002901242 001__ 2901242
002901242 003__ SzGeCERN
002901242 005__ 20240618222935.0
002901242 0247_ $$2DOI$$9JACOW$$a10.18429/JACoW-HB2023-THBP17
002901242 0248_ $$aoai:cds.cern.ch:2901242$$pcerncds:FULLTEXT$$pcerncds:CERN:FULLTEXT$$pcerncds:CERN
002901242 035__ $$9HAL$$ahal-04542534
002901242 035__ $$9https://inspirehep.net/api/oai2d$$aoai:inspirehep.net:2776127$$d2024-06-17T08:47:08Z$$h2024-06-18T05:22:06Z$$mmarcxml
002901242 035__ $$9Inspire$$a2776127
002901242 041__ $$aeng
002901242 100__ $$aAmorim, David$$jJACoW-00088090$$uCERN
002901242 245__ $$9JACOW$$aTransverse Coherent Instability Studies for the High-Energy Part of the Muon Collider Complex
002901242 260__ $$c2024
002901242 300__ $$a4 p
002901242 520__ $$9JACOW$$aThe International Muon Collider Collaboration (IMCC) is studying a 3 TeV center-of-mass muon collider ring, as well as a possible next stage at 10 TeV. Muons being 200 times heavier than electrons, limitations from synchrotron radiation are mostly suppressed, but the muon decay drives the accelerator chain design. After the muon and anti-muon bunches are produced and 6D cooled, a series of Linac, recirculating Linac and Rapid Cycling Synchrotron (RCS) quickly accelerate the bunches before the collider ring. A large number of RF cavities are required in the RCS to ensure that over 90% of the muons survive in each ring. The effects of cavities higher-order modes on transverse coherent stability have been looked at in detail, including the one of a bunch offset in the cavities, along with possible mitigation measures. In the collider ring, the decay of high-energy muons is a challenge for heat load management and radiation shielding. A tungsten liner would protect the superconducting magnet from decay products. Impedance and related beam stability have been investigated to identify the minimum vacuum chamber radius and transverse damper properties required for stable beams.
002901242 540__ $$aCC-BY-3.0$$bJACOW$$uhttps://creativecommons.org/licenses/by/3.0
002901242 542__ $$dthe author(s)$$g2024
002901242 65017 $$2SzGeCERN$$aAccelerators and Storage Rings
002901242 6531_ $$9author$$acollider
002901242 6531_ $$9author$$aimpedance
002901242 6531_ $$9author$$acavity
002901242 6531_ $$9author$$asynchrotron
002901242 6531_ $$9author$$asimulation
002901242 690C_ $$aARTICLE
002901242 690C_ $$aCERN
002901242 700__ $$aBatsch, Fabian$$jJACoW-00072579$$uCERN
002901242 700__ $$aBottura, Luca$$jJACoW-00001723$$uCERN
002901242 700__ $$aCalzolari, Daniele$$jJACoW-00137796$$uCERN
002901242 700__ $$aCarli, Christian$$jJACoW-00001683$$uCERN
002901242 700__ $$aChancé, Antoine$$jJACoW-00011744$$uIRFU, Saclay
002901242 700__ $$aDamerau, Heiko$$jJACoW-00004420$$uCERN
002901242 700__ $$aGrudiev, Alexej$$jJACoW-00012092$$uCERN
002901242 700__ $$aLechner, Anton$$jJACoW-00052129$$uCERN
002901242 700__ $$aMétral, Elias$$jJACoW-00001671$$uCERN
002901242 700__ $$aPieloni, Tatiana$$jJACoW-00004675$$uEcole Polytechnique, Lausanne
002901242 700__ $$aSchulte, Daniel$$jJACoW-00001631$$uCERN
002901242 700__ $$aSkoufaris, Kyriacos$$jJACoW-00085989$$uCERN
002901242 773__ $$cTHBP17$$pJACoW HB$$qHB2023$$v2023$$wC23-10-09.3$$y2024
002901242 8564_ $$82538010$$s1707643$$uhttps://cds.cern.ch/record/2901242/files/document.pdf$$yFulltext
002901242 960__ $$a13
002901242 962__ $$b2895374$$kTHBP17$$ncern20231009
002901242 980__ $$aARTICLE
002901242 980__ $$aConferencePaper