Searches for new phenomena in final states with 3^{rd} generation quarks using the ATLAS detector

Daniela Paredes

On behalf of ATLAS Collaboration

University of Hong Kong

SUSY 2024

Madrid (Spain), June 10, 2024

1 3rd generation quarks are among the heaviest particles in the Standard Model

- → Very large Yukawa coupling.
- 2 Unique signature that allows to reduce the Standard Model background.

Presenting here the latest results about the subject:

Exotic Higgs decays to tops

- $gg \rightarrow A/H \rightarrow t\bar{t}$: <u>arXiv:2404.18986</u>
- $t\bar{t}H/A \rightarrow t\bar{t}t\bar{t}$: <u>ATLAS-CONF-2024-002</u>

Dark mesons: arXiv:2405.20061

Vector-Like-Quarks (VLQ): Phys. Lett. B 854 (2024) 138743

Leptoquarks (LQs): Phys. Lett. B 854 (2024) 138736

Results related to SUSY will be shown at the talk from Edmund Xiang Lin Ting.

$gg \rightarrow A/H \rightarrow t\bar{t} (I)$

1 Signal: $gg \rightarrow A/H \rightarrow t\bar{t}$

→ Interference between signal and SM tt taken into account.

- 2 Final state: 1L and 2L.
- 3 Background:
 - Dominant: SM tt
 - Minor: W/Z+jets, single top, multijet, ttV, VV, fakes (2L)
 - \rightarrow Estimated with MC, with data-driven techniques for multijet and V+jets.

4 Strategy:

- 1L channel: Split based on the reconstruction of the hadronic decay of the top quark
 - Resolved topology: reconstructed with small *R*-jets: 1b and 2b
 - \rightarrow Split into bins of the angular variable $|\cos \theta^*|$ (11 SRs)
 - Merged topology: reconstructed with large R-jets (1 SR).
- 2L channel:
 - \rightarrow Split into bins of $\Delta \phi_{\ell \ell}$ (5 SRs).

Final fit performed on $m_{t\bar{t}}$ (1L) and $m_{\ell\ell b\bar{b}}$ (2L).

arXiv:2404.18986

$gg \rightarrow A/H \rightarrow t\bar{t} (II)$

No excess of events has been observed.

arXiv:2404.18986

Interpretation done in the type-II 2HDM and hMSSM.

• Constraints on the coupling strength modifier $g_{A/Ht\bar{t}}$ as a function of the $m_{A/H}$ were also set for a generic scenario for different values of $\Gamma_{A/H}$.

$t\bar{t}H/A \rightarrow t\bar{t}t\bar{t}$ (I)

1 Signal: $t\bar{t}H/A \rightarrow t\bar{t}t\bar{t}$

 \rightarrow Final state involves high jet and b-jets multiplicities.

2 Final state: 1L and 2LOS.

3 Background:

- tt+jets (> 90%).
 - Normalization of $t\bar{t}$ +light, $t\bar{t}$ + $\geq 1c$, and $t\bar{t}$ + $\geq 1b$ corrected via flavour rescaling.
 - Kinematic mismodeling handled via a NN reweighing.
- Minor backgrounds estimated from MC.

4 Strategy:

Events selection: categorized according to the jet multiplicity and b-tagging requirement

- 1L: 6 CRs and 6 SRs.
- 2LOS: 5 CRs and 4 SRs.
- Signal discrimination: Done via a GNN.

Final fit performed on H_T for the CRs and GNN score for the SRs.

- $t\bar{t}H/A \rightarrow t\bar{t}t\bar{t}$ (II)
 - No significant excess of events has been observed.
 - Interpretation done as upper limits on the $\sigma(pp \to t\bar{t}H/A) \times \mathcal{B}(H/A \to t\bar{t})$ and on the tan β vs $m_{H/A}$ plane.

 \rightarrow Results combined with the ones from the SSML channel JHEP 07 (2023) 203.

Comparison of $t\bar{t}H/A \rightarrow t\bar{t}t\bar{t}$ and $H/A \rightarrow t\bar{t}$

ATL-PHYS-PUB-2024-008

Dark mesons (I)

1 Signal: $\pi_D^{\pm} \pi_D^0$ or $\pi_D^{\pm} \pi_D^{\mp}$

 \rightarrow For gaugephobic models the decay to top and bottom quarks dominates at high masses.

- \rightarrow Experimental signature tttb and ttbb.
- 2 Final state: All hadronic and 1L.
- 3 Background:
 - All hadronic: Dominated by multijet. Estimated from data-driven techniques.
 - 1L: Dominated by tt+jets. Normalized to data in the fit.
 - \rightarrow Minor contributions taken from MC.

4 Strategy:

All hadronic: Defined by the leading two large-R jets.

 \rightarrow SR subdivided into nine separate bins in the leading versus sub-leading large-R jet mass plane (9 SRs).

Fit done on the 9 SRs.

1L: Events classified into regions split into bins based on the number of jets and b-jets (6 SRs and 6 CRs).

Fit done on the $m_{Jhad} + m_{Jlep}$ in the SRs and CRs.

arXiv:2405.20061

Dark mesons (II)

- No significant excess of events has been observed.
- Upper limits on the $\sigma(\pi_D^{\pm}\pi_D^0 \text{ or } \pi_D^{\pm}\pi_D^{\mp})$ computed

 \rightarrow Interpretation translated into limits on dark pion masses in the two-dimensional $\eta - m_{\pi_D}$ plane.

arXiv:2405.20061

$\mathsf{VLQ} \ T \, \overline{T} \to Wb + X \ \mathsf{(I)}$

- **1** Signal: $T\bar{T}$, $B\bar{B}$
 - \rightarrow Search optimized for $T \bar{T} \rightarrow WbW \bar{b}$.
 - \rightarrow One W decays leptonically, the other decays hadronically.
- **2** Final state: 1L + jets.

3 Background:

- Dominated by $t\bar{t}$, W+jets and single top
 - \rightarrow Estimated with MC with data-driven corrections.
- Multijet: Estimated with data-driven techniques.
- Remaining contributions estimated from MC.

4 Strategy:

- T candidates are reconstructed such that Δm between the T^{lep} and T^{had} , Δm_{VLQ} , candidates is minimized.
- \blacksquare m_T^{let} is the main discriminating variable.
 - Fit done on m_T^{let} in the 2 SRs and 3 CRs.

$\mathsf{VLQ} \ T \, \overline{T} \to Wb + X \ (\mathsf{II})$

No significant excess of events has been observed.

Phys. Lett. B 854 (2024) 138743

- Upper limits on the $\sigma(pp \to T\bar{T})$ were computed for the $\mathcal{B}(T \to Wb) = 1$ and the SU(2) singlet T scenarios.
- Upper limits for different branching rations scenarios also tested.

 \rightarrow Results used to set limits on the $B\bar{B}$ production

Daniela Paredes On behalf of ATLAS Collaboration

LQs (I)

Phys. Lett. B 854 (2024) 138736

1 Signal: LQs that decay into a lepton and either a top or bottom quark.

 \rightarrow Considering only pair prodution.

2 Strategy: Combination of different final states with Run 2 data.

Interpretation										
Search			Scalar			Vector		Signal Region		
Final State	Citation	$LQ_3^u \\$	LQ_3^d	LQ_{mix}^{u}	LQ ^d _{mix}	$U_1^{\rm YM/MC}$	$\tilde{U}_1^{\rm YM/MC}$	N_{ℓ}	$N_{\tau_{\rm had}}$	Nbjets
$t u b au$ Phys. Rev. D, 104 (2021) 112005 \checkmark			1	-	-	~	-	0	1	≥ 2
$b\tau b\tau$	EPJC 83 (2023) 1075	~	-	-	-	~	-	$\{0, 1\}$	$\{1, 2\}$	$\{1, 2\}$
1717	JHEP 06 (2021) 179	-	~	-	-	-	~	$\{1, 2, 3\}$	≥ 1	≥ 1
tvbl	JHEP 06 (2023) 188	-	-	~	~	-	-	1	-	≥ 1
$b\ell b\ell$	JHEP 10 (2020) 112	-	-	~	-	-	-	2	-	$\{0, 1, 2\}$
tltl (2l))	EPUC 81 (2021) 313	-	-	-	\checkmark	-	-	2	-	-
$t \ell t \ell \ (\geq 3\ell)$ at las-conf-2022-052 -		-	-	\checkmark	-	-	{3,4}	-	≥ 2	
tvtv	EPJC 80 (2020) 737	~	-	~	-	~	-	0	0	≥ 2
bvbv	JHEP 05 (2021) 093	-	~	-	\checkmark	-	-	0	-	≥ 2

3 Results: Interpreted in the context of scalars LQ₃ and LQ_{*mix*}, and vector LQs, with an additional coupling of Yang-Mills type to gluons present of absent ('minimal coupling').

LQs: LQ_3 (II)

Phys. Lett. B 854 (2024) 138736

LQs: LQ $_{mix}$ (III)

Phys. Lett. B 854 (2024) 138736

14/16

LQs: $U_1^{YM/MC}$ (IV)

Phys. Lett. B 854 (2024) 138736

- ATLAS has an extensive program to look for New Physics with 3rd generation quarks.
- No evidence for new phenomena with 3rd generation quarks has been found

 \rightarrow Upper limits on the production cross-section and constraints on the relevant parameters of the benchmark models have been set.

Still a lot of work to be done...

Waiting for more data from the LHC Run 3!

BACKUP