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Abstract

We discuss a Bayesian methodology for the solution of the inverse problem underlying
the determination of parton distribution functions (PDFs). In our approach, Gaussian
Processes (GPs) are used to model the PDF prior, while Bayes’ theorem is used in order
to determine the posterior distribution of the PDFs given a set of data. We discuss the
general formalism, the Bayesian inference at the level of both parameters and hyperpa-
rameters, and the simplifications which occur when the observable entering the analysis
is linear in the PDF. We benchmark the new methodology in two simple examples for
the determination of a single PDF flavor from a set of Deep Inelastic Scattering (DIS)
data and from a set of equal-time correlators computed using lattice QCD. We discuss
our results, showing how the proposed methodology allows for a well-defined statistical
interpretation of the different sources of errors entering the PDF uncertainty, and how
results can be validated a posteriori.
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1 Introduction

The determination of one or more continuous functions knowing a finite set of experimen-
tal observations is notoriously an ill-posed problem, which goes under the name of inverse
problem. The extraction of Parton Distribution Functions (PDFs) from experimental and
lattice data is an example of this in high-energy physics. PDFs are an essential input to per-
form analyses and computations in collider phenomenology, and are required for a number of
precision studies concerning the determination of standard model parameters and searches
for new physics. PDF determinations currently used for phenomenological studies include
MSHT20 [1], CTEQ18 [2], NNPDF4.0 [3], HERAPDF2.0 [4]. A strong dependence on the
PDFs has been observed in recent determinations of the strong coupling αs and of the W
boson mass carried out by the ATLAS collaboration [5, 6]: when changing the PDF set used
as input in the analysis, the output fluctuates by an amount which is bigger than the quoted
PDF error. These discrepancies could be generated by some incompatibilities between in-
dependent PDF determinations and raises the question whether all the relevant sources of
uncertainty are properly accounted for in the quoted PDF error. Comparing the results ob-
tained with different methodologies is one way to test the robustness of the error estimates,
and combination studies have been performed to provide the community with a unique PDF
set to be used for phenomenology [7].

Given the ill-posed nature of the inverse problem underlying the determination of PDFs,
a regularization method is necessary in order to make the problem well defined. The reg-
ularization reduces the problem to a finite dimensional and solvable one, but it inevitably
introduces some bias, which depends on the specific methodological choices. The solution to
an inverse problem will therefore come with an error associated with the methodology, which
has to be quantified, just like the other uncertainties entering a PDF fit (uncertainties of the
experimental data and of the input standard model parameters, theory errors due to missing
QCD higher orders). Despite specific efforts in this direction have already been pursued -
for example in Refs. [8, 9] the different components of PDF uncertainty are qualitatively
assessed using the formalism of closure tests - a way to assess quantitatively the size of the
methodological error in a PDF determination is still missing.

In this paper we investigate a Bayesian approach to the solution of inverse problems, by
extending the preliminary work discussed in Ref. [10], and further developing some of the ideas
introduced in Ref. [9]. The goal is to develop a methodology, orthogonal to those currently
used within the collinear PDF community, where all the relevant sources of uncertainty,
including the methodological one, have a clear mathematical definition. We argue that such
methodology would simplify the discussion around discrepancies of the kind observed, for
instance, in Refs. [5, 6], providing a quantitative estimate of the different sources of error
entering the PDF uncertainty.

In the fitting methodologies currently used for PDF determinations, the unknown model
is parameterized in terms of a finite (albeit large) set of parameters, which are then fitted to
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the observed data. In the Gaussian Processes approach, rather than starting by a parame-
terization, a prior probability distribution is introduced for the target model in its original
space, encoding our a priori theoretical knowledge of the unknown target function. Using
Bayes’ theorem, it is possible to determine the posterior distribution of the solution after tak-
ing into account a set of experimental observations. This approach has multiple advantages:
the inverse problem is well-defined, all the assumptions made on the model are explicitly
stated in the choice of the prior and the results are given in terms of posterior probability
distributions, making all the relevant uncertainties well-defined from a mathematical point
of view. On the other hand, as with any other regularization method, the Bayesian approach
introduces a bias through the choice of a specific prior; the posterior probability distribution
does depend on the choice of the prior and this dependence needs to be studied and properly
quantified. In this paper we will argue that the quantification of the existing bias and the
different sources of error affecting the final result is particularly clear in a Bayesian approach.

Our Bayesian approach relies on promoting the values of the PDFs to stochastic variables,
whose probability distributions are constrained by experimental data. These posterior prob-
ability distributions encode all the information about the PDFs. A possible way to do this
is by using the formalism of Gaussian Processes (GPs) [11], through which a suitable prior
for the unknown PDFs can be defined, in terms of a reduced number of hyperparameters.
GPs have already been used to solve inverse problems in various fields in physics, from geo-
physics [12] to lattice QCD [13, 14, 15, 16]. The main focus of this paper is the study of GPs
in the context of PDF determinations, including the choice of the most suitable kernel (which
defines the prior distribution), the optimization of the corresponding hyperparameters and
the way in which theoretical knowledge about PDFs – such as sum rules, kinetic limit, and
integrability constraints – can be encoded in the prior.

In Sec. 2 we recall the definition and some well-known properties of GPs, we set the no-
tation and spell out the different steps of the proposed methodology for PDF determination.
We focus on the case of observables linear in the PDF and we briefly discuss what changes
are required when quadratic observables are included in the analysis. In Sec. 3 we discuss the
choice of a prior distribution for PDFs and we provide two simple examples concerning the
determination of a single PDF flavor from a set of Deep Inelastic Scattering (DIS) data and
lattice equal time correlators. In Sec. 4 we discuss the results, the quantitative evaluation of
the different sources of uncertainties entering the analysis, and possible ways to validate the
results a posteriori. Conclusions and outlook are presented in Sec. 5.
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2 Gaussian Processes for Inference

In the following, we recall the definition of a Gaussian Process, setting the notation for the
subsequent sections. Moreover, we describe indetail the case of a GP regression in the pres-
ence of data that depend linearly on the GP, subject to a hyperparameterized prior. While
the case of linearly dependent data is sufficient for the investigation presented in this work,
we also introduce a more general case, which allows us to clarify the simplifications observed
in our current study, and sets the framework for further developments towards a global PDF
determination. Consequently, we are not going to provide an exhaustive presentation about
GPs, for which the reader could refer to the existing literature, such as Ref. [11].

2.1 Notation

In a Bayesian approach, the true value f(x) of the PDF for each x ∈ [0, 1] is treated as a
random variable. We should therefore think of x as a continuous index, which parametrizes
the elements of a stochastic process. A Gaussian process,

f ∼ GP (m, k) , (1)

is a particular type of stochastic process, whose probability distribution is entirely specified
by two functions, the mean m(x) and the kernel k(x, x′). The values of the function f at any
discrete set of points,

x = {xi; i = 1, . . . , N} ,

define a vector of stochastic variables

f = f(x) =

 f1
...
fN

 ∈ RN , fi = f(xi) , i = 1, . . . , N . (2)

The probability distribution of these variables is an N -dimensional Gaussian distribution,

f ∼ N (m,K) , (3)

whose mean and covariance are given by

m = m(x) , K = k(x,xT ) , (4)

and therefore

E[fi] = mi = m(xi) , (5)

Cov[fi, fj ] = Kij = k(xi, xj) . (6)
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In the following, we will distinguish the points in x for which the value f(x) is included in
the theoretical prediction for the measurements, and those where we want to infer the value
of the function. We denote the former by x and the latter by x∗. The corresponding vectors f
and f∗ are defined as in Eq. (2). In a Bayesian formalism, we define a prior joint distribution
for (f , f∗) and a likelihood function, which will depend on f . We can then compute the
posterior distribution for f∗ applying Bayes’ theorem. Assuming that

f ∈ RN , f∗ ∈ RM ,

then the Gaussian process defined in Eq. (1) yields a prior distribution,

p(f , f∗|θ) = 1√
det (2πK)

exp

{
−1

2

(
(f −m)T , (f∗ −m∗)T

)
K−1

(
f −m
f∗ −m∗

)}
, (7)

where K is now an (N +M)× (N +M) matrix 1,

K =

(
k(x,xT ) k(x,x∗T )

k(x∗,xT ) k(x∗,x∗T )

)
=

(
Kxx Kxx∗

Kx∗x Kx∗x∗

)
. (8)

The mean and kernel functions might depend on a set of additional parameters, usually
referred to as hyperparameters, and collectively denoted as θ. The dependence of the prior
on the hyperparameters is marked explicitly in Eq. (7).

2.2 Data and theory predictions

In Ref. [10] we distinguished two different types of input: direct observations of the stochastic
process, which we called point-wise data, and indirect ones, in which only some functions of
the process are actually observed. In this work we will focus on the more general case of
indirect observation. In particular, all the results are obtained for a likelihood model in
which the data appear as a linear functional of f . Sec. 2.5 describes how to go beyond this
assumption.

We denote by TI the prediction for the I-th datapoint, that will be computed as

TI =

∫
dx cI(x)f(x) , (9)

where cI(x) are known functions2. The TI are distributed according to a Gaussian, with

1We have slightly changed the notation here, compared to the one we used in Ref. [10].
2The method exposed in the following works for generic linear functionals, including those that could not

be expressed as integrals of regular functions cI(x). This is the case of the observables analysed in PDF fits,
but we limited to this form to simplify the presentation.
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mean value and covariance

E[TI ] =

∫
dx cI(x)m(x) , (10)

Cov[TI , TJ ] =

∫
dx′dx′′ cI(x

′)k(x′, x′′)cJ(x
′′) = AIJ . (11)

In practice, we are going to be interested in cases where the integral above is computed on
a grid of points,

TI =
N∑
i=1

(FK)Iifi , (12)

where (FK)Ii =

∫
cI(x)pi(x), with pi(x) an interpolation polynomial, relative to xi.

The matrix (FK) is called an FK-table in the NNPDF jargon, and the notation reflects
this convention. Note that the case of point-wise data (direct observation) is obtained in this
framework by setting (FK) to the identity. The average and the covariance of the theoretical
prediction T induced by the prior probability distribution of f are given by the discretized
versions of Eqs. (10) and (11),

E[TI ] = (FK)Ijmj , (13)

Cov[TI , TJ ] = (FK)Ii (Kxx)ij (FK)TjJ . (14)

The experimental central value for the data point corresponding to TI is denoted yI . Note
that TI is a stochastic variable, while yI is a constant. In our model, the likelihood is also
assumed to be a multivariate Gaussian distribution, and the fluctuations of the data around
their central values are described by the experimental covariance matrix CY .

In the rest of the paper, we will omit the indices like i, j and I, J in the equations above.
Boldface vectors, like f for instance, refer to vectors computed by evaluating the function f
on a grid of points. Vectors in the space of data will be denoted by ordinary latin characters;
the context should make it easy to identify these vectors in data space, even though we do
not have any typographic convention to identify them.

2.3 Inference for the Model

Following the discussion in Ref. [10], we incorporate the knowledge of linear data by intro-
ducing the stochastic variable

ϵ ∼ N (0, CY ) , (15)

and imposing that
(FK)f + ϵ = y , (16)
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where y are the observed experimental central values and CY is the covariance matrix of the
data. The linear dependence of y on f is encoded in the matrix (FK).

We are interested in the probability distribution of the vector f and hyperparameters θ,
conditioned on Eq. (16), which we denote as

p (f , θ|y) = p (f |θ, y) p (θ|y) . (17)

The two factors on the right-hand side of the equation are best analysed separately, since
being able to sample both of them is enough to sample the left-hand side. We focus here
on the first term, while the second factor will be discussed in the following subsection. The
function p (f |θ, y) denotes the posterior probability distribution of the vector f for fixed
values of the data and of the hyperparameters θ. In order to compute it, we note that at the
level of prior distributions, the vectors f and f∗, and the data measurement error ϵ must be
uncorrelated, hence the covariance matrix describing the joint prior distribution of the three
sets of stochastic variables, (f , f∗, ϵ), is a block-diagonal (N +M +Ndat)× (N +M +Ndat)
matrix

Cov =

(
K 0
0 CY

)
, (18)

where K is the (N +M)× (N +M) matrix introduced in Eq. (8). Therefore the joint prior
is

p(f , f∗, ϵ|θ) = 1√
det (2πK)

exp

{
−1

2

(
(f −m)T , (f∗ −m∗)T

)
K−1

(
f −m
f∗ −m∗

)}
× 1√

det (2πCY )
exp

{
−1

2
ϵTC−1

Y ϵ

}
. (19)

Conditioning on the observed values y in Eq. (16),

p(f , f∗|θ, y) ∝
∫

dϵ p(f , f∗, ϵ|θ) δ((FK)f + ϵ− y) (20)

∝ exp

{
−1

2

(
(f −m)T , (f∗ −m∗)T

)
K−1

(
f −m
f∗ −m∗

)}
× exp

{
−1

2
((FK)f − y)TC−1

Y ((FK)f − y)

}
. (21)

The final step to get p (f |θ, y) involves marginalizing f∗, which is readily done remembering
that (f , f∗) obey a multi-dimensional Gaussian distribution,∫

df∗ p(f , f∗|θ, y) ∝ exp

{
−1

2
(f −m)TK−1

xx (f −m)

}
× exp

{
−1

2
((FK)f − y)TC−1

Y ((FK)f − y)

}
=exp {−S(f ; θ, y)} , (22)

7



so that

p(f |θ, y) = exp {−S(f ; θ, y)}∫
df exp {−S(f ; θ, y)}

. (23)

This result was already derived in Eq. (45) in Ref. [9]. Note that

S(f ; θ, y) =
1

2

{
(f −m)TK−1

xx (f −m) + ((FK)f − y)TC−1
Y ((FK)f − y)

}
(24)

is a quadratic form in f , therefore the normalization in Eq. (23) can be computed analytically,
yielding a Gaussian posterior for f ,

p (f |θ, y) = N
(
f ; m̃, K̃xx

)
. (25)

Its mean m̃ and covariance K̃xx are given by 3

m̃ = m+Kxx(FK)T C+
Y T (y − (FK)m) , (26)

K̃xx = Kxx −Kxx(FK)TC+
Y T (FK)Kxx , (27)

where we introduced
CY T = (FK)Kxx(FK)T + CY , (28)

which is the covariance of the vector (FK) f + ϵ, and the superscript “+” denotes the matrix
pseudoinverse. In the following, we replace the pseudoinverse with the inverse, and the
formulae derived implicitly assume that the corresponding matrices are invertible. Eq. 27
can be rewritten as

K̃−1
xx = K−1

xx + (FK)TC−1
Y (FK) . (29)

Note that here, and in the rest of this paper, the notation M−1
xx denotes the inverse of the

matrix Mxx and not the (x,x) block of the matrix M−1. A more precise notation would be
(Mxx)

−1, not to be confused with (M−1)xx.
Eqs. (26) and (29) were already obtained in Ref. [9], while Eq. (27) provides an alternative

expression for the posterior covariance, and is the standard formulation in the context of
Gaussian processes. Similarly, starting from the same prior and marginalizing with respect
to f we can obtain the posterior for f∗,

p (f∗|θ, y) = N
(
m̃∗, K̃∗

xx

)
, (30)

with

m̃∗ = m∗ +Kx∗x(FK)TC−1
Y T (y − (FK)m) , (31)

K̃x∗x∗ = Kx∗x∗ −Kx∗x(FK)T C−1
Y T (FK)Kxx∗ . (32)

3See [17, ex. 7.4, p. 295] for the proof.
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Focusing on the corrections to the mean of the process due to Bayesian inference,

∆m = m̃−m ,

∆m∗ = m̃∗ −m∗ ,

we find
∆m∗ = Kx∗xK

−1
xx∆m , (33)

and
K̃x∗x∗ = Kx∗x∗ −Kx∗xK

−1
xxKxx∗ +Kx∗xK

−1
xx K̃xxK

−1
xxKxx∗ . (34)

Let us emphasise once again that, in this approach, the values of the function f are
stochastic variables, and the information that we can retrieve about the function at the
points x∗ is precisely encoded in the posterior probability distribution. Rather than finding
one solution, we find the probability distribution of the vector f∗. This is reminescent of
what is done when bootstrapping a fit to the data: the posterior distribution in this latter
case is the distribution of fit results over the bootstrap sample.

2.4 Inference for the Hyperparameters

We now turn to the second term of Eq. (17), namely the posterior of the hyperparameters θ
given the data. Using Bayes’ theorem we have

p (θ|y) = p (y|θ) pθ (θ)∫
dθ p (y|θ) pθ (θ)

, (35)

where pθ (θ) denotes the hyperparameters prior. The likelihood p (y|θ) is proportional to
the normalization of the probability distribution p (f |θ, y) in Eq. (23), and as such can be
computed integrating over f . Alternatively we can get its explicit expression by noticing that
the observed data are given by y = (FK) f + ϵ with

(FK) f ∼ N
(
(FK)m, (FK)Kxx(FK)T

)
, (36)

ϵ ∼ N (0, CY ) , (37)

and that therefore

y ∼ N ((FK)m, CY T ) , (38)

with CY T defined in Eq. (28). In both cases one finds

p (y|θ) = e−
1
2
(y−(FK)m)TC−1

Y T (y−(FK)m)√
det [2πCY T ]

. (39)
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Note that the inference for the model, which yields the posteriors p (f |θ, y) and p (f∗|θ, y),
is completely analytical. This second inference step, which determines the posterior p (θ|y),
in general cannot be solved analytically: because of the hyperparameters appearing in the
square root in Eq. (39), the denominator of Eq. (35) cannot be computed analytically any
longer. Moreover p(y|θ), as a function of θ, in general is not a conveniently analyzable
probability density function that we know how to sample from. Therefore, this step has to
be addressed as a standard inference problem. We can then follow two approaches:

• select the hyperparameter values as the mode of the posterior p (θ|y):

θMAP = arg maxθ p (θ|y) , (40)

• use an MCMC algorithm to sample from the posterior p (θ|y).

Using this second approach the uncertainty due to hyperparameter selection is incorporated
into the final PDF uncertainty, and PDFs fitting is reduced to a Monte Carlo problem.

While finding θMAP is computationally less demanding than MCMC, we opt for the full
inference because of our focus on uncertainty quantification. Stopping at a single “best”
value can dramatically alter the posterior variance, see, e.g., [18, Fig. 18.18, p. 713].

2.5 The quadratic case

So far we have considered the case in which the theoretical predictions are linear in fi,
according to Eq. (12). In this section we discuss what changes when we consider observables
with quadratic dependence on f . Denoting the FK-table for a quadratic observable T quad as

(̂FK), Eq. (12) becomes

T quad
I =

N∑
i,j=1

(̂FK)Iijfifj . (41)

The prior given in Eq. (19) remains unchanged, but conditioning now results in

fT (̂FK)f + ϵ = y , (42)

so that, following the same steps as in Sec. 2.3, the posterior p(f |θ, y) is now given by

p(f |θ, y) ∝ exp
{
−Ŝ(f ; θ, y)

}
, (43)

with

Ŝ(f ; θ, y) =
1

2

{
(f −m)TK−1

xx (f −m) + (fT (̂FK)f − y)TC−1
Y (fT (̂FK)f − y)

}
. (44)
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The full posterior p (f , θ|y) can be written using Bayes’ theorem as

p (f , θ|y) =
exp

{
−Ŝ(f ; θ, y)

}
pθ (θ)∫

dθdf exp
{
−Ŝ(f ; θ, y)

}
pθ (θ)

. (45)

By multiplying numerator and denominator by the marginal likelihood

p (y|θ) ∝
∫

df exp
{
−Ŝ(f ; θ, y)

}
(46)

we can recast Eq. (45) in the same form as Eq. (17) with

p (f |θ, y) =
exp

{
−Ŝ(f ; θ, y)

}
p (y|θ)

and p (θ|y) = p (y|θ) pθ (θ)∫
dθp (y|θ) pθ (θ)

. (47)

The difference with respect to the linear case is that Eq. (44) is not quadratic in f . It follows
that the posterior p(f |θ, y) is not a Gaussian any longer and the likelihood p(y|θ) cannot be
computed analytically.

Both the inference on the parameters f and on the hyperparameters θ has therefore to
be performed at the same time by running a MCMC algorithm starting from Eq. (45). No
simplifications occur, and the dimension of the Monte Carlo to run, corresponding to dim (θ)
in the linear case, is now dim (f)+dim (θ). This very same approach would work for a generic
functional of f .
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3 Gaussian Processes for PDFs

In the following we apply the formalism described in the previous section to two concrete
examples. We consider only the simpler case of observables linear in f , where the inference
on the parameters can be done analytically. We first show how, by a suitable choice of the
prior, we can implement known physical constraints such as the kinematic limit, sum rules
and small-x behaviour. We then give a complete example of the workflow, by determining
the nonsinglet triplet PDF

T3 = u+ − d+ ,

using a set of synthetic data, first for DIS structure functions, and then for lattice equal-time
correlators.

3.1 Prior distribution for T3

When fitting PDFs we can work in the so-called evolution basis with six non-singlet quark
distributions,

Ta(x) , a = 3, 8, 15 , Va(x) , a = 3, 8, 15 , (48)

the quark singlet distribution, Σ(x), and the gluon distribution, g(x). In the following we
will be interested in the nonsinglet triplet distribution T3, to which we associate a GP with
zero mean and kernel k

T3 ∼ GP(0, k) . (49)

The choice of the GPs that define the prior distributions needs to reflect the knowledge
of any physical property of the system. We use here a Gibbs kernel [11, p. 93],

k (x, y) = σ2

√
2l (x) l (y)

l2 (x) + l2 (y)
exp

[
− (x− y)2

l2 (x) + l2 (y)

]
(50)

with

l (x) = l0 × (x+ δ) . (51)

The quantities σ and l0 are hyperparameters of the GP, while δ is a small fixed number which
regularizes k when x, y → 0. This choice ensures that when approaching the small-x domain
the correlation length decreases linearly in x, reflecting the little knowledge we have in this
kinematic region. Note that

k (x, x) = σ2 , (52)

which implies a constant amplitude of the kernel on the full x domain. Since we do know
something regarding the power behaviour of the PDF at small-x, it would be convenient to
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encode it in the prior. This can be done by introducing an additional hyperparameter α and
by rescaling the kernel

k (x, y) 7→ ϕ (x) k (x, y)ϕ (y) , (53)

with

ϕ (x) = xα , (54)

so that for the rescaled kernel

k (x, x) ∝ x2α . (55)

In the case of T3, the PDF has to be integrable in x = 0, which can be imposed by choosing
α ∈ (−1, 0]. More properties can be implemented in the prior, such as sum rules and
kinematic limit, discussed in Appendix A, B.

It should be kept in mind that the choice of the kernel is crucial, and that, when limited
experimental data are available, different kernels lead to different results. For the sake of
this paper, which aims at presenting the main ideas of the methodology in simple terms, we
limit our study to the case of the Gibbs kernel. However, when moving to more complex
studies which aim to be used for phenomenology, different choices should be explored, by
testing different kernels or defining new kernels suitable for the specific problem of PDF
determination. Here follow two ways a particular choice of kernel could turn out wrong in
our case. First, the kernel almost completely determines the extrapolation behavior: in this
case a mistaken assumption cannot be corrected by the data. Second, and more subtly, it
is easy to inadvertently define an ill-conditioned kernel; in other words, a kernel which for
practical matters behaves as a finitely parametric model, or that is still “fat” in infinite
dimensions, but induces non-zero probability only on some overly specific functions. The
textbook example of bad kernel is the exponential quadratic e−(x−y)2 , widely used for its
simplicity, yet encoding a strong prior; the Gibbs kernel is a variant of it, and so we expect
it to have similar problems. Sure that (our own) potential future works will coast along with
the Gibbs kernel by inertia, we say, Reader: heed our bootless warning.

3.2 Example 1: T3 from BCDMS data

Considering DIS on a proton target, the NNLO theory prediction for the structure function
F p
2 is

F p
2 = Cg ⊗ g + CΣ ⊗ Σ+ CT3 ⊗ T3 + CT8 ⊗ T8 + CT15 ⊗ T15 , (56)

where g, Σ, T3, T8, T15 denote PDF flavors in the so-called evolution basis and Ci the corre-
sponding Wilson coefficients. Considering a neutron target instead and assuming isoscalarity,
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the neutron PDFs are just the same, except for u, ū and d, d̄, which are exchanged. Since
T3 = u+ − d+ it follows that the neutron structure function Fn

2 can be written as

Fn
2 = Cg ⊗ g + CΣ ⊗ Σ− CT3 ⊗ T3 + CT8 ⊗ T8 + CT15 ⊗ T15 , (57)

with the same Wilson coefficients as in the proton case. Considering a deuterium target, for
a generic flavor the corresponding nuclear PDF is

fd
i =

1

2
(fp

i + fn
i ) . (58)

The deuterium structure function is therefore given by averaging the ones for proton and
neutron, getting

F d
2 = Cg ⊗ g + CΣ ⊗ Σ+ CT8 ⊗ T8 + CT15 ⊗ T15 . (59)

Hence we can define the observable

F p
2 − F d

2 = CT3 ⊗ T3 , (60)

which is expressed as the convolution of the Wilson coefficient CT3 with just one PDF, viz.
T3. The determination of T3 using F p

2 −F d
2 only involves one flavor and one FK table, making

it an ideal testbed for the method.

Data and FK table Rather than considering real experimental data, we will consider
pseudo-data constructed from a known underlying law. This will allow us to test how well
the methodology is able to reconstruct the input model (see discussion in Sec. 4). Starting
from the datasets BCDMSP and BCDMSD presented in Ref. [19], pseudo-data are generated
by identifying points for F p

2 and F d
2 having the same values of the kinematic variables, and

taking their difference, which yields a total of 333 points. Following the standard procedure
in PDF fits based on factorization, we apply kinematic cuts excluding datapoints where
power suppressed corrections could be relevant, leaving 248 points in our analysis. For
the experimental error CY , we consider the full experimental covariance for the observable
F p
2 − F d

2 ,

CY = Cov [F p
2 , F

p
2 ] + Cov

[
F d
2 , F

d
2

]
− 2Cov

[
F p
2 , F

d
2

]
, (61)

which is computed using the publicly-available experimental information. As underlying law
we could use any functional form we like. To consider a realistic scenario we take the central
value of the recent PDF release NNPDF4.0. We denote as y0 the data generated from the
underlying law f0 using the corresponding (FK) table

y0 = (FK) f0 . (62)

The corresponding experimental measurements y entering Eqs. (16), (39) are built as

y = y0 + η , with η ∼ N (0, CY ) . (63)
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Hyperparameters inference Hyperparameters inference is the first step of the procedure
and is carried on as described in Sec. 2.4. The hyperparameters entering the analysis are α, l0
and σ. As a prior we choose a flat4 distribution having support (0, 10) in the case of l0 and σ,
and (−1, 0) in the case of α, in order to ensure the integrability of T3 at small-x. To produce
results we have run an MCMC algorithm using the Python package PyMC [20]: the NUTS
sampler is run on 4 independent chains, which are merged after thermalization in a unique
set of samples. The posteriors for the three hyperparameters are plotted in Fig. 1. Starting
from flat priors, the inference based on the available data generates non-trivial posterior
distributions. We will comment more extensively on these results later.

Gaussian inference and results Having determined the posterior of the hyperparameters
p (θ|y, CY ), we can generate an ensemble of hyperparameters by sampling this distribution.
For each hyperparameters sample, the posterior of the parameters p (f∗|θ, y, CY ) can be
computed analytically, and a Gaussian replica can be drawn from it. This two-step procedure
produces exactly a sample from p (f∗, θ|y, CY ). In Fig. 2 we show the final results, obtained
by sampling from p (f∗, θ|y, CY ).

3.3 Example 2: T3 from lattice data

The same kind of inverse problem as the one presented in the previous section is found when
reconstructing PDFs from a discrete set of values for lattice equal-time correlators [21, 22, 15].
Following Ref. [22], we can reconstruct the distribution T3 from a set of data for reduced
Ioffe-time pseudodistributions [23]. Denoting the latter as M

(
ν, z23

)
, its imaginary part is

related to T3 by the integral relation

Im [M] =

∫ 1

0
dxCIm

(
xν, µ2z23

)
T3

(
x, µ2

)
. (64)

Also in this case we consider pseudo-data: central values are built according to Eq. (64) using
the analytical expression and the kinematic values described in Ref. [22] and NNPDF4.0 as
input PDF set. This gives a total of 48 points in the

(
ν, z23

)
plane. The covariance matrix CY

in this case is given by the uncertainties coming from the actual lattice simulation and we use
here the covariance described in Ref. [22]. Also in this case, Eq. (64) is implemented as per
Eq. (12) by means of suitable FK tables. We repeat the same steps as in the previous section,
starting from the same prior for T3 and changing only the FK tables and data entering the
framework. The posterior for the hyperparameters and the resulting PDF are plotted in
Figs. 3, 4.

4Flat priors are not a good default in general. Here, with only three free hyperparameters, the choice of
prior does not matter much; but with the additional model complexity we expect to employ for the full PDF
analysis, it will be worth making a reasoned choice.
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Figure 1: 1-dimensional (left panel) and 2-dimensional (right panel) posteriors of the hyperparame-
ters α, l0 and σ. The hyperparameter σ is characterized by a sharply peaked posterior located around
σ ∼ 0.25 which quickly decays to zero (for this reason in the posterior plot only the region (0, 1) is
shown, even if the support of the prior is (0, 10)); α tends to sit closer to 0, with a slow decay for
smaller values towards −1; the l0 posterior discards the smaller values of the correlation length, it
shows a peak for l0 ∼ 1.7 and then remains fairly constant.
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Figure 2: Samples from p (f∗, α, l0, σ|y, CY ) plotted in linear (left panel) and log (right panel) scale.
The dark blue line represent the mean of the distribution, while the black dotted line the input PDF
NNPDF4.0 used to generate pseudo-data. The shaded regions represent the 68CL and 95CL intervals,
and in light blue we plot a few representative samples from the distribution. The posterior displays a
smaller variance in the regions sensitive to experimental data, and an increasing spread in the small
and large-x extrapolation regions, where the results are mostly determined by the chosen prior.

3.4 Discussion

Looking at the posteriors plotted in Figs. 1, and 3, we notice how, even though we started
from flat priors, the inference based on the available data has generated non-trivial posterior
distributions, with more or less sharp peaks depending on the specific case we consider: while
BCDMS data give fairly peaked distributions, lattice data seem to allow a broader range
of hyperparameter values, expecially in the case of α and l0. As pointed out in Sec. 2.4,
the corresponding uncertainty is included in the final results: by sampling from the full
posterior p (f∗, θ|y, CY ) the PDF error plotted in Figs. 2, and 4, includes the component
due to different possible values of the hyperparameters. Overall, the posterior distributions
of the hyperparameters plus the Gaussian sampling performed according to the posterior
covariance matrix give a broader distribution at the level of the final PDF in the case of the
lattice data. Inspecting Fig. 2 a number of qualitative considerations can be done: in the
kinematic region sensitive to the data the input PDF f0 is reconstructed with a small error,
while in the small- and large-x extrapolation region, where no experimental information is
available, the posterior strongly depends on the prior we chose in the first place. As discussed
in Sec. 3.1 we incorporate in the prior a behavior giving larger error which yet is compatible
with integrability properties of T3. Lacking of any small-x experimental information, this is
what we find back in the posterior at small values of x (Fig. 2, right panel). Similarly for
x > 0.8 we enter the large-x extrapolation region, which is reflected by an increase of the error
band visible in the left panel of Fig. 2 (see Appendix B). Similar qualitative considerations
can be done for the lattice data case, by looking at the plot in Fig. 4.
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Figure 3: Same as Fig. 1 for the case of lattice pseudo-data. While the hyperparameter σ is
characterized by a sharply peaked posterior distribution, both α and l0 show fairly flat posteriors,
with the one for l0 only penalizing smaller values of the correlation length.

In the next section we will make the discussion around these results more quantitative,
showing how different components entering the final error can be identified and by introducing
different metrics to validate the methodology.
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Figure 4: Same as Fig. 2 for the case of lattice pseudo-data. As in the case of BCDMS data, smaller
error are observed in the kinematic regions which are sensitive to the available data. In general, by
comparing this plot with Fig. 2, it is clear how lattice data provide less stringent constraints on T3

than BCDMS. Nevertheless the input PDF is still well reconstructed by the posterior.
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4 Uncertainties and validation

In the following we discuss the final uncertainty of the result, and identify different compo-
nents associated to the experimental and reconstruction error, the latter being associated to
the ill-posed nature of inverse problems. We then discuss the extent to which the underlying
model used to generate pseudo-data is reconstructed.

4.1 Decomposition of the posterior covariance matrix

Vanishing experimental error Let us first consider the scenario of no experimental error,
i.e. let us assume that the experimental measurements reproduce the true data with no error.
From Eqs. (62), (63) it follows

y = y0 = (FK)f0 .

Following Sec. 3.1.1 of Ref. [12], let us define the resolution kernel as

R
(0)
x∗x = Kx∗x (FK)T

[
(FK)Kxx(FK)T

]−1
(FK) . (65)

Eq. (31) can be rewritten as

m̃∗ −m∗ = R
(0)
x∗x (f0 −m) (66)

which, for m∗ = m = 0, reduces to

m̃∗ = R
(0)
x∗x f0 . (67)

Eq. (67) shows that the result of Bayesian inference is a smeared version of the “true” answer

f0, with the smearing kernel given by R
(0)
x∗x. The difference between the mean value of the

posterior and the underlying law is

m̃∗ − f∗0 = R
(0)
x∗xf0 − f∗0 . (68)

We can further specialize the discussion by considering the case x∗ = x (i.e. by looking at
the posterior on the x-points of the FK table). In this case we have

m̃− f0 =
[
R

(0)
xx − 1

]
f0 , (69)

and the covariance of the posterior can be written as

K̃xx =
(
1−R

(0)
xx

)
Kxx . (70)

Using the FK tables, Eqs. (69), (70) can be recast in terms of bias B and variance V in data
space, as defined in Ref. [9]. The bias is the difference between the true data ytrue and the
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corresponding theory prediction computed using the result of the analysis, and represents the
amount by which the resulting model fails in reconstructing the true data. The variance gives
the error of the corresponding theory predictions. Writing down their explicit expressions
Eqs. (71), (72), it is clear that bias and variance in data space both vanish,

B = (FK) (m̃− f0) = (FK)
(
R

(0)
xx − 1

)
f0 = 0 , (71)

V = (FK) K̃ (FK)T = (FK)
(
1−R

(0)
xx

)
Kxx(FK)T = 0 . (72)

In the case of zero experimental error, the methodology reconstructs the input experimental
data exactly, independently on the specific values of the hyperparameters; note that despite
the fact that there is no bias in data space, the model function is not in general reconstructed
exactly, i.e. m̃ ̸= f0 (but they are equal if (FK) has independent columns). Therefore in the
case of infinitely precise data, perfect reconstruction is achieved at the data level, but not in
the functional space, where a residual reconstruction error is still present.

Non-vanishing experimental error Now let us introduce back a non vanishing experi-
mental error. The reconstruction kernel is

Rx∗x = Kx∗x (FK)T
[
(FK)Kxx(FK)T + CY

]−1
(FK) , (73)

and Eqs. (69), (70) become

m̃− f0 = [Rxx − 1] f0 + aTxxη , (74)

K̃xx = (1−Rxx)Kxx (1−Rxx)
T + aTxxCY axx , (75)

where we have introduced

aTxx = Kxx (FK)T
[
(FK)Kxx (FK)T + CY

]−1
, (76)

so that

Rxx = aTxx(FK) . (77)

The corresponding expressions in data space Eqs. (71), (72) become

B = (FK) [Rxx − 1] f0 + (FK)aTxxη , (78)

V = (FK) (1−Rxx)Kxx (1−Rxx)
T (FK)T + (FK)aTxxCY axx(FK)T . (79)

Perfect reconstruction is not achieved anymore: bias and variance in data space no longer van-
ish, and their specific value will depend on the choice of the hyperparameters for the kernel.
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The decomposition in Eqs. (74), (75) highlights the fact that there are two types of contri-
butions to the bias and to the posterior covariance matrix. The first term in Eqs. (74), (75)
comes from the limited reconstruction of the central value and indeed would vanish when
Rxx = 1 [12]. This term survives in the limit where CY → 0, i.e. in the limit of no experi-

mental errors on the data, in which case we have Rxx → R
(0)
xx and we recover Eqs. (69), (70).

The second term is the propagation of the covariance of the data into the covariance of the
model. In the case Rxx = 1, the only error fluctuations in the posterior distribution come
from this term. In Fig. 5, Montecarlo samples generated according to the reconstruction
and experimental components are plotted separately for the BCDMS results, in red and grey
respectively. In the medium-x region, where more experimental data are available, the PDF
uncertainty is dominated by the experimental error, yet a smaller reconstruction error is still
present; when moving to the small and large-x extrapolation regions the reconstruction error
becomes the dominant one, pointing out the lack of experimental information. We stress once
more how these qualitative considerations are precisely quantified in Eqs. (74), (75), giving
the analytical expression for the posterior covariance matrices associated to the experimental
and reconstruction error, making it possible to quote different component of the PDF error
in the context of a pheno analysis.
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Figure 5: Same as Fig. 2 with the 68% CL band for the experimental and reconstruction errors
plotted separately in grey and red respectively, according to Eq. (75). Note: the error bands are
overlapped with transparence, rather than stacked.

4.2 Validation

As discussed in the previous section, whenever we deal with noisy experimental information
perfect reconstruction of the true data is not achieved anymore and different methodologies
are expected to perform differently. In this section we introduce some statistical metrics
which allow to validate a given methodology. We discuss the definition of such metrics and
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what we expect in case of successful reconstruction of the underlying law. Finally we compute
their probability distribution for the results presented in the previous section.

Closure tests In the context of a closure test, i.e. when the analysis is performed on
pseudo-data built from a known model, as done in this paper, the results can be validated a
posteriori, by checking how well the posterior distribution describes the underlying law. A
first assessment is obtained by looking at the distribution of the stochastic variable

f∗ − f∗0 | ((FK) f + ϵ = y) ,

whose mean and covariance are given by m̃∗−f∗0 and K̃x∗x∗ . In Fig. 6 we plot its distribution,
normalized to f∗0 . The left (respectively, right) panel shows the result for the case of BCDMS
(respectively, lattice data): the difference is compatible with zero in the full x range, with a
smaller error in the kinematic region which is more sensitive to the observed data.

Figure 6: Distribution of f∗ − f∗0 | (FK) f + ϵ = y normalized to f∗0 .

In addition to the plot displayed in Fig. 6, a more quantitative measure of the inference
performances can be obtained from the value of the log-loss, i.e. the negative logarithm of the
posterior probability distribution that the stochastic variable f∗ is equal to the underlying
law f∗0

L(f∗0 , m̃
∗, K̃x∗x∗) = − log

(
P
[
f∗ = f∗0 | (FK) f + ϵ = y

])
, (80)

=
n∗

2
log(2π) +

1

2
log pdet K̃x∗x∗ +

1

2
(f∗0 − m̃∗)T K̃+

x∗x∗(f∗0 − m̃∗) . (81)

Note that in Eq. (80), f∗ | ((FK) f + ϵ = y) is a stochastic variable, whose probability density
is given by the posterior Gaussian Process, while f∗0 is the known underlying law. For
probabilities in (0, 1), the log-loss is 0 when the posterior assigns probability 100% to what
is actually observed, while with probability densities the scale is arbitrary. This means that
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in the continuous case the log-loss can be used to compare and benchmark inferences, but
its absolute value does not have a definite interpretation. As one can see in Eq. (81), the
log-loss penalizes not only wrong answers, i.e. posterior central values that differ from the
underlying law, but also large errors.

Although here we wrote out the expression of the log-loss for our specific GP model
(Eq. 81), the definition of log-loss is totally general within the Bayesian paradigm, so it could
be used to compare any other fully Bayesian inference to our method. We do not try such a
comparison in this paper.

Real data analysis When dealing with a real analysis the true underlying model is not
known. Some metrics assessing a posteriori the goodness of the fit and the ability of the
model to generalize to unseen data are therefore necessary to evaluate the performance of
a given methodology. A possible metric is given by the quantity introduced in Eq. (24)
evaluated for f = m̃, which is in some proper statistical sense the Bayesian equivalent of a
more familiar frequentist χ2:

S(m̃; θ, y, CY )

dof
=

1

Ndata

(
(m− m̃)TK−1

xx (m− m̃) + (y − (FK)m̃)TC−1
Y (y − (FK)m̃)

)
. (82)

The two pieces can be looked at separately to see if the fit is deviating from the prior or
from the data. The usual empirical usage of expecting S/dof ≈ 1 is valid. Its distribution is
plotted in Fig. 7, left panel.

0.98 1.00 1.02 1.04 1.06 1.08 1.10
5

0

5

10

15

20

25 S
dof

0.8 1.0 1.2 1.4 1.6 1.8 2.0
2

0

2

4

6

8

10 *2

Figure 7: S/dof (left panel) and R̃∗2 (right panel). The distributions are obtained by sampling from
the hyperparameter posterior p (θ|y, CY ) and using the explicit expressions in Eqs. (82), (84).
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When quantifying the performance of the model on a test set5 we can compute the log-loss

− logP (test|data) .

Denoting with ∗ the quantities computed on the test points this is given by

L(y∗) =
n∗

2
log(2π) +

1

2
log pdet

(
(FK∗)K̃x∗x∗(FK∗)T + C∗

Y

)
+

+
1

2
(y∗ − (FK∗)m̃∗)T

(
(FK∗)K̃x∗x∗(FK∗)T + C∗

Y

)+
(y∗ − (FK∗)m̃∗). (83)

Excluding the first constant term, the other two terms are interpretable: the first is a log-
determinant of the posterior covariance matrix, so it’s a measure of the volume occupied by
the distribution; in other words, it summarizes how large is the final uncertainty. The second
term is the usual squared distance between prediction and data in units of the uncertainty.
Having this in mind we can define the metrics

R̃∗2 =
1

dim(y∗|y)
((FK∗)m̃− y∗)T

(
(FK∗)K̃xx(FK

∗)T + C∗
Y

)+
((FK∗)m̃− y∗), (84)

σ̃∗2 = exp

(
1

dim(y∗|y)
log pdet

(
(FK∗)K̃xx(FK

∗)T + C∗
Y

))
. (85)

The quadratic form R̃∗2 should be about 1 (to be sure that test data are described within
uncertainty), while σ̃ quantifies the average posterior error in a Bayesianly justified way. By
comparing the σ̃ values corresponding to different methodologies we can assess quantitatively
which one is more or less conservative.

In the context of the simple example presented in this paper, we can use the BCDMS
and lattice data as training and test set respectively. Using samples from p (θ|y, CY ) and
Eqs. (84), we can access the full probability distribution of R̃∗2, which is plotted in Fig. 7,
right panel.

In this paper we do not try to compare our methodology to the standard results obtained
with a non-Bayesian approach, as it would require a substantial amount of work beyond the
scope of the rest of the paper. We leave it to a future analysis with a more complete DIS
dataset. We just comment on how the goodness-of-fit metrics we have shown here would
(or wouldn’t) apply: the log-loss is defined only within a Bayesian inference, so it would not
allow comparisons between our methodology and the standard ones. It would only allow
comparisons, say, between different choices of kernel for the GP, or between a GP and a
non-GP but still Bayesian model. On the other hand, the quantity R∗2 from Eq. (84) can

5As customary, we denote as training data the set of data entering hyperparameter inference and gaussian
conditioning, and as test data a set of out-of-sample data, i.e. a set of data not entering neither hyperparameter
inference nor gaussian conditioning. We can think of test data as a new dataset with its own covariance C∗

Y ,
uncorrelated to the data used for the Bayesian inference.
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be generalized to a standard fit - for example, in the case of the MonteCarlo fits carried out
within the NNPDF methodology, the posterior mean m̃ and covariance matrix K̃xx should
be replaced by the mean and covariance matrix of the replicas - and would therefore allow
for a quantitative comparison between our methodology and a non-Bayesian approach.
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5 Summary and future work

We have described a Bayesian methodology for the solution of the inverse problem underlying
the determination of PDFs. GPs are used for the modelling of the PDF prior. Known
physical constraints, such as sum rules, kinematic limit and small-x power behaviour are
implemented in the prior by suitable manipulation of the GP kernel. We discussed the case
of observables that depend linearly on the PDF, and the analytical simplification occurring
in this scenario, and we applied the methodology to two simple examples concerning the
extraction of a single PDF flavor from a reduced dataset of DIS structure functions and
lattice correlators. In order to validate our approach we have used pseudo-data produced
from a known underlying law. We have found that, even in the presence of noisy data, the
input model is reconstructed within the quoted error. We have discussed the mathematical
definition of the final uncertainties given by this approach, which allows for a quantitative
estimation of the different components entering the PDF error. Finally we have discussed the
validation of the results by introducing a set of metrics, which allow to assess the goodness of
a given methodology and compare different ones, using Bayesianly justified figures of merit.

This work is intended to be a preliminary study to explore the main features, advantages
and limitations of the Bayesian approach, and it paves the way to a full PDF determination
from an extended DIS dataset. This will be the object of a future separate paper, in which
we aim to deliver a full DIS-only PDF set, to be compared to other available sets based on
parametric regression.

In order to achieve a global PDF determination, not only based on DIS data but including
also LHC hadronic observables, the general approach described here can still be applied, but
no analytical simplification occur, as described in Sec. 2.5. This implies that a Monte Carlo
with dimension given by the total number of parameters and hyperparameters has to be run
to access the full posterior, which makes the problem computationally more expensive than
the linear case, where the Monte Carlo dimension is given by the number of hyperparameters
only. The general features of the Bayesian approach still hold, and the development of a
framework for a global PDF determination will be the object of a further studies.

Acknowledgments TG is supported by NWO via an ENW-KLEIN-2 project. The work
of LDD was supported by the ExaTEPP project EP/X01696X/1, and by the UK Science
and Technology Facility Council (STFC) grant ST/P000630/1.

We thank Juan Rojo and the members of the NNPDF collaboration for comments and
discussions.

27



A Sum rules

Following the discussion in Section 2, we associate a GP to each PDF in the evolution basis.
The valence distributions Va obey sum rules that we want to incorporate into the prior. This
can be done by associating a GP to the indefinite integral of the PDF: denoting as V̂a the
primitive of Va, we associate to the former a GP having mean and kernel

m̂a (x) and K̂a (x, y) . (86)

It can be shown [11] that Va is then represented by a GP having as mean and kernel

ma (x) = ∂xm̂
a (x) , Ka (x, y) = ∂x∂y K̂

a (x, y) . (87)

In formulae

Va(x) = V̂ ′
a(x) , V̂a ∼ GP

(
0, K̂a (x, y)

)
,

Va ∼ GP
(
0,Ka (x, y)

)
, a = 1, 3, 8, 15 , (88)

where we used V1(x) to denote the total valence V (x), the ′ denotes the derivative with
respect to x, and Ka (x, y) is given in Eq. (87). The sum rules can then be expressed by
introducing additional GPs for the primitive of the PDFs, with kernels satisfying Eq. (87),
and by imposing linear constraints between them. In the case of the valence sum rules we
get

V̂ (1)− V̂ (0) = V̂8(1)− V̂8(0) = V̂15(1)− V̂15(0) = 3 , (89)

V̂3(1)− V̂3(0) = 1 . (90)

Similarly the momentum sum rule is written in terms of the indefinite integral of xΣ and xg,
denoted as x̂Σ and x̂g, and can be imposed by introducing the GPs

x̂Σ ∼ GP(0,ΘΣ) , x̂g ∼ GP(0,Θg) , (91)

and imposing the linear constraint

x̂Σ(1) + x̂g(1)− x̂Σ(0)− x̂g(0) = 1 . (92)

The power behaviour for x → 0+ of a given PDF can be enforced by rescaling the
corresponding kernel function according to Eq. (53). In the case in which sum rules and
small-x power behaviour need to be imposed at the same time, the rescaling function of
Eq. (54) should be applied at the kernel representing the primitive. For example, if we want
te valence distribution V to scale as xαV , then the kernel for V̂ should be rescaled using

ϕ (x) = xαV +1 .
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Since for the primitives we use a Gibbs kernel (Eq. (50)) with variable length scale, the
length scale affects the amplitude of the derivatives. The length scale is proportional to x,
so the derived process has standard deviation proportional to 1/x. In our specific case, it
turns out that the correction does not alter the intended variance of the derived process:
∂(ϕ (x) f(x)) ∼ xαV · 1 + xαV +1 · x−1 ∼ xαV .
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B Change of the prior in the extrapolation region: kinetic
limit

As pointed out in Sec. 3.4, the behavior of the posterior in the extrapolation regions strongly
depends on the specific choice we make for the prior: in the absence of any experimental
information the posterior reduces to the prior. The kinematic constraint according to which
all flavors vanish at x = 1, known as kinetic limit, is an example of a property that, when
implemented, directly modifies the prior in the large-x extrapolation region. Given that the
conditions

Σ(1) = g(1) = Ta(1) = V (1) = Va(1) = 0 , a = 3, 8, 15 , (93)

are simple linear constraints involving each individual flavor, they can be implemented in the
prior by treating them as additional datapoints, extending the FK table. In the left panel
Fig. 8 we show the results we got for the posterior when performing the analysis on the
BCDMS data accounting for the kinetic limit: unlike the analogous plot in Fig. 2 - where at
large x the errorincreases reflecting the lack of experimental data - the error in x = 1 now
shrinks to 0, according to the new information we implanted in the prior. In the right panel

Figure 8: Samples from p (f∗, α, l0, σ|y, CY ) plotted in linear scale (left panel) and distribution of
f∗ − f∗0 | (FK) f + ϵ = y normalized to f∗0 (right panel). Both plots refer to the case of the analysis on
the BCDMS data accounting for the kinetic constrain T3 (1) = 0.

of Fig. 8 we plot the distribution of

f∗ − f∗0 | ((FK) f + ϵ = y) ,

which allows to check that the additional constraint is not introducing a bias. Comparing
this result with the analogous plot in Fig. 6, it is clear how by imposing the kinetic limit we
obtain a better description of the underlying law at large-x.
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