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Abstract We discuss a Bayesian methodology for the solu-
tion of the inverse problem underlying the determination of
parton distribution functions (PDFs). In our approach, Gaus-
sian processes (GPs) are used to model the PDF prior, while
Bayes’ theorem is used in order to determine the posterior
distribution of the PDFs given a set of data. We discuss the
general formalism, the Bayesian inference at the level of
both parameters and hyperparameters, and the simplifica-
tions which occur when the observable entering the analysis
is linear in the PDF. We benchmark the new methodology in
two simple examples for the determination of a single PDF
flavor from a set of deep inelastic scattering (DIS) data and
from a set of equal-time correlators computed using lattice
QCD. We discuss our results, showing how the proposed
methodology allows for a well-defined statistical interpre-
tation of the different sources of errors entering the PDF
uncertainty, and how results can be validated a posteriori.

1 Introduction

The determination of one or more continuous functions
knowing a finite set of experimental observations is noto-
riously an ill-posed problem, which goes under the name of
inverse problem. The extraction of parton distribution func-
tions (PDFs) from experimental and lattice data is an example
of this in high-energy physics.

PDFs are an essential input to perform analyses and com-
putations in collider phenomenology, and are required for a
number of precision studies concerning the determination of
standard model parameters and searches for new physics.
PDF determinations currently used for phenomenological
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studies include MSHT20 [1], CTEQ18 [2], NNPDF4.0 [3],
HERAPDF2.0 [4]. A strong dependence on the PDFs has
been observed in recent determinations of the strong cou-
pling αs and of the W boson mass carried out by the ATLAS
collaboration [5,6]: when changing the PDF set used as input
in the analysis, the output fluctuates by an amount which is
bigger than the quoted PDF error. These discrepancies could
be generated by some incompatibilities between independent
PDF determinations and raises the question whether all the
relevant sources of uncertainty are properly accounted for in
the quoted PDF error. Comparing the results obtained with
different methodologies is one way to test the robustness of
the error estimates, and combination studies have been per-
formed to provide the community with a unique PDF set to
be used for phenomenology [7].

Given the ill-posed nature of the inverse problem under-
lying the determination of PDFs, a regularization method is
necessary in order to make the problem well defined. The reg-
ularization reduces the problem to a finite dimensional and
solvable one, but it inevitably introduces some bias, which
depends on the specific methodological choices. The solu-
tion to an inverse problem will therefore come with an error
associated with the methodology, which has to be quantified,
just like the other uncertainties entering a PDF fit (uncer-
tainties of the experimental data and of the input standard
model parameters, theory errors due to missing QCD higher
orders). Despite specific efforts in this direction have already
been pursued – for example in Refs. [8,9] the different com-
ponents of PDF uncertainty are qualitatively assessed using
the formalism of closure tests – a way to assess quantitatively
the size of the methodological error in a PDF determination
is still missing.
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In this paper we investigate a Bayesian approach to the
solution of inverse problems, by extending the preliminary
work discussed in Ref. [10], and further developing some
of the ideas introduced in Ref. [9]. The goal is to develop a
methodology, orthogonal to those currently used within the
collinear PDF community, where all the relevant sources of
uncertainty, including the methodological one, have a clear
mathematical definition. We argue that such methodology
would simplify the discussion around discrepancies of the
kind observed, for instance, in Refs. [5,6], providing a quan-
titative estimate of the different sources of error entering the
PDF uncertainty.

In the fitting methodologies currently used for PDF deter-
minations, the unknown model is parameterized in terms of
a finite (albeit large) set of parameters, which are then fitted
to the observed data. In the Gaussian Processes approach,
rather than starting by a parameterization, a prior probability
distribution is introduced for the target model in its origi-
nal space, encoding our a priori theoretical knowledge of the
unknown target function. Using Bayes’ theorem, it is pos-
sible to determine the posterior distribution of the solution
after taking into account a set of experimental observations.
This approach has multiple advantages: the inverse problem
is well-defined, all the assumptions made on the model are
explicitly stated in the choice of the prior and the results are
given in terms of posterior probability distributions, making
all the relevant uncertainties well-defined from a mathemat-
ical point of view. On the other hand, as with any other reg-
ularization method, the Bayesian approach introduces a bias
through the choice of a specific prior; the posterior probabil-
ity distribution does depend on the choice of the prior and
this dependence needs to be studied and properly quantified.
In this paper we will argue that the quantification of the exist-
ing bias and the different sources of error affecting the final
result is particularly clear in a Bayesian approach.

Our Bayesian approach relies on promoting the values of
the PDFs to stochastic variables, whose probability distribu-
tions are constrained by experimental data. These posterior
probability distributions encode all the information about the
PDFs. A possible way to do this is by using the formalism
of Gaussian processes (GPs) [11], through which a suitable
prior for the unknown PDFs can be defined, in terms of a
reduced number of hyperparameters. GPs have already been
used to solve inverse problems in various fields in physics,
from geophysics [12] to lattice QCD [13–16]. The main focus
of this paper is the study of GPs in the context of PDF deter-
minations, including the choice of the most suitable kernel
(which defines the prior distribution), the optimization of the
corresponding hyperparameters and the way in which theo-
retical knowledge about PDFs – such as sum rules, kinetic
limit, and integrability constraints – can be encoded in the
prior.

In Sect. 2 we recall the definition and some well-known
properties of GPs, we set the notation and spell out the dif-
ferent steps of the proposed methodology for PDF determi-
nation. We focus on the case of observables linear in the
PDF and we briefly discuss what changes are required when
quadratic observables are included in the analysis. In Sect. 3
we discuss the choice of a prior distribution for PDFs and we
provide two simple examples concerning the determination
of a single PDF flavor from a set of deep inelastic scattering
(DIS) data and lattice equal time correlators. In Sect. 4 we
discuss the results, the quantitative evaluation of the different
sources of uncertainties entering the analysis, and possible
ways to validate the results a posteriori. Conclusions and
outlook are presented in Sect. 5.

2 Gaussian processes for inference

In the following, we recall the definition of a Gaussian pro-
cess, setting the notation for the subsequent sections. More-
over, we describe in detail the case of a GP regression in the
presence of data that depend linearly on the GP, subject to a
hyperparameterized prior. While the case of linearly depen-
dent data is sufficient for the investigation presented in this
work, we also introduce a more general case, which allows
us to clarify the simplifications observed in our current study,
and sets the framework for further developments towards a
global PDF determination. Consequently, we are not going
to provide an exhaustive presentation about GPs, for which
the reader could refer to the existing literature, such as Ref.
[11].

2.1 Notation

In a Bayesian approach, the true value f (x) of the PDF
for each x ∈ [0, 1] is treated as a random variable. We
should therefore think of x as a continuous index, which
parametrizes the elements of a stochastic process. A Gaus-
sian process,

f ∼ GP (m, k) , (1)

is a particular type of stochastic process, whose probability
distribution is entirely specified by two functions, the mean
m(x) and the kernel k(x, x ′). The values of the function f at
any discrete set of points,

x = {xi ; i = 1, . . . , N } ,

define a vector of stochastic variables

f = f (x) =
⎛
⎜⎝

f1
...

fN

⎞
⎟⎠ ∈ R

N , fi = f (xi ), i = 1, . . . , N . (2)
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The probability distribution of these variables is an N -
dimensional Gaussian distribution,

f ∼ N (m, K ) , (3)

whose mean and covariance are given by

m = m(x) , K = k(x, xT ) , (4)

and therefore

E[ fi ] = mi = m(xi ) , (5)

Cov[ fi , f j ] = Ki j = k(xi , x j ) . (6)

In the following, we will distinguish the points in x for
which the value f (x) is included in the theoretical prediction
for the measurements, and those where we want to infer the
value of the function. We denote the former by x and the
latter by x∗. The corresponding vectors f and f∗ are defined
as in Eq. (2). In a Bayesian formalism, we define a prior joint
distribution for (f, f∗) and a likelihood function, which will
depend on f . We can then compute the posterior distribution
for f∗ applying Bayes’ theorem. Assuming that

f ∈ R
N , f∗ ∈ R

M ,

then the Gaussian process defined in Eq. (1) yields a prior
distribution,

p(f, f∗|θ) = 1√
det (2πK )

exp

{
−1

2

(
(f − m)T ,

(f∗ − m∗)T
)
K−1

(
f − m
f∗ − m∗

)}
, (7)

where K is now an (N + M) × (N + M) matrix,1

K =
(
k(x, xT ) k(x, x∗T )

k(x∗, xT ) k(x∗, x∗T )

)
=

(
Kxx Kxx∗
Kx∗x Kx∗x∗

)
. (8)

The mean and kernel functions might depend on a set of
additional parameters, usually referred to as hyperparame-
ters, and collectively denoted as θ . The dependence of the
prior on the hyperparameters is marked explicitly in Eq. (7).

2.2 Data and theory predictions

In Ref. [10] we distinguished two different types of input:
direct observations of the stochastic process, which we called
point-wise data, and indirect ones, in which only some func-
tions of the process are actually observed. In this work we
will focus on the more general case of indirect observation. In

1 We have slightly changed the notation here, compared to the one we
used in Ref. [10].

particular, all the results are obtained for a likelihood model
in which the data appear as a linear functional of f . Sect. 2.5
describes how to go beyond this assumption.

We denote by TI the prediction for the I -th datapoint, that
will be computed as

TI =
∫

dx cI (x) f (x), (9)

where cI (x) are known functions.2 The TI are distributed
according to a Gaussian, with mean value and covariance

E[TI ] =
∫

dx cI (x)m(x) , (10)

Cov[TI , TJ ] =
∫

dx ′dx ′′ cI (x ′)k(x ′, x ′′)cJ (x ′′) = AI J .

(11)

In practice, we are going to be interested in cases where the
integral above is computed on a grid of points,

TI =
N∑
i=1

(FK)I i fi , (12)

where (FK)I i =
∫

cI (x)pi (x), with pi (x) an interpolation

polynomial, relative to xi .
The matrix (FK) is called an FK-table in the NNPDF

jargon, and the notation reflects this convention. Note that
the case of point-wise data (direct observation) is obtained in
this framework by setting (FK) to the identity. The average
and the covariance of the theoretical prediction T induced
by the prior probability distribution of f are given by the
discretized versions of Eqs. (10) and (11),

E[TI ] = (FK)I jm j , (13)

Cov[TI , TJ ] = (FK)I i (Kxx)i j (FK)Tj J . (14)

The experimental central value for the data point correspond-
ing to TI is denoted yI . Note that TI is a stochastic vari-
able, while yI is a constant. In our model, the likelihood is
also assumed to be a multivariate Gaussian distribution, and
the fluctuations of the data around their central values are
described by the experimental covariance matrix CY .

In the rest of the paper, we will omit the indices like i, j
and I, J in the equations above. Boldface vectors, like f for
instance, refer to vectors computed by evaluating the function
f on a grid of points. Vectors in the space of data will be
denoted by ordinary latin characters; the context should make

2 The method exposed in the following works for generic linear func-
tionals, including those that could not be expressed as integrals of regu-
lar functions cI (x). This is the case of the observables analysed in PDF
fits, but we limited to this form to simplify the presentation.
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it easy to identify these vectors in data space, even though
we do not have any typographic convention to identify them.

2.3 Inference for the model

Following the discussion in Ref. [10], we incorporate the
knowledge of linear data by introducing the stochastic vari-
able

ε ∼ N (0,CY ) , (15)

and imposing that

(FK)f + ε = y, (16)

where y are the observed experimental central values andCY

is the covariance matrix of the data. The linear dependence
of y on f is encoded in the matrix (FK).

We are interested in the probability distribution of the vec-
tor f and hyperparameters θ , conditioned on Eq. (16), which
we denote as

p (f, θ |y) = p (f |θ, y) p (θ |y) . (17)

The two factors on the right-hand side of the equation are
best analysed separately, since being able to sample both of
them is enough to sample the left-hand side. We focus here
on the first term, while the second factor will be discussed
in the following subsection. The function p (f |θ, y) denotes
the posterior probability distribution of the vector f for fixed
values of the data and of the hyperparameters θ . In order to
compute it, we note that at the level of prior distributions,
the vectors f and f∗, and the data measurement error ε must
be uncorrelated, hence the covariance matrix describing the
joint prior distribution of the three sets of stochastic variables,
(f, f∗, ε), is a block-diagonal (N + M + Ndat) × (N + M +
Ndat) matrix

Cov =
(
K 0
0 CY

)
, (18)

where K is the (N + M) × (N + M) matrix introduced in
Eq. (8). Therefore the joint prior is

p(f, f∗, ε|θ)

= 1√
det (2πK )

exp

{
−1

2

(
(f − m)T , (f∗ − m∗)T

)

×K−1
(

f − m
f∗ − m∗

)}
1√

det (2πCY )
exp

{
−1

2
εT C−1

Y ε

}
.

(19)

Conditioning on the observed values y in Eq. (16),

p(f, f∗|θ, y) ∝
∫

dε p(f, f∗, ε|θ) δ((FK)f + ε − y) (20)

∝ exp

{
−1

2

(
(f − m)T , (f∗ − m∗)T

)
K−1

(
f − m
f∗ − m∗

)}

× exp

{
−1

2
((FK)f − y)TC−1

Y ((FK)f − y)

}
. (21)

The final step to get p (f |θ, y) involves marginalizing f∗,
which is readily done remembering that (f, f∗) obey a multi-
dimensional Gaussian distribution,

∫
df∗ p(f, f∗|θ, y) ∝ exp

{
−1

2
(f − m)T K−1

xx (f − m)

}

× exp

{
−1

2
((FK)f − y)TC−1

Y ((FK)f − y)

}

= exp {−S(f; θ, y)} , (22)

so that

p(f |θ, y) = exp {−S(f; θ, y)}∫
df exp {−S(f; θ, y)} . (23)

This result was already derived in Eq. (45) in Ref. [9]. Note
that

S(f; θ, y) = 1

2

{
(f − m)T K−1

xx (f − m)

+((FK)f − y)TC−1
Y ((FK)f − y)

}
(24)

is a quadratic form in f , therefore the normalization in
Eq. (23) can be computed analytically, yielding a Gaussian
posterior for f ,

p (f |θ, y) = N
(
f; m̃, K̃xx

)
. (25)

Its mean m̃ and covariance K̃xx are given by3

m̃ = m + Kxx(FK)T C+
YT (y − (FK)m) , (26)

K̃xx = Kxx − Kxx(FK)TC+
YT (FK)Kxx , (27)

where we introduced

CYT = (FK)Kxx(FK)T + CY , (28)

which is the covariance of the vector (FK) f + ε, and the
superscript “+” denotes the matrix pseudoinverse. In the fol-
lowing, we replace the pseudoinverse with the inverse, and
the formulae derived implicitly assume that the correspond-
ing matrices are invertible. Equation 27 can be rewritten as

K̃−1
xx = K−1

xx + (FK)TC−1
Y (FK). (29)

Note that here, and in the rest of this paper, the notation
M−1

xx denotes the inverse of the matrix Mxx and not the (x, x)

3 See [17, ex. 7.4, p. 295] for the proof.
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block of the matrix M−1. A more precise notation would be
(Mxx)

−1, not to be confused with (M−1)xx.
Equations (26) and (29) were already obtained in Ref.

[9], while Eq. (27) provides an alternative expression for the
posterior covariance, and is the standard formulation in the
context of Gaussian processes. Similarly, starting from the
same prior and marginalizing with respect to f we can obtain
the posterior for f∗,

p
(
f∗|θ, y

) = N
(
m̃∗, K̃ ∗

xx

)
, (30)

with

m̃∗ = m∗ + Kx∗x(FK)TC−1
YT (y − (FK)m) , (31)

K̃x∗x∗ = Kx∗x∗ − Kx∗x(FK)T C−1
YT (FK)Kxx∗ . (32)

Focusing on the corrections to the mean of the process due
to Bayesian inference,

�m = m̃ − m ,

�m∗ = m̃∗ − m∗ ,

we find

�m∗ = Kx∗xK
−1
xx �m, (33)

and

K̃x∗x∗ = Kx∗x∗ − Kx∗xK
−1
xx Kxx∗ + Kx∗xK

−1
xx K̃xxK

−1
xx Kxx∗ .

(34)

Let us emphasise once again that, in this approach, the
values of the function f are stochastic variables, and the
information that we can retrieve about the function at the
points x∗ is precisely encoded in the posterior probability
distribution. Rather than finding one solution, we find the
probability distribution of the vector f∗. This is reminescent
of what is done when bootstrapping a fit to the data: the
posterior distribution in this latter case is the distribution of
fit results over the bootstrap sample.

2.4 Inference for the hyperparameters

We now turn to the second term of Eq. (17), namely the pos-
terior of the hyperparameters θ given the data. Using Bayes’
theorem we have

p (θ |y) = p (y|θ) pθ (θ)∫
dθ p (y|θ) pθ (θ)

, (35)

where pθ (θ) denotes the hyperparameters prior. The like-
lihood p (y|θ) is proportional to the normalization of the
probability distribution p (f |θ, y) in Eq. (23), and as such
can be computed integrating over f . Alternatively we can get

its explicit expression by noticing that the observed data are
given by y = (FK) f + ε with

(FK) f ∼ N
(
(FK)m, (FK)Kxx(FK)T

)
, (36)

ε ∼ N (0,CY ) , (37)

and that therefore

y ∼ N ((FK)m,CYT ) , (38)

with CYT defined in Eq. (28). In both cases one finds

p (y|θ) = e− 1
2 (y−(FK)m)T C−1

YT (y−(FK)m)

√
det [2πCYT ]

. (39)

Note that the inference for the model, which yields the
posteriors p (f |θ, y) and p (f∗|θ, y), is completely analytical.
This second inference step, which determines the posterior
p (θ |y), in general cannot be solved analytically: because of
the hyperparameters appearing in the square root in Eq. (39),
the denominator of Eq. (35) cannot be computed analytically
any longer. Moreover p(y|θ), as a function of θ , in general
is not a conveniently analyzable probability density function
that we know how to sample from. Therefore, this step has to
be addressed as a standard inference problem. We can then
follow two approaches:

• select the hyperparameter values as the mode of the pos-
terior p (θ |y):

θMAP = arg maxθ p (θ |y) , (40)

• use an MCMC algorithm to sample from the posterior
p (θ |y).

Using this second approach the uncertainty due to hyper-
parameter selection is incorporated into the final PDF uncer-
tainty, and PDFs fitting is reduced to a Monte Carlo problem.

While finding θMAP is computationally less demanding
than MCMC, we opt for the full inference because of our
focus on uncertainty quantification. Stopping at a single
“best” value can dramatically alter the posterior variance,
see, e.g., [18, Fig. 18.18, p. 713].

2.5 The quadratic case

So far we have considered the case in which the theoretical
predictions are linear in fi , according to Eq. (12). In this sec-
tion we discuss what changes when we consider observables
with quadratic dependence on f . Denoting the FK-table for
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a quadratic observable T quad as (̂FK), Eq. (12) becomes

T quad
I =

N∑
i, j=1

(̂FK)I i j fi f j . (41)

The prior given in Eq. (19) remains unchanged, but condi-
tioning now results in

fT (̂FK)f + ε = y, (42)

so that, following the same steps as in Sect. 2.3, the posterior
p(f |θ, y) is now given by

p(f |θ, y) ∝ exp
{−Ŝ(f; θ, y)

}
, (43)

with

Ŝ(f; θ, y) = 1

2

{
(f − m)T K−1

xx (f − m)

+(fT (̂FK)f − y)TC−1
Y (fT (̂FK)f − y)

}
. (44)

The full posterior p (f, θ |y) can be written using Bayes’ the-
orem as

p (f, θ |y) = exp
{−Ŝ(f; θ, y)

}
pθ (θ)∫

dθdf exp
{−Ŝ(f; θ, y)

}
pθ (θ)

. (45)

By multiplying numerator and denominator by the marginal
likelihood

p (y|θ) ∝
∫

df exp
{−Ŝ(f; θ, y)

}
(46)

we can recast Eq. (45) in the same form as Eq. (17) with

p (f |θ, y) = exp
{−Ŝ(f; θ, y)

}
p (y|θ)

and

p (θ |y) = p (y|θ) pθ (θ)∫
dθp (y|θ) pθ (θ)

. (47)

The difference with respect to the linear case is that Eq. (44)
is not quadratic in f . It follows that the posterior p(f |θ, y) is
not a Gaussian any longer and the likelihood p(y|θ) cannot
be computed analytically.

Both the inference on the parameters f and on the hyper-
parameters θ has therefore to be performed at the same time
by running a MCMC algorithm starting from Eq. (45). No
simplifications occur, and the dimension of the Monte Carlo
to run, corresponding to dim (θ) in the linear case, is now
dim (f) + dim (θ). This very same approach would work for
a generic functional of f .

3 Gaussian processes for PDFs

In the following we apply the formalism described in the pre-
vious section to two concrete examples. We consider only the
simpler case of observables linear in f , where the inference on
the parameters can be done analytically. We first show how,
by a suitable choice of the prior, we can implement known
physical constraints such as the kinematic limit, sum rules
and small-x behaviour. We then give a complete example of
the workflow, by determining the nonsinglet triplet PDF

T3 = u+ − d+,

using a set of synthetic data, first for DIS structure functions,
and then for lattice equal-time correlators.

3.1 Prior distribution for T3

When fitting PDFs we can work in the so-called evolution
basis with six non-singlet quark distributions,

Ta(x), a = 3, 8, 15, Va(x), a = 3, 8, 15, (48)

the quark singlet distribution, �(x), and the gluon distri-
bution, g(x). In the following we will be interested in the
nonsinglet triplet distribution T3, to which we associate a GP
with zero mean and kernel k

T3 ∼ GP(0, k). (49)

The choice of the GPs that define the prior distributions
needs to reflect the knowledge of any physical property of
the system. We use here a Gibbs kernel [11, p. 93],

k (x, y) = σ 2

√
2l (x) l (y)

l2 (x) + l2 (y)
exp

[
− (x − y)2

l2 (x) + l2 (y)

]

(50)

with

l (x) = l0 × (x + δ) . (51)

The quantities σ and l0 are hyperparameters of the GP,
while δ is a small fixed number which regularizes k when
x, y → 0. This choice ensures that when approaching the
small-x domain the correlation length decreases linearly in
x , reflecting the little knowledge we have in this kinematic
region. Note that

k (x, x) = σ 2, (52)

which implies a constant amplitude of the kernel on the full
x domain. Since we do know something regarding the power
behaviour of the PDF at small-x , it would be convenient to

123



Eur. Phys. J. C           (2024) 84:716 Page 7 of 17   716 

encode it in the prior. This can be done by introducing an
additional hyperparameter α and by rescaling the kernel

k (x, y) 	→ φ (x) k (x, y) φ (y) , (53)

with

φ (x) = xα, (54)

so that for the rescaled kernel

k (x, x) ∝ x2α. (55)

In the case of T3, the PDF has to be integrable in x = 0,
which can be imposed by choosing α ∈ (−1, 0]. More prop-
erties can be implemented in the prior, such as sum rules and
kinematic limit, discussed in Appendix A, B.

It should be kept in mind that the choice of the kernel is
crucial, and that, when limited experimental data are avail-
able, different kernels lead to different results. For the sake
of this paper, which aims at presenting the main ideas of
the methodology in simple terms, we limit our study to the
case of the Gibbs kernel. However, when moving to more
complex studies which aim to be used for phenomenology,
different choices should be explored, by testing different ker-
nels or defining new kernels suitable for the specific problem
of PDF determination. Here follow two ways a particular
choice of kernel could turn out wrong in our case. First,
the kernel almost completely determines the extrapolation
behavior: in this case a mistaken assumption cannot be cor-
rected by the data. Second, and more subtly, it is easy to inad-
vertently define an ill-conditioned kernel; in other words, a
kernel which for practical matters behaves as a finitely para-
metric model, or that is still “fat” in infinite dimensions, but
induces non-zero probability only on some overly specific
functions. The textbook example of bad kernel is the expo-
nential quadratic e−(x−y)2

, widely used for its simplicity, yet
encoding a strong prior; the Gibbs kernel is a variant of it,
and so we expect it to have similar problems. Sure that (our
own) potential future works will coast along with the Gibbs
kernel by inertia, we say, Reader: heed our bootless warning.

3.2 Example 1: T3 from BCDMS data

Considering DIS on a proton target, the NNLO theory pre-
diction for the structure function F p

2 is

F p
2 = Cg ⊗ g + C� ⊗ � + CT3 ⊗ T3 + CT8 ⊗ T8

+ CT15 ⊗ T15, (56)

where g, �, T3, T8, T15 denote PDF flavors in the so-called
evolution basis andCi the corresponding Wilson coefficients.

Considering a neutron target instead and assuming isoscalar-
ity, the neutron PDFs are just the same, except for u, ū and
d, d̄ , which are exchanged. Since T3 = u+ − d+ it follows
that the neutron structure function Fn

2 can be written as

Fn
2 = Cg ⊗ g + C� ⊗ � − CT3 ⊗ T3 + CT8 ⊗ T8

+ CT15 ⊗ T15 , (57)

with the same Wilson coefficients as in the proton case. Con-
sidering a deuterium target, for a generic flavor the corre-
sponding nuclear PDF is

f di = 1

2

(
f pi + f ni

)
. (58)

The deuterium structure function is therefore given by aver-
aging the ones for proton and neutron, getting

Fd
2 = Cg ⊗ g + C� ⊗ � + CT8 ⊗ T8 + CT15 ⊗ T15. (59)

Hence we can define the observable

F p
2 − Fd

2 = CT3 ⊗ T3 , (60)

which is expressed as the convolution of the Wilson coeffi-
cient CT3 with just one PDF, viz. T3. The determination of T3

using F p
2 − Fd

2 only involves one flavor and one FK table,
making it an ideal testbed for the method.

Data and FK table Rather than considering real experi-
mental data, we will consider pseudo-data constructed from a
known underlying law. This will allow us to test how well the
methodology is able to reconstruct the input model (see dis-
cussion in Sect. 4). Starting from the datasets BCDMSP and
BCDMSD presented in Ref. [19], pseudo-data are generated
by identifying points for F p

2 and Fd
2 having the same values

of the kinematic variables, and taking their difference, which
yields a total of 333 points. Following the standard proce-
dure in PDF fits based on factorization, we apply kinematic
cuts excluding datapoints where power suppressed correc-
tions could be relevant, leaving 248 points in our analysis.
For the experimental error CY , we consider the full experi-
mental covariance for the observable F p

2 − Fd
2 ,

CY = Cov
[
F p

2 , F p
2

] + Cov
[
Fd

2 , Fd
2

]
− 2Cov

[
F p

2 , Fd
2

]
,

(61)

which is computed using the publicly-available experimental
information. As underlying law we could use any functional
form we like. To consider a realistic scenario we take the cen-
tral value of the recent PDF release NNPDF4.0. We denote
as y0 the data generated from the underlying law f0 using the
corresponding (FK) table

y0 = (FK) f0. (62)
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The corresponding experimental measurements y entering
Eqs. (16), (39) are built as

y = y0 + η, with η ∼ N (0,CY ) . (63)

Hyperparameters inference Hyperparameters inference is
the first step of the procedure and is carried on as described
in Sect. 2.4. The hyperparameters entering the analysis are
α, l0 and σ . As a prior we choose a flat4 distribution having
support (0, 10) in the case of l0 and σ , and (−1, 0) in the case
of α, in order to ensure the integrability of T3 at small-x . To
produce results we have run an MCMC algorithm using the
Python package PyMC [20]: the NUTS sampler is run on 4
independent chains, which are merged after thermalization
in a unique set of samples. The posteriors for the three hyper-
parameters are plotted in Fig. 1. Starting from flat priors, the
inference based on the available data generates non-trivial
posterior distributions. We will comment more extensively
on these results later.

Gaussian inference and results Having determined the
posterior of the hyperparameters p (θ |y,CY ), we can gen-
erate an ensemble of hyperparameters by sampling this dis-
tribution. For each hyperparameters sample, the posterior of
the parameters p (f∗|θ, y,CY ) can be computed analytically,
and a Gaussian replica can be drawn from it. This two-step
procedure produces exactly a sample from p (f∗, θ |y,CY ).
In Fig. 2 we show the final results, obtained by sampling from
p (f∗, θ |y,CY ).

3.3 Example 2: T3 from lattice data

The same kind of inverse problem as the one presented in
the previous section is found when reconstructing PDFs
from a discrete set of values for lattice equal-time corre-
lators [15,21,22]. Following Ref. [22], we can reconstruct
the distribution T3 from a set of data for reduced Ioffe-time
pseudodistributions [23]. Denoting the latter as M (

ν, z2
3

)
,

its imaginary part is related to T3 by the integral relation

Im [M] =
∫ 1

0
dx C Im

(
xν, μ2z2

3

)
T3

(
x, μ2

)
. (64)

Also in this case we consider pseudo-data: central values are
built according to Eq. (64) using the analytical expression and
the kinematic values described in Ref. [22] and NNPDF4.0
as input PDF set. This gives a total of 48 points in the

(
ν, z2

3

)
plane. The covariance matrix CY in this case is given by the
uncertainties coming from the actual lattice simulation and
we use here the covariance described in Ref. [22]. Also in

4 Flat priors are not a good default in general. Here, with only three
free hyperparameters, the choice of prior does not matter much; but
with the additional model complexity we expect to employ for the full
PDF analysis, it will be worth making a reasoned choice.

this case, Eq. (64) is implemented as per Eq. (12) by means of
suitable FK tables. We repeat the same steps as in the previous
section, starting from the same prior for T3 and changing only
the FK tables and data entering the framework. The posterior
for the hyperparameters and the resulting PDF are plotted in
Figs. 3, 4.

3.4 Discussion

Looking at the posteriors plotted in Figs. 1, and 3, we notice
how, even though we started from flat priors, the inference
based on the available data has generated non-trivial poste-
rior distributions, with more or less sharp peaks depending on
the specific case we consider: while BCDMS data give fairly
peaked distributions, lattice data seem to allow a broader
range of hyperparameter values, especially in the case of α

and l0. As pointed out in Sect. 2.4, the corresponding uncer-
tainty is included in the final results: by sampling from the full
posterior p (f∗, θ |y,CY ) the PDF error plotted in Figs. 2, and
4, includes the component due to different possible values of
the hyperparameters. Overall, the posterior distributions of
the hyperparameters plus the Gaussian sampling performed
according to the posterior covariance matrix give a broader
distribution at the level of the final PDF in the case of the
lattice data. Inspecting Fig. 2 a number of qualitative con-
siderations can be done: in the kinematic region sensitive
to the data the input PDF f0 is reconstructed with a small
error, while in the small- and large-x extrapolation region,
where no experimental information is available, the posterior
strongly depends on the prior we chose in the first place. As
discussed in Sect. 3.1 we incorporate in the prior a behavior
giving larger error which yet is compatible with integrability
properties of T3. Lacking of any small-x experimental infor-
mation, this is what we find back in the posterior at small
values of x (Fig. 2, right panel). Similarly for x > 0.8 we
enter the large-x extrapolation region, which is reflected by
an increase of the error band visible in the left panel of Fig. 2
(see Appendix B). Similar qualitative considerations can be
done for the lattice data case, by looking at the plot in Fig. 4.

In the next section we will make the discussion around
these results more quantitative, showing how different com-
ponents entering the final error can be identified and by intro-
ducing different metrics to validate the methodology.

4 Uncertainties and validation

In the following we discuss the final uncertainty of the result,
and identify different components associated to the experi-
mental and reconstruction error, the latter being associated
to the ill-posed nature of inverse problems. We then discuss
the extent to which the underlying model used to generate
pseudo-data is reconstructed.

123



Eur. Phys. J. C           (2024) 84:716 Page 9 of 17   716 

Fig. 1 1-dimensional (left panel) and 2-dimensional (right panel) pos-
teriors of the hyperparameters α, l0 and σ . The hyperparameter σ is
characterized by a sharply peaked posterior located around σ ∼ 0.25
which quickly decays to zero (for this reason in the posterior plot only

the region (0, 1) is shown, even if the support of the prior is (0, 10)); α

tends to sit closer to 0, with a slow decay for smaller values towards −1;
the l0 posterior discards the smaller values of the correlation length, it
shows a peak for l0 ∼ 1.7 and then remains fairly constant

4.1 Decomposition of the posterior covariance matrix

Vanishing experimental error Let us first consider the sce-
nario of no experimental error, i.e. let us assume that the
experimental measurements reproduce the true data with no
error. From Eqs. (62), (63) it follows

y = y0 = (FK)f0.

Following Sec. 3.1.1 of Ref. [12], let us define the resolution
kernel as

R(0)
x∗x = Kx∗x (FK)T

[
(FK)Kxx(FK)T

]−1
(FK) . (65)

Equation (31) can be rewritten as
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Fig. 2 Samples from p (f∗, α, l0, σ |y,CY ) plotted in linear (left panel)
and log (right panel) scale. The dark blue line represent the mean of the
distribution, while the black dotted line the input PDF NNPDF4.0 used
to generate pseudo-data. The shaded regions represent the 68CL and
95CL intervals, and in light blue we plot a few representative samples

from the distribution. The posterior displays a smaller variance in the
regions sensitive to experimental data, and an increasing spread in the
small and large-x extrapolation regions, where the results are mostly
determined by the chosen prior

m̃∗ − m∗ = R(0)
x∗x (f0 − m) (66)

which, for m∗ = m = 0, reduces to

m̃∗ = R(0)
x∗x f0. (67)

Equation (67) shows that the result of Bayesian inference is
a smeared version of the “true” answer f0, with the smearing
kernel given by R(0)

x∗x. The difference between the mean value
of the posterior and the underlying law is

m̃∗ − f∗0 = R(0)
x∗xf0 − f∗0 . (68)

We can further specialize the discussion by considering the
case x∗ = x (i.e. by looking at the posterior on the x-points
of the FK table). In this case we have

m̃ − f0 =
[
R(0)
xx − 1

]
f0, (69)

and the covariance of the posterior can be written as

K̃xx =
(
1 − R(0)

xx

)
Kxx. (70)

Using the FK tables, Eqs. (69), (70) can be recast in terms of
bias B and variance V in data space, as defined in Ref. [9].
The bias is the difference between the true data ytrue and the
corresponding theory prediction computed using the result of
the analysis, and represents the amount by which the resulting
model fails in reconstructing the true data. The variance gives
the error of the corresponding theory predictions. Writing

down their explicit expressions Eqs. (71), (72), it is clear that
bias and variance in data space both vanish,

B = (FK) (m̃ − f0) = (FK)
(
R(0)
xx − 1

)
f0 = 0, (71)

V = (FK) K̃ (FK)T = (FK)
(
1 − R(0)

xx

)
Kxx(FK)T = 0.

(72)

In the case of zero experimental error, the methodology
reconstructs the input experimental data exactly, indepen-
dently on the specific values of the hyperparameters; note
that despite the fact that there is no bias in data space, the
model function is not in general reconstructed exactly, i.e.
m̃ �= f0 (but they are equal if (FK) has independent columns).
Therefore in the case of infinitely precise data, perfect recon-
struction is achieved at the data level, but not in the functional
space, where a residual reconstruction error is still present.

Non-vanishing experimental error Now let us introduce
back a non vanishing experimental error. The reconstruction
kernel is

Rx∗x = Kx∗x (FK)T
[
(FK)Kxx(FK)T + CY

]−1
(FK), (73)

and Eqs. (69), (70) become

m̃ − f0 = [Rxx − 1] f0 + aTxxη , (74)

K̃xx = (1 − Rxx) Kxx (1 − Rxx)
T + aTxxCYaxx , (75)

where we have introduced

aTxx = Kxx (FK)T
[
(FK) Kxx (FK)T + CY

]−1
, (76)
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Fig. 3 Same as Fig. 1 for the case of lattice pseudo-data. While the hyperparameter σ is characterized by a sharply peaked posterior distribution,
both α and l0 show fairly flat posteriors, with the one for l0 only penalizing smaller values of the correlation length

so that

Rxx = aTxx(FK). (77)

The corresponding expressions in data space Eqs. (71), (72)
become

B = (FK) [Rxx − 1] f0 + (FK)aTxxη, (78)

V = (FK) (1 − Rxx) Kxx (1 − Rxx)
T (FK)T

+ (FK)aTxxCYaxx(FK)T . (79)

Perfect reconstruction is not achieved anymore: bias and vari-
ance in data space no longer vanish, and their specific value
will depend on the choice of the hyperparameters for the ker-
nel. The decomposition in Eqs. (74), (75) highlights the fact
that there are two types of contributions to the bias and to the
posterior covariance matrix. The first term in Eqs. (74), (75)
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Fig. 4 Same as Fig. 2 for the case of lattice pseudo-data. As in the case
of BCDMS data, smaller error are observed in the kinematic regions
which are sensitive to the available data. In general, by comparing this

plot with Fig. 2, it is clear how lattice data provide less stringent con-
straints on T3 than BCDMS. Nevertheless the input PDF is still well
reconstructed by the posterior

Fig. 5 Same as Fig. 2 with the 68% CL band for the experimental and reconstruction errors plotted separately in grey and red respectively, according
to Eq. (75). Note: the error bands are overlapped with transparency, rather than stacked

comes from the limited reconstruction of the central value
and indeed would vanish when Rxx = 1 [12]. This term
survives in the limit where CY → 0, i.e. in the limit of
no experimental errors on the data, in which case we have
Rxx → R(0)

xx and we recover Eqs. (69), (70). The second
term is the propagation of the covariance of the data into
the covariance of the model. In the case Rxx = 1, the only
error fluctuations in the posterior distribution come from this
term. In Fig. 5, Montecarlo samples generated according to
the reconstruction and experimental components are plotted
separately for the BCDMS results, in red and grey respec-
tively. In the medium-x region, where more experimental
data are available, the PDF uncertainty is dominated by the
experimental error, yet a smaller reconstruction error is still
present; when moving to the small and large-x extrapolation
regions the reconstruction error becomes the dominant one,
pointing out the lack of experimental information. We stress
once more how these qualitative considerations are precisely

quantified in Eqs. (74), (75), giving the analytical expres-
sion for the posterior covariance matrices associated to the
experimental and reconstruction error, making it possible to
quote different component of the PDF error in the context of
a pheno analysis.

4.2 Validation

As discussed in the previous section, whenever we deal with
noisy experimental information perfect reconstruction of the
true data is not achieved anymore and different methodolo-
gies are expected to perform differently. In this section we
introduce some statistical metrics which allow to validate a
given methodology. We discuss the definition of such met-
rics and what we expect in case of successful reconstruction
of the underlying law. Finally we compute their probability
distribution for the results presented in the previous section.
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Fig. 6 Distribution of f∗ − f∗0 | (FK) f + ε = y normalized to f∗0

Closure tests In the context of a closure test, i.e. when
the analysis is performed on pseudo-data built from a known
model, as done in this paper, the results can be validated a
posteriori, by checking how well the posterior distribution
describes the underlying law. A first assessment is obtained
by looking at the distribution of the stochastic variable

f∗ − f∗0 | ((FK) f + ε = y) ,

whose mean and covariance are given by m̃∗ − f∗0 and K̃x∗x∗ .
In Fig. 6 we plot its distribution, normalized to f∗0 . The left
(respectively, right) panel shows the result for the case of
BCDMS (respectively, lattice data): the difference is com-
patible with zero in the full x range, with a smaller error in
the kinematic region which is more sensitive to the observed
data.

In addition to the plot displayed in Fig. 6, a more quantita-
tive measure of the inference performances can be obtained
from the value of the log-loss, i.e. the negative logarithm of
the posterior probability distribution that the stochastic vari-
able f∗ is equal to the underlying law f∗0

L(f∗0 , m̃∗, K̃x∗x∗) = − log
(
P

[
f∗ = f∗0 | (FK) f + ε = y

])
,

(80)

= n∗

2
log(2π) + 1

2
log pdet K̃x∗x∗

+ 1

2
(f∗0 − m̃∗)T K̃+

x∗x∗(f∗0 − m̃∗). (81)

Note that in Eq. (80), f∗ | ((FK) f + ε = y) is a stochastic
variable, whose probability density is given by the posterior
Gaussian Process, while f∗0 is the known underlying law. For
probabilities in (0, 1), the log-loss is 0 when the posterior
assigns probability 100% to what is actually observed, while
with probability densities the scale is arbitrary. This means
that in the continuous case the log-loss can be used to com-
pare and benchmark inferences, but its absolute value does

not have a definite interpretation. As one can see in Eq. (81),
the log-loss penalizes not only wrong answers, i.e. posterior
central values that differ from the underlying law, but also
large errors.

Although here we wrote out the expression of the log-loss
for our specific GP model (Eq. 81), the definition of log-loss
is totally general within the Bayesian paradigm, so it could
be used to compare any other fully Bayesian inference to our
method. We do not try such a comparison in this paper.

Real data analysis When dealing with a real analysis the
true underlying model is not known. Some metrics assess-
ing a posteriori the goodness of the fit and the ability of the
model to generalize to unseen data are therefore necessary to
evaluate the performance of a given methodology. A possible
metric is given by the quantity introduced in Eq. (24) evalu-
ated for f = m̃, which is in some proper statistical sense the
Bayesian equivalent of a more familiar frequentist χ2:

S(m̃; θ, y,CY )

dof
= 1

Ndata

(
(m − m̃)T K−1

xx (m − m̃)

+ (y − (FK)m̃)TC−1
Y (y − (FK)m̃)

)
.

(82)

The two pieces can be looked at separately to see if the fit is
deviating from the prior or from the data. The usual empirical
usage of expecting S/dof ≈ 1 is valid. Its distribution is
plotted in Fig. 7, left panel.

When quantifying the performance of the model on a test
set5 we can compute the log-loss

− log P(test|data).

5 As customary, we denote as training data the set of data entering
hyperparameter inference and gaussian conditioning, and as test data a
set of out-of-sample data, i.e. a set of data not entering neither hyperpa-
rameter inference nor gaussian conditioning. We can think of test data
as a new dataset with its own covariance C∗

Y , uncorrelated to the data
used for the Bayesian inference.
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Fig. 7 S/dof (left panel) and R̃∗2 (right panel). The distributions are obtained by sampling from the hyperparameter posterior p (θ |y,CY ) and
using the explicit expressions in Eqs. (82), (84)

Denoting with ∗ the quantities computed on the test points
this is given by

L(y∗) = n∗

2
log(2π) + 1

2
log pdet

(
(FK∗)K̃x∗x∗(FK∗)T + C∗

Y

)

+ 1

2
(y∗ − (FK∗)m̃∗)T

(
(FK∗)K̃x∗x∗(FK∗)T + C∗

Y

)+

× (y∗ − (FK∗)m̃∗). (83)

Excluding the first constant term, the other two terms are
interpretable: the first is a log-determinant of the posterior
covariance matrix, so it’s a measure of the volume occupied
by the distribution; in other words, it summarizes how large
is the final uncertainty. The second term is the usual squared
distance between prediction and data in units of the uncer-
tainty. Having this in mind we can define the metrics

R̃∗2 = 1

dim(y∗|y) ((FK∗)m̃ − y∗)T

×
(
(FK∗)K̃xx(FK∗)T + C∗

Y

)+
((FK∗)m̃ − y∗), (84)

σ̃ ∗2 = exp

(
1

dim(y∗|y) log pdet
(
(FK∗)K̃xx(FK∗)T + C∗

Y

))
.

(85)

The quadratic form R̃∗2 should be about 1 (to be sure that
test data are described within uncertainty), while σ̃ quantifies
the average posterior error in a Bayesianly justified way. By
comparing the σ̃ values corresponding to different method-
ologies we can assess quantitatively which one is more or
less conservative.

In the context of the simple example presented in this
paper, we can use the BCDMS and lattice data as training
and test set respectively. Using samples from p (θ |y,CY )

and Eq. (84), we can access the full probability distribution
of R̃∗2, which is plotted in Fig. 7, right panel.

In this paper we do not try to compare our methodology to
the standard results obtained with a non-Bayesian approach,
as it would require a substantial amount of work beyond
the scope of the rest of the paper. We leave it to a future
analysis with a more complete DIS dataset. We just com-
ment on how the goodness-of-fit metrics we have shown here
would (or wouldn’t) apply: the log-loss is defined only within
a Bayesian inference, so it would not allow comparisons
between our methodology and the standard ones. It would
only allow comparisons, say, between different choices of
kernel for the GP, or between a GP and a non-GP but still
Bayesian model. On the other hand, the quantity R∗2 from
Eq. (84) can be generalized to a standard fit – for example, in
the case of the MonteCarlo fits carried out within the NNPDF
methodology, the posterior mean m̃ and covariance matrix
K̃xx should be replaced by the mean and covariance matrix
of the replicas – and would therefore allow for a quantitative
comparison between our methodology and a non-Bayesian
approach.

5 Summary and future work

We have described a Bayesian methodology for the solution
of the inverse problem underlying the determination of PDFs.
GPs are used for the modelling of the PDF prior. Known
physical constraints, such as sum rules, kinematic limit and
small-x power behaviour are implemented in the prior by
suitable manipulation of the GP kernel. We discussed the
case of observables that depend linearly on the PDF, and the
analytical simplification occurring in this scenario, and we
applied the methodology to two simple examples concerning
the extraction of a single PDF flavor from a reduced dataset of
DIS structure functions and lattice correlators. In order to val-
idate our approach we have used pseudo-data produced from
a known underlying law. We have found that, even in the pres-
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ence of noisy data, the input model is reconstructed within
the quoted error. We have discussed the mathematical defini-
tion of the final uncertainties given by this approach, which
allows for a quantitative estimation of the different compo-
nents entering the PDF error. Finally we have discussed the
validation of the results by introducing a set of metrics, which
allow to assess the goodness of a given methodology and
compare different ones, using Bayesianly justified figures of
merit.

This work is intended to be a preliminary study to explore
the main features, advantages and limitations of the Bayesian
approach, and it paves the way to a full PDF determination
from an extended DIS dataset. This will be the object of a
future separate paper, in which we aim to deliver a full DIS-
only PDF set, to be compared to other available sets based
on parametric regression.

In order to achieve a global PDF determination, not
only based on DIS data but including also LHC hadronic
observables, the general approach described here can still be
applied, but no analytical simplification occur, as described
in Sect. 2.5. This implies that a Monte Carlo with dimension
given by the total number of parameters and hyperparame-
ters has to be run to access the full posterior, which makes
the problem computationally more expensive than the lin-
ear case, where the Monte Carlo dimension is given by the
number of hyperparameters only. The general features of the
Bayesian approach still hold, and the development of a frame-
work for a global PDF determination will be the object of a
further studies.
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Appendix A: Sum rules

Following the discussion in Sect. 2, we associate a GP to each
PDF in the evolution basis. The valence distributions Va obey
sum rules that we want to incorporate into the prior. This can
be done by associating a GP to the indefinite integral of the
PDF: denoting as V̂a the primitive of Va, we associate to the
former a GP having mean and kernel

m̂a (x) and K̂ a (x, y) . (86)

It can be shown [11] that Va is then represented by a GP
having as mean and kernel

ma (x) = ∂x m̂
a (x) , K a (x, y) = ∂x∂y K̂

a (x, y) . (87)

In formulae

Va(x) = V̂ ′
a(x) , V̂a ∼ GP(

0, K̂ a (x, y)
)
,

Va ∼ GP(
0, K a (x, y)

)
, a = 1, 3, 8, 15 , (88)

where we used V1(x) to denote the total valence V (x), the
′ denotes the derivative with respect to x , and K a (x, y) is
given in Eq. (87). The sum rules can then be expressed by
introducing additional GPs for the primitive of the PDFs,
with kernels satisfying Eq. (87), and by imposing linear con-
straints between them. In the case of the valence sum rules
we get

V̂ (1) − V̂ (0) = V̂8(1) − V̂8(0) = V̂15(1) − V̂15(0) = 3 ,

(89)

V̂3(1) − V̂3(0) = 1 . (90)

Similarly the momentum sum rule is written in terms of the
indefinite integral of x� and xg, denoted as x̂� and x̂g, and
can be imposed by introducing the GPs

x̂� ∼ GP(0,��), x̂g ∼ GP(0,�g), (91)

and imposing the linear constraint

x̂�(1) + x̂g(1) − x̂�(0) − x̂g(0) = 1. (92)

The power behaviour for x → 0+ of a given PDF can
be enforced by rescaling the corresponding kernel function
according to Eq. (53). In the case in which sum rules and
small-x power behaviour need to be imposed at the same
time, the rescaling function of Eq. (54) should be applied
at the kernel representing the primitive. For example, if we
want te valence distribution V to scale as xαV , then the kernel
for V̂ should be rescaled using

φ (x) = xαV +1.
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Fig. 8 Samples from p (f∗, α, l0, σ |y,CY ) plotted in linear scale (left panel) and distribution of f∗ − f∗0 | (FK) f + ε = y normalized to f∗0 (right
panel). Both plots refer to the case of the analysis on the BCDMS data accounting for the kinetic constrain T3 (1) = 0

Since for the primitives we use a Gibbs kernel (Eq. (50))
with variable length scale, the length scale affects the ampli-
tude of the derivatives. The length scale is proportional to
x , so the derived process has standard deviation proportional
to 1/x . In our specific case, it turns out that the correction
does not alter the intended variance of the derived process:
∂(φ (x) f (x)) ∼ xαV · 1 + xαV +1 · x−1 ∼ xαV .

Appendix B: Change of the prior in the extrapolation
region: kinetic limit

As pointed out in Sect. 3.4, the behavior of the posterior in
the extrapolation regions strongly depends on the specific
choice we make for the prior: in the absence of any exper-
imental information the posterior reduces to the prior. The
kinematic constraint according to which all flavors vanish at
x = 1, known as kinetic limit, is an example of a property
that, when implemented, directly modifies the prior in the
large-x extrapolation region. Given that the conditions

�(1) = g(1) = Ta(1) = V (1) = Va(1) = 0, a = 3, 8, 15,

(93)

are simple linear constraints involving each individual flavor,
they can be implemented in the prior by treating them as
additional datapoints, extending the FK table. In the left panel
Fig. 8 we show the results we got for the posterior when
performing the analysis on the BCDMS data accounting for
the kinetic limit: unlike the analogous plot in Fig. 2 – where at
large x the error increases reflecting the lack of experimental
data – the error in x = 1 now shrinks to 0, according to the
new information we implanted in the prior.

In the right panel of Fig. 8 we plot the distribution of

f∗ − f∗0 | ((FK) f + ε = y) ,

which allows to check that the additional constraint is not
introducing a bias. Comparing this result with the analogous
plot in Fig. 6, it is clear how by imposing the kinetic limit we
obtain a better description of the underlying law at large-x .
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