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We present the first purely theoretical calculation of the weak mixing angle in the MS scheme at
low energies by combining results from lattice QCD with perturbation theory. We discuss its corre-
lation with the hadronic contribution to the anomalous magnetic moment of the muon and to the
energy dependence of the electromagnetic coupling. We also compare the results with calculations
using cross-section data as input. Implications for the Standard Model prediction of the mass of
the W boson are also discussed.
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The weak mixing angle, θW , is a central parameter
in the Standard Model (SM) of particle physics, featur-
ing prominently in many precision observables, such as
parity violation, neutrino physics, or Z-pole measure-
ments. Thus, it serves as a useful tool for studying
the consistency of the SM across different energy scales.
In particular, the upcoming low-energy parity violat-
ing electron scattering experiments P2 at Mainz [1] and
MOLLER [2] at JLab profit from an enhanced sensitivity
due to an accidental suppression of the left-right polar-
ization cross section asymmetries which are proportional
to 1−4 sin2 θW ≪ 1. Just as the predecessor experiments
SLAC–E158 [3] and JLab–Qweak [4] they are sensitive to
higher-order SM corrections [5, 6], especially from the γZ
vacuum polarization function. The level of precision at
P2 and MOLLER requires even the inclusion of two-loop
electroweak effects [7, 8].

Analogous to the dependence on the energy scale µ
of the electromagnetic coupling, α̂(µ), i.e., its running,
higher order terms, in particular γZ vacuum polariza-
tion effects, can be incorporated into the running of the
weak mixing angle. The large logarithms that emerge
when using the weak mixing angle measured at high en-
ergy colliders as input in low-energy processes, call for
a systematic inclusion and re-summation of higher order
corrections. This procedure is renormalization scheme
dependent. For computational simplicity we choose the
MS scheme (denoted by a caret), where θ̂W is defined in
terms of the SM gauge couplings ĝ and ĝ′,

ŝ2 ≡ sin2 θ̂W =
ĝ′2

ĝ2 + ĝ′2
. (1)

Ref. [9] derived a relation between θ̂W (µ) and α̂(µ) in the
MS scheme (see Ref. [10] for an approach using a different
scheme). This allowed to straightforwardly include non-

perturbative hadronic contributions to the running of θ̂W
by using e+e− annihilation data in a dispersion relation.
The main source of uncertainty was due to the neces-
sary flavor separation, defined as the contribution of the
strange quark current relative to the up and down quark

currents. Significant progress was reported in Ref. [11]
where improved data, a more precise flavor separation
estimate, and the inclusion of higher-order perturbative
QCD (pQCD) corrections, led to a noticeable reduction
in the total uncertainty in ŝ2(0).

In a different development, there is a discrepancy be-
tween the measured [12–14] and predicted [15–18] values
of the anomalous magnetic moment of the muon1, aµ
(employing e+e− data for the hadronic vacuum polar-
ization contribution ahvpµ ). Recently, the results of the
CMD-3 experiment [19] revealed further tension when
compared with e+e− data sets from previous experi-
ments. Moreover, ab-initio lattice QCD (LQCD) cal-
culations [20–25] are in reasonable agreement with the
measured aµ and CMD-3. Since e+e− data also enter

into calculations of α̂ and θ̂W , these tensions should af-
fect these quantities as well, and an effort is required
to incorporate LQCD results in the respective SM pre-
dictions. A first step in this direction [26] showed how
LQCD can be used in an optimal way to include hadronic
effects into the running of α̂. A parametric expression in
terms of input parameters was given, simplifying the im-
plementation into global electroweak (EW) fits.

Applying the framework of Refs. [9, 11, 26], and ob-
taining the flavor separation entirely from LQCD, we de-
rive a purely theoretical SM prediction of ŝ2(0) in terms
of ŝ2(MZ), where MZ is the mass of the Z boson. We
also give a simplified formula which can be included into
EW fitting libraries. Finally, we quantify the correlations
between ŝ2(0), α̂(MZ), and ahvpµ .

We find a discrepancy between the lattice and the data-
driven predictions for the running. This tension (which
induces a positive shift of ∼ 8 × 10−5 in ŝ2(0) when ex-
perimental data are replaced by LQCD), is about 30% of
the uncertainty anticipated for future low-energy parity-
violating experiments. On the other hand, if this issue

1 To find details about all the contributions to aµ, refer to Ref. [15]
and the cited references therein.
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can be resolved, we would be left with a residual uncer-
tainty of δŝ2(0) = 2× 10−5, negligible for the low-energy
parity-violating experiments in the foreseeable future.

Our starting point is the vacuum polarization function,

Π̂(q2, µ2) = − i

3q2

∫
d4xeiqx⟨0|TJµ(x)Jµ(0)|0⟩ (2)

where Jµ is the electromagnetic current. LQCD com-
putes the subtracted vacuum polarization function,
Π(−Q2) = Π̂(0, µ2) − Π̂(−Q2, µ2). For large enough Q2,
pQCD can be used to obtain the subtraction constant
Π̂(0, µ2) which encodes the running of the MS couplings.
Indeed, setting Q2 = µ2, we arrive at the result in the
MS scheme by adding

Π̂(−Q2, Q2) =
∑
f

Q2
f

4π2

3∑
n=0

cn
α̂n
s (Q2)

πn
, (3)

to the lattice results. Here, α̂s is the strong coupling,
and the constants,

c0 =
5

3
− 6

m̂2
f

Q2
, c1 = −0.22489 − 16

m̂2
f

Q2
,

c2 = 0.8522 − 144.85
m̂2

f

Q2
, c3 = 5.588 ,

where m̂f is the MS mass of fermion f at the scale Q,
were obtained with the help of Refs. [27–34]. We use this
conversion formula only at energy scales where the three
light quarks can be treated as approximately degenerate,
so that the disconnected piece2 vanishes.

The running of α̂ is given by

α̂(µ) =
α

1 − ∆α̂(µ)
, (4)

where ∆α̂(µ) = 4παΠ̂(0, µ2) and α ≈ 1/137.036. In a
first step and with the help of Eqs. (3) and (4), we com-
pute α̂(µ) at some reference scale µ somewhat above the
hadronic region employing LQCD from the Mainz col-
laboration [35]. Then, we use the renormalization group
equation (RGE) which is known up to order α̂4

s [36] to
compute3 α̂(MZ). At the threshold of each particle, the
matching conditions given in Refs. [38, 39] are applied.
Thus, dependence on α̂s and the heavy quark masses,
m̂c, and m̂b, is induced.

Since the running of θ̂W is related to that of α̂ through
the photon vector polarization function, we can relate the

2 Contribution from two closed fermion loops coupled to the EW
currents which is proportional to (

∑
f Qf )

2 rather than
∑

f Q2
f .

3 The differential equation can be solved iteratively in analytical
form [37] or numerically [26]. The numerical difference which is
related to the unknown perturbative orders is negligible.

parameter result ×104 correlations

Πdisc −3.8± 0.2 1.0 0.8 0.8
Πs 83.0± 1.4 0.8 1.0 0.96
Πud 587.8± 8.3 0.8 0.96 1.0

TABLE I: Values, errors, and correlations for the vacuum po-
larization function at Q2 = 4 GeV2. They were obtained from
Appendix F of Ref. [35] assuming that the disconnected con-
tribution is associated with the u and d quarks. The isospin
error was assigned entirely to the up and down contribution.

solutions to their RGEs [9, 11], and in the process re-sum
the logarithms in ŝ2(µ),

ŝ2(µ) = ŝ2(µ0)
α̂(µ)

α̂(µ0)
+ λ1

[
1 − α̂(µ)

α̂(µ0)

]
+

α̂(µ)

π

[
λ2

3
ln

µ2

µ2
0

+
3λ3

4
ln

α̂(µ)

α̂(µ0)
+ σ̃(µ0) − σ̃(µ)

]
. (5)

The λi are constants, and the quantities σ̃ contain the
contributions from disconnected diagrams. Both depend
on the number of active particles nf , so that ŝ2(µ) is a
piecewise function in which the number of particle types
change when a threshold is crossed and the matching con-
ditions [9, 11] are used. With α̂(µ) known at the reference
scale µ, we use Eq. (5) and the matching conditions to
compute ŝ2(µ) in terms of ŝ2(MZ).

However, the aforementioned dependence of Eq. (5)
on nf requires separate information regarding the rela-
tive contributions of strange versus up and down quarks
(flavor separation) in the hadronic (non-perturbative) re-
gion, as well as from disconnected diagrams. To address
this, we translate the results by the Mainz lattice col-
laboration [35], which are given in terms of the SU(3)
labeled vacuum polarization functions4, Π33, Π88, and
Π08, into the connected pieces Πud and Πs, as well as
the disconnected piece Πdisc. This is shown in Tab. I to-
gether with the associated correlation matrix which we
computed by assuming that each lattice error induced by
a given source (like scale setting, model error or statis-
tical) enters fully correlated5. Finally, we use Eq. (3) to

4 In principle, different disconnected contributions enter into Π08

and Π88 which would present us with four unknowns for three
equations. But by noticing that the disconnected part is mainly
due to the up and down quarks (as can be verified by lattice data
at physical quark mass, see also the results compiled in Table 4
of Ref. [35]), we can solve the system.

5 We based our assumptions on the errors reported in Ref. [35] for
the linear combinations Πγγ and ΠγZ . Ultimately, the running
of ŝ2 is controlled by ΠγZ (up to re-summations computed in
this study). Ignoring this effect, the final error on the running
from LQCD corresponds to that of 4παΠγZ . Therefore a change
in our assumptions changes marginally the results of this paper,
since our assumptions reproduce the error on ΠγZ .
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source δ sin2 θ̂W (0)× 105

LQCD 2.3
pQCD 0.1
condensates 0.2

total 2.3

TABLE II: Uncertainties in the calculation of the low energy
weak mixing angle.

FIG. 1: ∆χ2 = 1 and ∆χ2 = 4 contours for sin2 θ̂W (0) and

∆α(5)(MZ). The yellow region represents the expected com-
bined 1 σ band for P2 and MOLLER. The horizontal grey
dashed band shows a projection [42] for the FCC-ee. Only
low energy (data and lattice) and pQCD errors are included.

convert these results to the MS scheme6, and with the
flavor separation at hand7 we can apply Eq. (5).

We computed ŝ2(0) numerically, displaying explicitly
the dependence on ŝ2(MZ), α̂s, m̂c, m̂b, the LQCD input,
as well as the strange quark and gluon condensates8. We
write our main result as ŝ2(0) = κ̂(0)ŝ2(MZ), with

κ̂(0) = 1.03234 − 0.43 ∆ŝ2Z + 0.030 ∆α̂s

− 0.0012 ∆m̂c − 0.0003 ∆m̂b

− 0.111 ∆Πdisc + 0.206 ∆Πs + 0.087 ∆Πud

+
0.003

GeV4 ⟨mss̄s⟩ +
0.0004

GeV4

〈
α̂s

π
G2

〉
, (6)

6 The use of pQCD down to scales of µ ∼ 2 GeV can be justified
by the recent analyses in Refs. [18, 40, 41].

7 For more technical steps on how Eq. (5) is used given a known
flavor separation, see [9, 11].

8 The condensates in the last two terms arise [26] from the operator
product expansion of the scheme conversion formula (3).

FIG. 2: ∆χ2 = 1 and ∆χ2 = 4 contours for ∆α(5)(MZ) and
ahvp
µ (cf. Fig. 1). The width of the vertical band corresponds

to the current experimental uncertainty in aµ.

where we defined,

∆ŝ2Z ≡ ŝ2(MZ) − 0.23122 ,

∆α̂s ≡ α̂s(MZ) − 0.1185 ,

∆m̂c ≡ m̂c(m̂c) − 1.274 GeV ,

∆m̂b ≡ m̂b(m̂b) − 4.180 GeV . (7)

∆ΠX is the difference between ΠX (X = disc, s, or ud)
at Q2 = 4 GeV2 and the central value shown in Tab. I.

Eq. (6) shows that the LQCD uncertainty amounts to
1.0×10−4 in κ̂(0) and the perturbative uncertainty, con-
servatively taken to correspond to the last known terms
in the RGE (of order α̂4

s), the decoupling relations, and
the scheme conversion in Eq. (3), is 4×10−6. The uncer-
tainty from the condensates amount to 1 × 10−5 (taking
a conservative 100% error of 0.003 GeV4 in the strange
quark condensate [43] and of 0.01 GeV4 in the gluon con-
densate [44, 45]). The corresponding error budget for
ŝ2(0) is shown in Tab. II. The linearized result (6) ap-
proximates the exact numerical solution to better than
1 ppm even for values 3 σ away from the reference values.

One can compare these results to those that use
e+e− → hadrons cross section data as input. There,
large terms proportional to powers of π2 are introduced
when passing from timelike to spacelike momenta, en-
hancing the pQCD contribution and uncertainty. Fur-
thermore, the result from the data driven approach9,
κ̂(0)e+e− = 1.03201 ± 0.00008 [11], differs from Eq. (6)
by 0.00033 or about 3 σ. This is another reflection of the
tension between LQCD and cross section data observed
in the context of α̂ and aµ.

9 Due to different reference values, the central value in Ref.[11] is
slightly different.
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FIG. 3: ∆χ2 = 1 and ∆χ2 = 4 contours for ŝ2(0) and ahvp
µ

(cf. Figs. 1) and 2).

As shown in Fig. 1, ŝ2(0) and α̂ are correlated. Three
input cases are considered for illustration, namely from
LQCD [35], from e+e− data [17] and from the lattice
BMW collaboration [46], where we assumed the same
correlation between flavors as at Mainz.

We also show the 1 σ bands projected for the fu-
ture parity violation measurements [1, 2] (vertical yellow
band) and the FCC-ee [42] (horizontal dashed grey line).
In order not to dilute the tension between LQCD and
data, the dependence on α̂s and the m̂q is ignored in all
figures. A larger correlation is seen when LQCD results
are used, as unlike in the data driven approach the fla-
vor separation uncertainty entering in ŝ2(0) is correlated
with the uncertainty in the sum of all flavors.

Investigating this kind of theoretical correlation is
particularly important for EW global fits in the ultra-
precision era. Thus, the correlations of ∆α(5)(MZ) and
ŝ2(0) with ahvpµ need to be evaluated and implemented,

as well. Since the calculation of ahvpµ involves a momen-
tum integral, knowledge of the Q2 dependence of the vac-
uum polarization function is needed including uncertain-
ties and point-by-point correlations. To estimate these
from Ref. [35] we computed the statistical correlation for
a subset of ensembles, and assumed the systematic errors
as 100% correlated. We find a Pearson correlation coeffi-
cient of 0.8 between ahvpµ and ∆α(5)(M2

Z). The various er-
ror sources enter with Q2-dependent weights that breaks
the otherwise nearly perfect correlation between the two
quantities. On the other hand, the assumed correlation
within each source of uncertainty is much less significant,
as even taking the systematic errors to be uncorrelated
reduces the correlation merely by a few percent. As for
the case of cross section data, Refs. [47, 48] estimate the
correlation between ahvpµ and the low energy contribution

(< 2 GeV) to ∆α(5)(MZ) to 0.8, as well. We show these
results in Fig. 2.

Finally, the calculation of the correlation between ŝ2(0)

parameter result correlations

κ̂(0)− 1 (323.4± 1.0)× 10−4 1.0 0.98 0.9

∆α(5)(MZ) (279.4± 0.9)× 10−4 0.98 1.0 0.8
ahvp
µ (72.0± 1.6)× 10−9 0.8 0.8 1.0

κ̂(0)− 1 (320.1± 0.8)× 10−4 1.0 0.7 0.5

∆α(5)(MZ) (276.2± 0.5)× 10−4 0.7 1.0 0.8
ahvp
µ (69.4± 0.4)× 10−9 0.5 0.8 1.0

TABLE III: Values, errors, and correlations for the running
of sin2 θ̂W , of the hadronic contribution to α̂(MZ), and to aµ

when the input is provided by LQCD [35] (upper panel) and
by e+e− data [17] (lower panel).

and ahvpµ from LQCD requires the point-by-point corre-
lation of each flavor separately. However, since the dom-
inant errors are very similar for the γZ and γγ vacuum
polarization functions at µ ≈ 2 GeV, one can expect the
correlation of ahvpµ with ŝ2(0) to be about the same as

the one with ∆α(5)(MZ). The result is shown in Fig. 3.

In summary, if one uses either the Mainz LQCD re-
sult [35] or else cross section data as input into EW
global fits, the values given in the upper or lower panel
of Tab. III apply, respectively. The parameter dependen-
cies from Eq. (7) and the condensates are not included,
but can easily be added by using Eq. (6); for the data
driven approach the corresponding dependencies can be
found in Refs. [11, 26].

Constraints on ∆α(5)(MZ) are important for the SM
prediction of the mass MW of the W boson. Inserting the
values [49] mt = 172.85 GeV and MZ = 91.1884 GeV to-
gether with the Higgs boson mass, MH = 125.10 GeV
and the central values of the heavy quark masses and the
strong coupling constant in Eq. (7) into the numerical
formula obtained in Refs. [50, 51], we can compute MW

from a given value of ∆α(5)(MZ). The results are shown
in Tab. IV together with the experimental world aver-
age [52], which excludes the recent discrepant result by
the CDF Collaboration at the Tevatron [53].

Using the correlations obtained here, we can compute
the shifts in the predictions of MW , when ahvpµ is adjusted
such that the SM prediction of aµ in Ref. [15] would co-
incide with the experimental value [14]. In the case of
the data driven approach, ahvpµ would shift by 6 times its
uncertainty, which for a correlation of 0.8 implies that
∆α(5)(MZ) has to increase by 2 × 10−4. This translates
into a decrease in the SM prediction of MW by 4 MeV.
On the other hand, given the good agreement of LQCD
with the current experimental value, the change is only
0.2 MeV and 0.8 MeV for the results [35] and [46], respec-
tively. A complete investigation of the impact of LQCD
on EW global fits is left for future work.

In this letter we introduced a procedure for the sys-
tematic implementation of the hadronic vacuum polar-
ization obtained from lattice QCD to ŝ2(0) and other
high-precision EW observables. We used the RGE to re-
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source MW [GeV]

e+e− data 80.3575± 0.0009
LQCD (Mainz) 80.3516± 0.0017
LQCD (BMW) 80.3535± 0.0005

experiment (excluding CDF) 80.3692± 0.0133

TABLE IV: Predictions for MW using the results of Ref. [50].
The shown errors correspond to the nonparametric ones in
∆α(5). The last line is the experimental measurement ob-
tained from the combination in Ref. [52].

sum higher order logarithms entering the calculation of
ŝ2(0), and presented a parametric formula for a straight-
forward implementation in global EW fits. Furthermore,
we compared this result with the one obtained from cross
section data, and found a tension which is consistent with
the known one in ∆α(5)(MZ). Finally, we quantified the
correlation of ŝ2(0) with ∆α(5)(MZ) and ahvpµ . As an
example for the implications of the strong positive corre-
lations that we found on other EW observables we esti-
mated the effects on the SM prediction of the W boson
mass.

We hope this work will help to better connect Lattice
QCD with more traditional approaches to electroweak
precision physics. For example, we suggest to provide
the results for several Q2 in a flavor-separated way, in-
cluding correlations. A future direction will address the
correlations introduced by the results on the strong cou-
pling constant from LQCD.
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