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ABSTRACT: We present NNPDF4.0MC, a variant of the NNPDF4.0 set of parton distributions
(PDFs) at LO, NLO and NNLO, with and without inclusion of the photon PDF, suitable
for use with Monte Carlo (MC) event generators, which require PDFs to satisfy additional
constraints in comparison to standard PDF sets. These requirements include PDF positivity
down to a low scale @@ ~ 1 GeV, smooth extrapolation in the very small and large x regions,
and numerically stable results even in extreme regions of phase space for all PDFs. We
compare the NNPDF4.0MC PDFs to their baseline NNPDF4.0 counterparts, and to the
NNPDF2.3LO set entering the MONASH tune of the PYTHIA8 event generator. We briefly
assess the phenomenological impact of these PDFs on the cross-sections for hard and soft
QCD processes at the LHC.
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1 Introduction

Monte Carlo (MC) event generators [1-4] provide a complete description of the final state in
high-energy particle collisions, and, as such, are an essential ingredient in the interpretation
of particle physics experiments. Widely used event generators for LHC physics include
PYTHIAS [5, 6], HERWIGT [7, 8], SHERPA [9, 10], POWHEG [11], MG5_AMC@NLO [12], and
more recently PANSCALES [13-16].

Within a MC event generator, parton distributions (PDFs) [17, 18] are used not only
in the evaluation of hadronic cross-section through their convolution with partonic matrix
elements, but also for the initial-state backwards parton shower, and as inputs to the modeling
of non-perturbative phenomena [19] such as the underlying event (UE), multiple parton
interactions (MPI), and related soft QCD processes. For these latter aspects, PDFs should
respect some additional constraints in comparison to default PDFs. First, their usage in
initial-state showers requires that they be non-negative down to the perturbative cutoff of
Q@ ~ 1 GeV. Furthermore, their application to models of the UE, MPI, and other low-energy
QCD phenomena demands a very smooth extrapolation down to very small x and very small
Q? values, and a gluon PDF that grows sufficiently fast in the small x region. In order
to prevent numerical problems associated to Monte Carlo integration and sampling, PDFs
should be numerically stable even in extreme regions of phase space which may be irrelevant
for phenomenology. Finally, in order to match to standard parton showers, the charm PDF
must be generated perturbatively (i.e. an intrinsic component is not allowed), and in order
to account for electroweak corrections, the possibility of including a photon PDF ~(z, Q?)
and QED splittings in perturbative evolution should be allowed.

Several groups [20-24] have presented variants of their LO PDF sets, aimed to usage in
MC event generators. For instance, the NNPDF2.3QED LO PDFs developed in [25-27] were
integrated in PYTHIAS, and used as one of the inputs for its popular MONASH tune [28] of
non-perturbative QCD physics. Beyond LO, BFKL-resummed variants of the NNPDF3.1
PDF set including the constraints on the small-x gluon from D-meson production at LHCb
presented in [29-31] also satisfy the above requirements, and are available in PYTHIAS as
a stand-alone PDF set.



Here we present variants of NNPDF4.0 [32-35] at LO and, for the first time, NLO and
NNLO, tailored to their usage in modern MC event generators. The main goal of these
NNPDF4.0MC sets is to satisfy the requirements discussed above, while at the same time
providing the best possible description of the NNPDF4.0 dataset, in particular at NLO
and NNLO.

2 Methodology

Unless otherwise specified, we adopt the same experimental dataset, theory calculations, and
methodology used in the construction of the recent MHOU, QED, and aN3LO NNPDF4.0
PDF sets [34-36]. In particular, we exploit the new NNPDF theory pipeline [37] built upon
the EKO [38] evolution code, YADISM DIS module [39], and PINEAPPL fast grid interface [40].
The same values of the input SM parameters are used, in particular ags(myz) = 0.118 for
the LO, NLO, and NNLO fits. We only provide a central PDF, instead of a set of PDF
replicas representing the PDF probability distribution, because in the presence of extra
constraints uncertainties might become unreliable, and they are anyway not relevant for
applications to MC event generators.

Positivity and perturbative charm. Positivity of MC PDFs is required both for their
usage in the initial-state shower as well as for the modeling of soft QCD phenomena. At
LO, PDFs can be identified with physical cross-sections and hence are positive-definite. This
is not necessarily true at NLO and beyond, where PDFs become scheme dependent and
may be negative in certain regions of the phase space. Whereas in the commonly used MS
scheme PDFs are positive also at NLO and beyond, this only holds in the perturbative
region, i.e. at high enough scale [41-43], and correspondingly PDF positivity may fail when
extrapolating to low @ values.

In the baseline NNPDF4.0 analysis, PDF positivity is imposed at the initial parametriza-
tion scale (Qp = 1.65 GeV) at LO and at a higher scale, Q%OS = 5GeV?, at NLO and beyond,
following the prescription of [41, 43]. In addition, positivity of a set of physical observables
at ngs is also imposed. Therefore, within the NNPDF4.0 methodology, the NLO and NNLO
PDFs may be negative at low values of % as long as, upon evolution, they become positive
at Q% > Q?)OS. Even though this may happen in regions of phase space for which there are
no direct experimental constraints, or such that a fixed-order leading-twist approximation
breaks down, positivity is nevertheless required by MC generators. Furthermore, in the
default NNPDF4.0 sets the charm PDF is parametrized and determined from the data
on the same footing as all other PDFs [44], with its behavior for @ < Qo determined by
backwards QCD evolution together with the matching from the ny = 4 to the ny = 3 flavor
scheme [45]. However, a variant of NNPDF4.0 in which charm vanishes in the ny = 3 flavor
scheme and is determined by perturbative matching conditions in the ny = 4 scheme is also
available; in this case PDFs are parametrized at Qg = 1 GeV, hence below the matching
scale, set at u. = me = 1.51 GeV.

We consequently start from this perturbative charm variant of NNPDF4.0, with pertur-
bative matching conditions used to determine charm at the matching scale . = m.. We then
impose the positivity of g(z, Qo) and X(z, Qo) at Qo = 1 GeV by squaring the corresponding



neural network outputs. This ensures positivity of the gluon and the quark singlet PDFs
at Qo = 1 GeV and consequently also for @ > Qg thanks to their rise at small z induced
by perturbative QCD evolution as the scale is increased. Positivity of individual quark
and antiquark PDFs is imposed at Q%OS = 5GeV? as in the default. This is sufficient to
guarantee positivity down to (Jg both at large x, where perturbative evolution is moderate
even at low scale, and also at small x, where nonsinglet PDFs vanish. This strategy leads to
positive-definite PDFs in the full range of (x, @?) probed by MC generators at LO and NLO.

At NNLO, the perturbative matching conditions lead to a charm PDF that at @) = mc is
negative at small z < 1072, though it is already positive at all = for Q% > 5GeV?. Hence
at NNLO it is not possible to simultaneously satisfy at g, = m. the requirements that
charm be positive and determined by perturbative matching. As we will discuss in section 3,
the low-scale positivity of the gluon at small z is disfavored by the data and consequently
imposing it leads to some deterioration of the fit quality.

Extrapolation in x and Q2. General-purpose MC event generators should provide reliable
results for the broadest possible region of phase space. This requires input PDFs with a
smooth behavior in a wide @ range, from @ ~ 1 GeV (initial-state showers, non-perturbative
QCD modeling) up to @ ~ 100 TeV (relevant for future particle colliders and for applications
to astroparticle physics) and from x ~ 10~ (forward particle production) all the way up to
large-z values close to the elastic limit z = 1 (required for high-mass new physics searches).
Since these regions extend beyond the coverage of available data, a robust extrapolation
procedure is necessary.

While PDF extrapolation in Q? is fixed by perturbative QCD evolution, extrapolation
in z depends on assumptions. In the NNPDF4.0 approach, extrapolation to the small =
and large z regions is provided by the output of a preprocessed neural network, and thus
controlled by the behavior of both the neural net and the preprocessing function. This
extrapolation to low Q? and large = values might be affected by numerical instabilities, both
native, and related to their storage as LHAPDF grids. Specifically, the low Q? behavior is
controlled by evolution from higher scales, that may amplify small differences in the initial
condition, due to the growing value of a4(Q), while at large £ PDFs become very small
and thus particularly sensitive to numerical instabilities. These two issues are intertwined,
since even small O (107°) numerical differences in the solution of evolution equations may be
enough to distort the PDFs in the large = region where they are almost vanishing. While such
instabilities are innocuous for phenomenological applications, they may lead to numerical
issues when PDFs are used in MC generators.

In order to prevent these instabilities and ensure that the MC PDFs are everywhere
smooth and well-behaved, the NNPDF4.0MC PDFs are delivered as an LHAPDF grid with a
finer coverage in x for the region x € [0.7,0.95]. For z = 0.95, PDFs essentially vanish and
any residual oscillations can be safely set to zero. In addition, instabilities of the order of the
accuracy of the LHAPDF interpolation are averaged out by means of a dedicated Gaussian
filter. Possible issues related to backward evolution are prevented by parametrizing PDFs at
Qo = 1 GeV, so no backward evolution is needed. We thus deliver LHAPDF grids that provides
an interpolated output for all x € [107%,1] and Q € [1,10°] GeV.



1D ref. evolution (Qo) Positivity (Qpos) ag(mz) | Charm

NNPDF23_lo_as_0130_ged [27] QCDy o ® QEDy o TRN (1.0 GeV) 9,¢i,3 >0 (1GeV) 0.130 pert.
NNPDF40_lo_as_01180 32) QCDro TRN (1.65GeV) 9,8,G >0 (1.65GeV) | 0.118 | fitted
NNPDF40_lo_pch_as_01180 [32] QCDro TRN (1.65GeV) 9.4, G >0 (1GeV) 0.118 pert.
NNPDF40MC_lo_as_01180 tow. QCDpo TRN (1.0 GeV) 9,4, G >0 (1GeV) 0.118 pert.
NNPDF40MC_lo_as_01180_ged | t.w. QCDy o ® QED; o EXA (1.0GeV) 9,¢i,3 >0 (1GeV) 0.118 pert.
NNPDF40_nlo_as_01180 32] QCDnro TRN (1.65 GeV) 9,,G >0 (VEGV) | 0118 | fitted
NNPDF40_nlo_pch_as_01180 (32] QCDxLo TRN (1GeV) 9, @ > 0 (v/5GeV) 0.118 pert.

9.2 > 0 (1GeV)
4,3 > 0 (V5 GeV)
NNPDF40_nlo_as_01180_ged [34] | QCDyro ® QEDyro EXA (1.65GeV) | g,¢i,@ > 0 (v/5GeV) 0.118 fitted
9,2 >0 (1GeV)

NNPDF40MC_nlo_as_01180 t.w. QCDnro TRN (1GeV) 0.118 | pert.

NNPDF40MC_nlo_as_01180_qged | t.w. QCDy10 ® QEDypo EXA (1 GeV) 0.118 pert.
qi,q >0 (ﬁGeV)
NNPDF40_nnlo_as_01180 (32] QCDnnLo TRN (1.65 GeV) 9,0, @ >0 (v/5GeV) 0.118 fitted
NNPDF40_nnlo_pch_as_01180 (32] QCDnnLo TRN (1 GeV) 9,4, > 0 (v/5GeV) 0.118 pert.
, X >0 (1GeV
NNPDF40MC_nnlo_as_01180 tow. QCDnnLo TRN (1GeV) 9,2 >0 (1GeV) 0.118 pert.

4,3 > 0 (vV/5GeV)
NNPDF40_nnlo_as_01180_ged | [34] | QCDynio ® QEDyLo EXA (1.65GeV) | ¢,¢:,3 > 0 (v5GeV) | 0.118 | fitted
g, % >0 (1GeV)
4,3 > 0 (V5 GeV)

NNPDF40MC_nnlo_as_01180_ged | t.w. | QCDynp0 ® QEDyr,o EXA (1 GeV) 0.118 pert.

Table 1. The NNPDF4.0MC PDFs presented in this work (t.w.) and their baseline counterparts.

QED evolution and the photon PDF. As shown in [31, 34, 46-48] and related studies,
the impact of inclusion of a photon PDF alongside quark and gluon PDFs is moderate, its
main effect being a reduction of the gluon momentum fraction by up to around 0.5% in favor
of the photon. Here we take the photon PDF v(z, Q?) at @ = 1 GeV from the NNPDF4.0
QED NNLO PDF set [34], we include it as boundary condition to the QCD ® QED evolution
of the LO, NLO, and NNLO NNPDF4.0MC PDFs, and impose a momentum sum rule
that now also includes a photon contribution. We adopt the so-called exact-iterated (EXA)
solution of the QCD ® QED evolution equations, as implemented in EKO [38], as in ref. [34]
to which we refer for more details. For pure QCD evolution we use instead the truncated
(TRN) solution as in ref. [32], so that in each case the PDF sets presented here are based on
the same form of the solution of the evolution equations as their default counterparts.

NNPDF4.0MC overview. In table 1 we summarize the settings adopted for the
NNPDF4.0MC PDFs, compared to those of their baseline counterparts: LHAPDF naming
ID, publication reference, PDF parametrization scale and solution of the evolution equations,
positivity scale, value of as(myz), and treatment of charm (data-driven, or determined from
perturbative matching). In this table ¢;, ¢; denote light (up, down, and strange) quarks and
antiquark PDFs, as, following [41, 43], positivity of the charm PDF is never imposed.

3 The NNPDF4.0MC PDFs

We now compare the NNPDF4.0MC PDF sets to the baseline NNPDF4.0 fits and to the
NNPDF2.3QED LO PDFs used for the MONASH tune [28] of PYTHIAS. Here we only present



NLO NNLO

Dataset by process group QCD QCD+QED QCD QCD+QED

"leL o Me|BL M | ™| BL MC|BL MC
DIS NC 1953 | 1.35 1.37 | 1.38 1.54 | 2110 | 1.22 1.30 | 1.22 1.29
DIS CC 988 | 0.91 092 | 094 0.95 989 |1 0.90 0.89 | 0.90 0.89
DY NC 669 | 1.58 1.84 | 1.67 2.04 736 | 1.20 1.30 | 1.22 1.33
DY CC 197 | 1.38 1.56 | 1.40 1.61 157 | 1.45 1.55 | 1.47 1.57
Top pairs 66 | 2.40 2.14 | 2.51  2.47 64 | 1.27 1.16 | 1.31 1.27
Single-inclusive jets 356 | 0.82 0.88 | 0.83 0.93 356 | 0.94 1.01 | 0.93 1.00
Dijets 144 | 1.51 1.55 | 1.56 1.62 144 | 2.01 2.01 | 1.94 1.93
Photon 53 | 0.57 0.60 | 0.64 0.74 53 1 0.76 0.67 | 0.74 0.68
Single top 171 0.36 0.36 | 0.38 0.36 171 0.37 0.38 | 0.39 0.40
Total 4443 | 1.28 1.30 | 1.30 144 | 4626 | 1.16 1.22 | 1.17 1.22

Table 2. The number of data points and the x? per data point for the NLO and NNLO
baseline NNPDF4.0 fits (BL), compared to their NNPDF4.0MC counterparts (MC), with the
same process categorisation as in ref. [36]. The x? values are provided for the QCD-only
(NNPDF40 (MC) _<order>_as_01180) and for the QCD ® QED (NNPDF40 (MC) _<order>_as_01180_ged)
fits of table 1.

some representative results; an extensive set of comparisons is available online.! In all
comparisons below, unless otherwise stated, NNPDF4.0 refers to the default sets, and indeed
the purpose of the comparison is to illustrate the difference in phenomenology to be expected
if the MC sets instead of the default are used, for instance in applications to experimental
analysis. In particular, a comparison to the perturbative charm variants of NNPDF4.0 listed
in table 1 will only be shown in figures 3—4, for the sake of assessing the impact of this
particular assumption among the others that characterize the NNPDF4.0MC sets.

The fit quality for the NLO and NNLO PDF sets of table 1 is summarized in table 2,
where we show the number of data points and the y? per data point; LO x? values are not
shown since fit quality at LO is generally poor and the specific value of the x? is not significant.
When comparing fit quality, the MC PDFs constructed here should be viewed as PDFs that
include some additional theory assumptions: for instance, the positive small x behavior of
the gluon at low scale can be justified based on non-perturbative physics arguments (see
e.g. [49]). Because extra constraints are introduced, the agreement with the data of the MC
PDFs will be either unchanged, or possibly worse than that of the default, i.e. the fit quality
will deteriorate (or remain unchanged). The purpose of the comparison is then to check that
the deterioration in fit quality is not such as to rule out these extra assumptions.

For pure QCD PDFs, we find that at NLO (NNLO) the total x? per data point of the
baseline fit increases from 1.28 (1.16) to 1.30 (1.22), an effect of about 1o (30) in units of
the statistical variance of the y? distribution for nq.; = 4443 (4626) data points. Therefore,
imposing the MC PDF conditions at NLO cannot be distinguished from a change in x? value
due to a random fluctuation of the data. At NNLO the MC conditions do lead to a mild

"https://data.nnpdf.science/vp-public/NNPDF40MC__comparisons .
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Figure 1. The NNPDF4.0MC LO and NLO gluon, up, and antidown PDFs (from left to right)
compared to NNPDF2.3LO and NNPDF4.0 NLO, at three scales: @ =1GeV, 2GeV, and 1 TeV (from
top to bottom). Only central values are shown, in the region for which PDFs are provided via LHAPDF.

deterioration of fit quality, related to the fact that the rapid rise of the gluon at small x as the
scale increases tends to lead in turn to a negative gluon at scales Q? < few GeV? [43]. This
rise is stronger at NNLO, and at low scale NNLO corrections become large; consequently at
NNLO a low-scale positive gluon is more difficult to accommodate, though again it cannot be
excluded. For the QCD ® QED sets, the same behavior is observed at NNLO, while now at
NLO a more significant deterioration of fit quality is seen. This can be traced to the fact that
subleading terms included in the EXA solution of the evolution equations lead to perturbative
evolution that is faster than for the TRN solution, especially when the anomalous dimension
is large, which then makes the problem with low-scale gluon positivity more serious at NLO.
The difference between the pure QCD and QCD ® QED cases at NLO should thus be viewed
as driven by missing NNLO QCD corrections.

The MC and baseline LO and NLO PDFs are compared in figure 1, where we display
the gluon, up and antidown PDFs at @ = 1 GeV, 2GeV, and 1TeV. Recall that the small-z
behavior of all quark and antiquark PDFs is the same, and dominated by that of the singlet
quark distribution. We show the full x region in which the NNPDF4.0MC PDFs are provided
via the LHAPDF interpolation, i.e. 107 < z < 1. Note that the NNPDF2.3LO set was
only provided for & > 10~7, while for smaller  values PDFs are frozen to their value at
x = 1077, Apart from this trivial difference, the main difference between the 2.3 and 4.0
LO sets is that for NNPDF4.0MC the rise of the small-z gluon is qualitatively similar at
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Figure 2. The NNPDF4.0MC NLO and NNLO gluon, up, antiup, antidown, strange and total
charm PDFs (from left to right and from top to bottom), compared to their baseline counterparts as a
function of scale for a fixed large x = 0.85 value. The range 1 < Q < 10° GeV shown corresponds to
the full interpolation range provided by the LHAPDF grids that we deliver.

LO and NLO, a feature facilitating the tuning of soft QCD models in MC event generators.
This is due to the greater theoretical consistency of assumptions between LO and NLO in
the NNPDF4.0MC sets, specifically the choice of the same value of as. The main difference
between the MC and default NLO PDFs is related to the small x positivity of the gluon
at low scale. As the scale @) is increased, relative differences between the various PDF sets
are washed out by perturbative evolution.

In order to demonstrate smoothness of the NNPDF4.0MC sets in the large-a extrapolation
region, we display in figure 2 the NLO and NNLO NNPDF4.0MC PDFs for x = 0.85 as a
function of scale, compared to the central value of their baseline counterparts. The @ range
shown corresponds to the full interpolation range in the LHAPDF grids that we provide. All
PDFs displayed exhibit a satisfactory level of smoothness.

In order to fully assess the difference between the MC sets and their baseline counterparts,
in figure 3 we display the ratio of the NNPDF4.0MC NLO PDFs to the baseline, also showing
the 68% CL PDF uncertainties on the latter. In order to trace the origin of differences,
the NNPDF4.0 NLO set with perturbative charm of table 1 is also shown. In the region
x > 1073, where the bulk of experimental data is located, the quark MC PDFs are mostly
contained within the uncertainty band of the baseline. Larger differences, that can be traced
to the requirement of low-scale positivity, are observed for the gluon PDF, especially at small
x < 1072, These in turn propagate onto the other PDFs at small z, all of which display a
stronger small-z rise in comparison to the baseline in the extrapolation region 2 < 1073,

The results of figure 3 imply that the additional model assumptions entering the MC PDFs
do not distort the baseline PDFs in the bulk of the data region beyond the 1o level, indicating
that most LHC cross-sections obtained with the NNPDF4.0MC sets will be consistent with
those derived using the baseline PDFs. In fact, it is clear from figure 3 that for most PDFs,
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uncertainty shown is the 68% CL on the baseline. The baseline variant with perturbative charm is
also shown.

especially for the sea quark PDFs, a large part of the difference between the MC PDFs and
the default is due to having adopted perturbative charm.

4 Impact on LHC physics

We now carry out a brief assessment of the phenomenological impact of similarities and
differences between the MC PDFs and their baseline counterparts shown in figures 1-3.
First, in figure 4 we display the gluon-gluon, quark-antiquark, and quark-quark parton
luminosities at the LHC with /s = 13.6 TeV as a function of the invariant mass of the final
state mx, computed from the same PDFs shown in figure 3, and shown as a ratio to the
NNPDF4.0 baseline. The luminosities are integrated over the full rapidity range and are thus
dominated by the PDF behavior in the central rapidity region, where z1 ~ xo ~ mx/\/s.
For 50 GeV < mx < 1TeV this is a medium-small x region, where differences between the
MC PDFs and the baseline are generally moderate and only noticeable for the gluon. Indeed,
in the case of the gluon-gluon luminosity MC PDFs lead to a suppression of around 2% in
comparison to the baseline for 100 GeV < mx < 3TeV, while otherwise differences between
NNPDF4.0 NLO and its MC variant are at the 1% level, and only become larger, though
well within uncertainties, for my < 100 GeV due to stronger small x rise of the MC PDFs.
We then consider representative inclusive hard cross-sections: Higgs and gauge boson
production at the LHC with /s = 13.6 TeV, computed using the cGHIGGS [50], N3LOXS [51]
and PROVBFH [52, 53] codes. In figure 5 we compare results obtained at NLO and NNLO
(both for PDF and the matrix element) with the MC sets and their baseline counterparts,
and for the latter also aN3LO, using the settings of ref. [35]. The uncertainty shown is for
the MC sets only that related to missing higher orders in the matrix element, evaluated
from standard 7-point scale variation, while for the baseline sets it also includes the PDF
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Figure 4. The gluon-gluon, quark-antiquark, and quark-quark parton luminosities at the LHC with
Vs =13.6 TeV as a function of the invariant mass mx for the same PDFs as in figure 3, shown as a
ratio to the NNPDF4.0 baseline.
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Figure 5. The inclusive NLO and NNLO cross-sections for Higgs production in gluon fusion, in
association with a Z boson, and in vector boson fusion (top), and on-shell and high-mass W and
on-shell Z production at the LHC /s = 13.6 TeV (bottom), comparing NNPDF4.0MC PDFs and the
baseline. For the baseline NNPDF4.0, the aN3LO result is also shown. The uncertainty shown is scale

variation with 7-point prescription only for the MC PDFs, combined in quadrature with the PDF
uncertainty for the baseline sets.

uncertainty, combined in quadrature with it. The corresponding uncertainty bands always
overlap, reflecting the differences seen in parton luminosities.

We turn next to processes that are also sensitive to soft physics. We show results for
LHC differential distributions at leading order obtained from PYTHIAS simulations interfaced
to the RIVET analysis toolkit [54]. We neglect PDF uncertainties and only display the central
values found using NNPDF2.3LO, NNPDF4.0 NLO, and NNPDF4.0MC NLO PDFs. We
first consider the normalized Z boson transverse momentum distribution, reconstructed from
bare dilepton events, either electrons or muons, which is sensitive to both soft and hard QCD.
In figure 6 the PYTHIA8 LO predictions for 1 GeV < p, () < 300 GeV are compared to
ATLAS data at 7TeV from ref. [55]. The low and high p regions respectively probe soft and
hard QCD radiation. For the normalized distributions shown, higher-order QCD corrections
partially cancel out. The difference between PDF sets is negligible, and good agreement with
the data is found using all PDF sets except at very small p| in the electron channel.
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Figure 6. The normalized Z boson pr distribution computed at LO using PYTHIA8 and RIVET
using NNPDF2.3LO, NNPDF4.0 NLO, and NNPDF4.0MC NLO PDFs. Predictions are compared to
the ATLAS [55] data at /s = 7 TeV using bare electron (left) or muon (right) pairs; error bars on the
data include statistical and systematic uncertainties. Both the absolute distribution (top) and the
ratio of the theory prediction to the data (bottom) are shown.

We next consider the fiducial cross-sections for Higgs production in the H — ZZ* —
4¢ (¢ = e, u) decay channel. In figure 7 we compare predictions to the ATLAS data collected
at /s = 13TeV with an integrated luminosity of £ = 139fb™~! [56]. Results are shown for
the transverse momentum distribution of the four hardest leptons in the event, p4Té, in the
rapidity range 1.0 < |y4¢| < 1.5, and for the transverse momentum of the leading jet in the
invariant mass range 115 < myy < 130 GeV. Also in this case, differences between different
PDF sets are negligible, and good agreement with the data is found.

We then turn to the energy flow, defined as

dE 1 1 Npart
—_ = Ee . > min 0 . < max , 4'1
dn  [Mmax — Mmin| ( Nivel ; 0N > NMin)0(1; < Nma )) (4.1)

where 7 is the midpoint of the rapidity interval, [min, max], Ninel is the number of inelastic
pp collisions, and npar is the number of stable particles in the event whose energy is equal
to E;. The energy flow in dijet events and in minimum-bias events at /s = 7TeV in the
forward 3.2 < n < 4.9 ranges is shown in figure 8, compared to the CMS data of [57].
For the dijet sample, a pjft > 20 GeV cut is imposed. For both dijet and minimum-bias
events, the simulations based on NNPDF2.3LO display good agreement with the data, while
those obtained using NNPDF4.0 NLO sets (both MC and baseline) tend to undershoot the
experimental measurements, which suggests the need for a dedicated tune of soft QCD physics.

Finally, in figure 9 we show the charged-hadron multiplicity distribution, differential in
pseudorapidity and in transverse momentum, dQNchapter /dndp, , as a function of p, at fixed
rapidity |n|= 0.3 and as a function of n integrated over the full p; range. Predictions are
compared to the CMS measurements of [58], for events that satisfy both p; < 2GeV and
In|< 2.5 in order to highlight the sensitivity to the modeling of nonperturbative QCD dynamics.
As in the case of the energy flow, the NNPDF2.3LO set provides the best description of the
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Figure 8. Same as figure 6, now for the energy flow in dijet (left) and minimum-bias events with
Vs =TTeV and 3.2 < n < 4.9 compared to CMS data [57].

experimental data, while the NNPDF4.0 sets undershoot the CMS measurements. Indeed,
both the energy flow of figure 8 and the charged-hadron differential distributions of figure 9
are sensitive to non-perturbative QCD processes. It follows that achieving a good description
requires a dedicated tune of soft QCD, and differences seen in figures 89 do not have a
simple physical interpretation, and are simply a manifestation of the fact that the NNPDF4.0
sets have not been used in the Monte Carlo tune. The Monash 2013 tune of PYTHIA8 used
here is based on NNPDF2.3LO, explaining the good agreement found for this set.

5 Summary and outlook

The NNPDF4.0MC PDFs presented in this work satisfy the requirements of event generators
not only at LO but also at NLO and NNLO accuracy, while the NLO and NNLO sets provide
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Figure 9. Same as figure 8, now for the charged-hadron transverse momentum (left) and pseu-
dorapidity (right) distributions in proton-proton collisions at /s = 7 TeV, comparing to the CMS
measurements of [58].

a satisfactory description of the global dataset and minimize differences in comparison to
the baseline sets, ensuring their reliability to evaluate hard cross-sections at the LHC and
elsewhere. It thus becomes possible to combine the precision and accuracy enjoyed by global
PDF sets at NLO and NNLO without compromising the usability of these PDFs in generators
for initial-state radiation and the modeling of soft QCD processes.

In order to also achieve agreement with the data for non-perturbative processes such as
the underlying event, pileup, and low-pr radiation, the soft QCD models specific to each event
generator will need to be tuned to the data using as input these new NNPDF4.0MC PDFs,
since their behavior, especially for low-x physics, becomes a component of the tuning model.
Such dedicated tunes will be needed in order for the NNPDF4.0MC PDF sets to become
instrumental in the development of a next generation of Monte Carlo codes that reaches
higher perturbative accuracy. To this purpose, we aim to collaborate with event generator
developers in order to integrate NNPDF4.0MC in their frameworks and produce dedicated
tunes of soft QCD physics such that the whole palette of LHC processes, from the soft to the
perturbative region, can be satisfactory described within a single physics simulation.

The NNPDF4.0 MC sets are made available through the LHAPDF interface [59] and
the NNPDF collaboration website.?
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