CERN Accelerating science

002901250 001__ 2901250
002901250 003__ SzGeCERN
002901250 005__ 20240618222936.0
002901250 0247_ $$2DOI$$9JACOW$$a10.18429/JACoW-HB2023-THBP43
002901250 0248_ $$aoai:cds.cern.ch:2901250$$pcerncds:FULLTEXT$$pcerncds:CERN:FULLTEXT$$pcerncds:CERN
002901250 035__ $$9HAL$$ahal-04542912
002901250 035__ $$9https://inspirehep.net/api/oai2d$$aoai:inspirehep.net:2776115$$d2024-06-17T08:25:16Z$$h2024-06-18T05:22:07Z$$mmarcxml
002901250 035__ $$9Inspire$$a2776115
002901250 041__ $$aeng
002901250 100__ $$aMétral, E$$uCERN
002901250 245__ $$9JACOW$$aIntensity Effects in a Chain of Muon RCSs
002901250 260__ $$c2024
002901250 300__ $$a4 p
002901250 520__ $$9JACOW$$aThe muon collider offers an attractive path to a compact, multi-TeV lepton collider. However, the short muon lifetime leads to stringent requirements on the fast energy increase. While extreme energy gains in the order of several GeV per turn are crucial for a high elevated muon survival rate, ultra-short and intense bunches are needed to achieve large luminosity. The longitudinal beam dynamics of a chain of rapid cycling synchrotrons (RCS) for acceleration from around 60 GeV to several TeV is being investigated in the framework of the International Muon Collider Collaboration. Each RCS must have a distributed radio-frequency (RF) system with several hundred RF stations to establish stable synchrotron motion. In this contribution, the beam-induced voltage in each RCS is studied, assuming a single high-intensity bunch per beam in each direction and ILC-like 1.3 GHz accelerating structures. The impact of single- and multi-turn wakefields on longitudinal stability and RF power requirements is analysed with particle tracking simulations. Special attention is moreover paid to the beam power deposited into the higher-order modes of the RF cavities.
002901250 540__ $$aCC-BY-3.0$$bJACOW$$uhttps://creativecommons.org/licenses/by/3.0
002901250 542__ $$dthe author(s)$$g2024
002901250 65017 $$2SzGeCERN$$aAccelerators and Storage Rings
002901250 6531_ $$9author$$aHOM
002901250 6531_ $$9author$$acavity
002901250 6531_ $$9author$$aacceleration
002901250 6531_ $$9author$$awakefield
002901250 6531_ $$9author$$acollider
002901250 690C_ $$aARTICLE
002901250 690C_ $$aCERN
002901250 700__ $$aChancé, A$$uU. Paris-Saclay
002901250 700__ $$aBatsch, Fabian$$jJACoW-00072579$$uCERN
002901250 700__ $$aAmorim, David$$jJACoW-00088090$$uCERN
002901250 700__ $$aChancé, Antoine$$jJACoW-00011744$$uSaclay
002901250 700__ $$aDamerau, Heiko$$jJACoW-00004420$$uCERN
002901250 700__ $$aGrudiev, Alexej$$jJACoW-00012092$$uCERN
002901250 700__ $$aKarpov, Ivan$$jJACoW-00060424$$uCERN
002901250 700__ $$aMétral, Elias$$jJACoW-00001671$$uCERN
002901250 700__ $$aSchulte, Daniel$$jJACoW-00001631$$uCERN
002901250 700__ $$aUdongwo, Sosoho-Abasi$$jJACoW-00130339$$uRostock U.
002901250 773__ $$cTHBP43$$pJACoW HB$$qHB2023$$v2023$$wC23-10-09.3$$y2024
002901250 8564_ $$82538018$$s692819$$uhttps://cds.cern.ch/record/2901250/files/document.pdf$$yFulltext
002901250 960__ $$a13
002901250 962__ $$b2895374$$kTHBP43$$ncern20231009
002901250 980__ $$aARTICLE
002901250 980__ $$aConferencePaper