frequency-independent. As the frequency further
increases, coupling currents start to progressively couple the
filaments, which leads to a smooth transition of the filament
loss per cycle towards a new plateau, during which the coup-
ling loss dominates the total loss. When filaments are fully
coupled, the filament loss per cycle is again almost frequency-
independent. Whether the filament loss for coupled filaments
is larger or smaller than the filament loss for uncoupled fila-
ments depends on the external field amplitude. Finally, at the
highest frequencies, eddy currents in the matrix start to shield
the inner part of the strand, leading to a sharp decrease of fil-
ament losses, because the field seen by the superconducting
filaments is decreasing. In this regime, eddy current loss dom-
inates the total loss.

The strand magnetization is another interesting output of
the CATI method. In the case with no transport current, the
average magnetization vector m (A m−1) is defined as [47]

m=
1
2S

ˆ
Ωc

x× jdΩc, (28)
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Figure 17. Axial current density distributions in Ωc, at time
t= 1/(4f) for various excitations. The color map is the same for all
subfigures. (a)–(d) Vertical transverse field with zero transport
current, see the four points in figure 15. (e)–(f) Vertical transverse
field with transport current in phase with the field.

with S= πd2/4 the surface area of the strand and x the posi-
tion vector. The y-component my of the magnetization vector
m is represented in figure 18 for different frequencies and an
applied transverse field amplitude of 2 T.

As the frequency increases, the evolution of the curves
illustrates the evolution from uncoupled to coupled filaments,
with increasingmagnetization (for b= 2 T), and then to almost
fully shielded strand due to eddy currents in the matrix, in
which case the magnetization loop approaches the shape of
an ellipse [47].

For illustration, solutions with a superimposed transport
current It(t) = 1 sin(2π f t) kA, in phase with the applied
transverse field, are shown in figures 17(e) and (f). The

Figure 18. Total strand magnetization for a sinusoidally varying
external magnetic field of amplitude 2 T, over 1.25 periods of the
field for different frequencies f.

resulting current density distribution is asymmetric. Some fila-
ments now carry part of the transport current at current density
close to the critical current density. This affects the distribu-
tion of the magnetization currents in the filaments.

The ability of the CATI method to model many differ-
ent configurations in a reduced amount of time is useful
in the context of homogenization methods. The idea for
such methods is to replace detailed geometries, e.g. a cable
made of many multifilamentary strands, or a magnet made
of many such cables, by simplified geometries with appropri-
ate homogenized material parameters reproducing the macro-
scopic response of the detailed models without describing the
details of them explicitly [48, 49]. The identification of these
material parameters requires the knowledge of the detailed
models response under a range of different excitations. The
CATI method provides an efficient way of computing this
accurately.

5.2. Wire-in-channel geometry

The second application is a conductor with a periodic, but
non-helicoidally symmetric, geometry. It consists of the wire-
in-channel (WIC) geometry represented in figure 19. The
composite superconducting strand, consisting of matrix and
filaments (Ωm ∪ Ωf), is composed of 54 Nb-Ti filaments,
arranged in a hexagonal latticewith center-to-center spacing of
88 µm. Filament diameter is 72 µm, copper matrix diameter is
d = 0.8mm. The strand is twisted, with a twist pitch length of
p = 50 mm, and is placed in a straight copper channel (Ωch),
whose height and width are 1.5 mm and 2.6 mm, respectively,
with rounded corners of radius 0.4 mm. The circular numerical
air boundary is placed at a distance of 8 mm from the center
of the strand.
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Figure 19. Wire-in-channel geometry: copper channel Ωch ⊂ Ωc,
copper matrix Ωm, and Nb-Ti filaments Ωf. The wire Ωf ∪Ωm is
twisted but the channel is translationally invariant along êz.

Figure 20. AC loss per cycle in the wire-in-channel geometry as a
function of the frequency of the AC field of amplitude b= 100 mT
along êx (dashed lines) and along êy (solid lines).

Materials are described by the same resistivities as in the
previous section, but with RRR= 100 in the channel and
RRR= 200 in the wire matrix. We assume a high contact res-
istance between the strand and the channel due to resistive
solder in between, which prevent coupling currents to flow
from the strand to the channel. The WIC is subject to a uni-
form background magnetic field of 4 T along êy and a DC
transport current It = 500 A. In addition to the constant back-
ground field, a sinusoidal magnetic field of amplitude b and
frequency f is applied, either along êx, or along êy.

The simulation is conducted in two steps. In the first step,
an initial steady-state solution is computed with a ramp-up
during 1 s of the transport current and background magnetic
field, from virgin initial state to 500 A and 4 T, respectively.
The situation is then held constant for a duration of 4 s for all
dynamic effects to fade out, and the final magnetic field dis-
tribution is saved. In the second step, transient simulations are
performed with the AC transverse field, using the saved mag-
netic field distribution from the first step as the initial condi-
tion. The AC field has an amplitude of b= 100 mT and covers
the frequency range from f = 0.01 Hz to f = 10 kHz.

Figure 20 shows the loss per cycle due to the AC transverse
field as a function of its frequency. Loss contributions are cal-
culated as described in section 4, with the eddy current loss
being integrated over Ωm ∪Ωch. At high frequencies, the eddy

Figure 21. Axial current density distributions in the wire-in-channel
geometry at t= 1/(2f) for the AC fields (a) along êy and (b) along
êx, at b= 100 mT and f = 100 Hz. The scales of the colorbars are
different in Ωf and in Ωm ∪Ωch.

current loss dominates and the eddy currents have a screen-
ing effect on the filaments, reducing the filament losses. This
effect is more pronounced when the AC field is applied along
êy, illustrating the anisotropic AC loss response of this non-
helicoidally symmetric geometry ofWIC. Figure 21 shows the
axial current density distributions in the wire for the two field
orientations for f = 100 Hz at t= 1/(2f).

6. Conclusion

In this contribution, we proposed the Coupled Axial and
Transverse currents (I) (CATI) method. It is based on a pair of
coupled 2D models for modelling transient electric and mag-
netic effects in composite superconducting conductors with
a periodic geometry. We applied the CATI method to twis-
ted superconducting strands and verified its accuracy by com-
parison against reference methods. We demonstrated that the
CATI method reproduces the coupling current density and all
types of losses with a very good accuracy in a wide range of
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frequencies, in the case where the twist pitch length is large
enough compared to the strand diameter (p/d≳ 10).

As the CATI method is based on 2D models, it leads to a
massive reduction of the computational cost compared to con-
ventional 3D models, from more than a week (168 h) to less
than an hour for the tested cases. In particular, this allows to
perform detailed parameter sweep studies and in-depth ana-
lyses of the strand response in many different configurations
in a reasonable amount of time, and with a reasonable amount
of computational resources. As an application, such parameter
studies could be exploited in the context of homogenization
methods, if they are used as detailed mesoscale models for
identifying equivalent material parameters of homogenized
macroscale models [48].

We presented the practical implementation of the CATI
method, and highlighted the ease of it. Any FE software allow-
ing for field-circuit coupling is in principle ready for its imple-
mentation. The use of circuit equations for coupling the AI
and TI models also allows for a direct extension of the method
for the treatment of contact resistance between the filament
and the matrix, as well as that of diffusion barriers in Nb3Sn
wires [50], that may be modelled as thin-shells [51].

Compared to the helicoidal transformation technique, in
addition of handlingmuchmore easily nonlinear materials, the
CATImethod also applies to non-helicoidally symmetric cross
sections, such as deformed geometries [50]. Furthermore, an
extension of the approach to other types of conductors with
periodic geometry, e.g. cables with transposed conductors
such as Roebel cables [34], or Rutherford cables [33], will be
subject of further research.
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