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We investigate the high Q2 (photon virtuality) limit of single-inclusive hadron production in deep
inelastic scattering at small x, using the color glass condensate formalism at next-to-leading order. We focus
on the Λ2

QCD ≪ p2
h ≪ Q2 kinematic regime, where ph is the produced hadron transverse momentum, and

extract the Sudakov double logarithms. We further argue that compatibility between the color glass
condensate calculation and transverse momentum dependent distribution factorization at one-loop order
can only be achieved if the small-x evolution is kinematically constrained.
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I. INTRODUCTION

The color glass condensate (CGC) effective theory
[1–3] is commonly used to describe hadronic scattering
processes at high collision energies in the Regge-Gribov
limit. This effective theory is based on the gluon satu-
ration phenomena, which can be briefly described as
follows: in the Regge-Gribov limit, the increase in
collision energy leads to a decrease of the longitudinal
momentum fraction carried by the interacting partons.
With decreasing x, the gluon density of the interacting
hadrons increases rapidly. This rapid increase in the
density is tamed by nonlinear interactions of the emitted
gluons and causes the above mentioned gluon saturation
phenomena at sufficiently high energies. The nonlinear
functional evolution equation with increasing energy (or
equivalently, with rapidity) is given by the Balitsky-
Kovchegov / Jalilian-Marian-Iancu-McLerran-Wiegert-
Leonidov-Kovner (BK-JIMWLK) equation [4–15].
Even though hints of gluon saturation phenomena have

been seen in the experimental data from the Relativistic
Heavy Ion Collider (RHIC) in the USA and the Large
Hadron Collider (LHC) at CERN, a conclusive evidence is
expected to be seen at the Electron Ion Collider (EIC) to be
built in the USA. Deep inelastic scattering (DIS) on a dense

target is one of the processes that will be at the focus of EIC
to study the gluon saturation effects since it provides a
clean environment to probe saturation. Theoretical compu-
tations of DIS related observables are frequently performed
in the dipole factorization framework [16,17], where the
incoming lepton emits a virtual photon, which splits into a
quark-antiquark pair that scatters on the target. The splitting
of the virtual photon into quark-antiquark pair is computed
perturbatively, while the interaction of the pair with the
target is treated in the CGC framework by encoding the
rescattering effects in the Wilson lines.
With the advent of the EIC, there have been a lot of

efforts to increase the precision of the theoretical calcu-
lations of DIS related observables. Inclusive DIS [18–24]
and its fits to HERA data [25] for massless quarks have
been computed at next-to-leading order (NLO) in strong
coupling αs. Quark mass has been included in the NLO
computations of inclusive DIS in [26–28] and fits of the
results to HERA data have been performed in [29]. Single
inclusive jet/hadron production in DIS [30–32] and Drell-
Yan production [33] have been studied at NLO. Inclusive
dijet (and/or dihadron) production in DIS have been
computed at NLO in [34–41]. Finally, different aspects
of diffraction and diffractive jet/dijet production have been
studied in detail at NLO [42–47].
A remarkable aspect of dijet production is studied

in [48–50], where the equivalence between the CGC and
transverse momentum dependent distributions (TMDs)
have been shown once the appropriate limits are applied,
namely, the high energy limit of the dijet cross section
computed in TMD factorization, and the correlation limit
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(when the two jets are produced back-to-back) of the dijet
cross section computed in the CGC framework. In addition,
both unpolarized and linearly polarized gluon TMDs
emerge in the CGC framework [51,52]. The production
of three-particle final states has also been considered
in [53–57]. The equivalence between the CGC and
TMD factorization frameworks are extended beyond the
correlation limit for dijet production by resumming the
kinematic twist corrections in [58–64], and this new frame-
work is referred to as small-x improved TMD (ITMD)
factorization; it interpolates between the dilute (BFKL)
limit of the CGC and the TMD limit of the CGC.
An important question of whether the equivalence

between the CGC and TMD frameworks holds beyond
LO for dijet production in DIS in the back-to-back limit has
been addressed in [35,36]. It was shown that in order to get
the correct Sudakov double logarithm that was conjectured
in [65,66], one should adopt a kinematically constrained BK
evolution [67–69] to properly resum the rapidity divergen-
ces that arise at NLO. More generally, the use of a
kinematically constrained nonlinear small-x evolution is
rapidly becoming unavoidable in CGC calculations, some-
thing which was realized long ago in the context of linear
BFKL evolution [70,71]. In addition, combining low-x and
Sudakov resummation has been the subject of intensive
research in various alternative approaches [72–95].

In this paper, we focus on the single inclusive hadron
production in DIS. In Sec. II, we start from the dihadron
production cross section in DIS, integrate over the anti-
quark to get the single inclusive hadron production cross
section at LO, and discuss the kinematic region, where one
can expect the emergence of the Sudakov double loga-
rithms once the next-to-leading order corrections to the
cross section are included in the analysis. In Sec. III, we
include the next-to-leading order corrections to SIDIS cross
section, identify the diagrams that will contribute to the
Sudakov double logarithms in the appropriate kinematic
region, and discuss the divergences that appear. In Sec. IV,
we discuss how to extract these double logarithms. Finally,
in Sec. V, we present a brief discussion of our results.

II. SINGLE INCLUSIVE HADRON PRODUCTION
IN DIS AT LEADING ORDER

The dominant channel for single-inclusive hadron pro-
duction in Deep Inelastic Scattering at small x is the
production of a quark-antiquark pair, either of which can
hadronize and be measured. This is a two-step process; first
the virtual photon splits into a quark-antiquark pair, which
subsequently scatters on the target proton or nucleus. The
cross section for this process can be written as [49]

dσγ
�A→qq̄X

d2pd2qdy1dy2
¼ e2Q2ðz1z2Þ2Nc

ð2πÞ7 δð1− z1− z2Þ
Z

d8x½S122010 −S12−S1020 þ 1�eip·x101eiq·x202
�
4z1z2K0ðjx12jQ1ÞK0ðjx1020 jQ1Þ

þ ðz21þ z22Þ
x12 ·x1020

jx12jjx1020 j
K1ðjx12jQ1ÞK1ðjx1020 jQ1Þ

�
; ð1Þ

where (p; y1) and (q; y2) are the transverse momentum and
rapidity of the produced quark and antiquark, respectively,
and Q2 is the virtuality of the incoming photon. The QED
coupling e2 should be understood as encompassing the
various (massless) quark flavors: e2 ¼ 4παem

P
f e

2
f. The

first (second) term inside the big square bracket corre-
sponds to contribution of longitudinal (transverse) photons.
Multiple scattering of the partons on the dense target are
encoded in the dipole (Sij) and quadrupole (Sijkl) operators
that are defined as

Sij ¼
1

Nc
trhViV

†
ji; Sijkl ¼

1

Nc
trhViV

†
jVkV

†
l i; ð2Þ

where the index i corresponds to the transverse coordinate
xi and the Wilson lines Vi are given in terms of the
background field of the target A− as

Vi ¼ P̂ exp

�
ig
Z

dxþA−ðxþ;xiÞ
�
: ð3Þ

Furthermore, x1ðx2Þ is the transverse coordinate of the
quark (antiquark) going through the target in the amplitude
while the primed coordinates correspond to the same in the
complex conjugate amplitude. We have defined z1 ≡
pþ=lþ and z2 ≡ qþ=lþ as the longitudinal momentum
fractions carried by the final state quark and antiquark,
relative to the photon’s longitudinal momentum lþ. The
rapidity of a parton is related to its momentum fraction via
dyi ¼ dzi

zi
. We are also using the following definitions and

short hand notations:

Qi ¼ Q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zið1 − ziÞ

p
; xij ¼ xi − xj;

d8x ¼ d2x1d2x2d2x10d2x20 : ð4Þ

Finally, we shall denote the center-of-mass energy
of the photon-proton (or photon-nucleus) collision
W2 ¼ 2lþP− −Q2, where P− is the target longitudinal
momentum.
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In order to get the single inclusive production cross section, we choose to integrate over the antiquark in the final state.
Denoting d6x≡ d2x1d2x2d2x10 , we get

dσγ
�A→qðp;yÞX

d2pdy1
¼ e2Q2Nc

ð2πÞ5
Z

dz2δð1 − z1 − z2Þðz21z2Þ
Z

d6x½S110 − S12 − S102 þ 1�eip·x101

×

�
4z1z2K0ðjx12jQ1ÞK0ðjx102jQ1Þ þ ðz21 þ z22Þ

x12 · x102

jx12jjx102j
K1ðjx12jQ1ÞK1ðjx102jQ1Þ

�
: ð5Þ

As hadronization of a colored parton is a genuinely nonperturbative phenomenon it is common to describe it by a parton-
hadron fragmentation function when considering hadron production at moderate to high transverse momenta. We will
follow this approach here and convolute the partonic cross section with a quark-hadron fragmentation function to get

dσγ
�A→hðph;yhÞX

d2phdyh
¼ e2Nc

ð2πÞ5
Z

1

zh

dz1
zh

Dh=qðzh=z1Þz1Q2
1

Z
d6x½S110 − S12 − S102 þ 1�eiðz1=zhÞph·x101

×

�
4Q2

1

Q2
K0ðjx12jQ1ÞK0ðjx102jQ1Þ þ ½z21 þ ð1 − z1Þ2�

x12 · x102

jx12jjx102j
K1ðjx12jQ1ÞK1ðjx102jQ1Þ

�
; ð6Þ

where zh is fraction of the photon momentum carried by the produced hadron. We note that in collinear fragmentation the
produced hadron and (massless) parton rapidities are the same.
In this work, we are interested in particle production when the photon virtuality is large, so that we need the largeQ2 limit

of our expressions. However, taking the large Q2 limit of the Bessel functions is a bit tricky; their argument depend on Q2

through the combination with momentum fraction z, which is integrated over so that the argument of Bessel functions
z1ð1 − z1ÞQ2 can go to zero even at very large Q2. Clearly taking this limit requires some care; to accomplish this, we
reformulate the procedure presented in [96] to extract the leading 1=Q2 behavior. We introduce a delta function of the form,

Q2n
1 Kð0;1Þðjx12jQ1ÞKð0;1Þðjx102jQ1Þ ¼

Z
Q2=4

0

dQ̄2ðQ̄2ÞnKð0;1Þðjx12jQ̄ÞKð0;1Þðjx102jQ̄Þδ½Q̄2 − z1ð1 − z1ÞQ2�; ð7Þ

and insert it in the various hadron-level cross sections. We then do the z1 integral using the delta function via

δ½Q̄2 − z1ð1 − z1ÞQ2� ¼ δðz1 − zþÞ
Q2j1 − 2zþj

þ δðz1 − z−Þ
Q2j1 − 2z−j

with z� ¼ 1

2

	
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4Q̄2=Q2

q 

: ð8Þ

As we are interested in the highQ2 limit, we keep only the leading power (inQ2) terms, which comes from z1 ¼ zþ ∼ 1, the
so-called aligned jet configuration in which the quark that fragments into the measured hadron carries almost all of the
photon longitudinal momentum. For the LO cross section, this gives (transverse and longitudinal cases respectively)

dσγ
�A→hðph;yhÞX

d2phdyh

����
T;LP

¼ 1

Q2

e2Nc

ð2πÞ5
Dh=qðzhÞ

zh

Z
d6x½S110 − S12 − S102 þ 1�

× eiðph=zhÞ·x101 x12 · x102

jx12jjx102j
Z

∞

0

dQ̄2Q̄2K1ðjx12jQ̄ÞK1ðjx102jQ̄Þ; ð9Þ

dσγ
�A→hðph;yhÞX

d2phdyh

����
L;LP

¼ 1

Q2

e2Nc

ð2πÞ5
Dh=qðzhÞ

zh

Z
d6x½S110 − S12 − S102 þ 1�eiðph=zhÞ·x101

×
4

Q2

Z
∞

0

dQ̄2Q̄4K0ðjx12jQ̄ÞK0ðjx102jQ̄Þ: ð10Þ

Since the SIDIS production cross section via longitudinal photon is suppressed by a power of 1=Q2 in the high virtuality
limit compared to the SIDIS production cross section via transverse photon, we restrict ourselves to the latter in this study.
Moreover, one can rewrite the leading power expression of the transverse cross section in terms of the quark TMD
distribution as [83,96]
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dσγ
�A→hðph;yhÞX

d2phdyh

����
T;LP

¼ πe2

Q2

Dh=qðzhÞ
zh

xqðx;ph=zhÞ; ð11Þ

where the small-x quark TMD distribution xqðx;pÞ is
given by

xqðx;pÞ ¼ 2Nc

ð2πÞ6
Z

d6xe−ip·x110 ½S110 − S12 − S102 þ 1�

×
x12 · x102

jx12jjx102j
Z

∞

0

dQ̄2Q̄2K1ðjx12jQ̄ÞK1ðjx102jQ̄Þ:

ð12Þ

Here, the variable x represents the longitudinal momentum
fraction of the quark in the target wave function before it
gets hit by the virtual photon. It is related to the final state
quark momentum by xP− −Q2=ð2lþÞ ¼ p−, that is x ¼
p−=P− þ xB with xB ¼ Q2=ðQ2 þW2Þ. At large Q2,
because z1 ≃ 1, the value of x is fixed by kinematics:
x ¼ xB½1þ ðp2

h=z
2
hÞ=Q2 þOð1=Q2Þ�≳ xB. In (12), the x

dependence of xqðxÞ enters through the dipole amplitudes,
or more precisely, through the rapidity scale choice at
which they are to be evaluated, as will be discussed in the
next section.
The writing of the CGC result (9), for the leading-power

SIDIS cross section at small-x, in the factorized form (11) is
not arbitrary: Eq. (12) corresponds to the gluon-splitting
contribution to the quark TMD, and the consistency with
the operator definition of the quark TMD at small x was
checked in [96]. This correspondence is actually more
evident in momentum space, where Eq. (12) can be
rewritten as

xqðx;pÞ¼
Z

d2kg

�
Nc

8π4
k2
g

αs

Z
d2x1d2x10S110e−ikg·x110

�

×

�
1

4π2
αs
k2
g

Z
∞

0

dQ̄2

���� kg−p

Q̄2þðkg−pÞ2þ
p

Q̄2þp2

����
2
�
:

ð13Þ

Inside the first parenthesis, we have the dipole gluon TMD
xGð2Þðx;kgÞ, which corresponds to an operator definition
with one past-pointing and one future-pointing gauge
staples, in the fundamental representation [48,49].
The function inside the second parenthesis is nothing,

but the ξ-integrated kg-dependent splitting function Pqg
where the daughter quark (respectively, antiquark) has
transverse momentum p (respectively, kg − p) and longi-
tudinal momentum fraction (now in the “−” direction) ξ
(respectively, 1 − ξ). In order to see this, let us recall that
originally the integration variable Q̄2 quantifies the off
shellness of the intermediate qq̄ pair and appears in the
energy denominator of the γ� → qq̄ light-front wave
function as 1=ðp2 þ Q̄2Þ. Moving to the frame where it

is the target gluon which splits into the qq̄ pair before the
photon hits the quark, we may identify that denominator
with the −pμpμ ¼ p2 þ ξðkg − pÞ2=ð1 − ξÞ of the quark
propagator. Therefore, one is led to consider the change of
variable Q̄2 ¼ ξðkg − pÞ2=ð1 − ξÞ, which leads to

1

4π2
αs
k2
g

Z
∞

0

dQ̄2

���� kg − p

Q̄2 þ ðkg − pÞ2 þ
p

Q̄2 þ p2

����
2

¼ 1

4π2
αs
k2
g

Z
1

0

dξ

���� kg − p

jkg − pj þ
jkg − pjp

ð1 − ξÞp2 þ ξðkg − pÞ2
����
2

¼
Z

1

0

dξPqgðξ;kg;pÞ: ð14Þ

The function Pqg introduced above coincides with the off
shell splitting function originally calculated in the
Appendix C of [97] and further discussed in the high-
energy-factorization literature [98,99]. To be precise, our
Pqg is Eq. (13) of [99] divided by π (in [99] that 1=π factor
is instead included together with the measure d2kg).
The leading-power contribution in the CGC calculation
incorporates the transverse momentum convolution but
features xqðxÞ ¼ xGð2ÞðxÞ R dξPqgðξÞ and not xqðxÞ ¼R
x dξðx=ξÞGð2Þðx=ξÞPqgðξÞ in the longitudinal direction,
indicating that in ðx=ξÞGð2Þðx=ξÞ, ξ is naturally set to unity,
in accordance with the longitudinal momentum ordering at
small x. For completeness, we also recall that the ξ integral
may be performed,

Z
1

0

dξPqgðξ;kg;pÞ

¼ 1

2π2
αs
k2
g

�
1þ p · ðkg − pÞ

p2 − ðkg − pÞ2 ln
p2

ðkg − pÞ2
�
: ð15Þ

As was noticed in [96], the convolution (13) implies that
the large transverse momentum tail of the quark TMD, i.e.,
xqðx;pÞ ∼ 1=p2, is controlled by the dynamics of the
splitting and not by the high-kg tail of the gluon TMD.
Going back to the coordinate space expression (12),

let us finally introduce the so-called b-space TMD
defined by

xqðx;pÞ ¼
Z

d2x110

ð2πÞ2 e
−ip·x110xq̃ðx;x110 Þ: ð16Þ

Note that the b variable used in the TMD literature is the
“dipole” size x110 here in our work, where the dipole is
made up of the quark in the amplitude at transverse position
x1 and the quark in the conjugate amplitude at transverse
position x10 , and should not be confused with the impact
parameter b⊥ ¼ ðx1 þ x0

1Þ=2. Denoting d4x≡ d2b⊥d2x2,
we write
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xq̃ðx;x110 Þ ¼
2Nc

ð2πÞ4
Z

d4x½S110 − S12 − S102 þ 1� x12 · x102

jx12jjx102j
×
Z

∞

0

dQ̄2Q̄2K1ðjx12jQ̄ÞK1ðjx102jQ̄Þ: ð17Þ

III. SINGLE INCLUSIVE HADRON PRODUCTION
IN DIS AT NLO

Next to leading corrections to this leading order result
have been calculated in [32]. In principle, one must
consider radiation of a gluon from either the quark or
antiquark. This radiated gluon then can either be absorbed
in the amplitude (virtual corrections) or in the complex
conjugate amplitude (real corrections). In either case, the
radiation can happen either after going through the target,

in which case only the original quark and antiquark scatter
from the target, or before going through the target in which
case all three partons scatter from the target. However,
as we are interested only in terms in the cross section
which are enhanced by (Sudakov) double logs, we will
consider only the diagrams which contain a collinear
divergence. These are depicted in Fig. 1, where the labeling
follows [39,40].
In this work, we will focus on transversely polarized

photons since the cross section with longitudinal photons
is suppressed by Q2 (photon virtuality) as compared with
transverse photons. Partonic production cross sections are
then obtained by squaring the production amplitude and
including the appropriate phase space and flux factors.
The contribution of the real correction is then given
by [40]

dσT1×1
d2pd2qdy1dy2

¼ e2g2Q2z22ð1 − z2Þ½z21z22 þ ðz21 þ z22Þð1 − z2Þ2 þ ð1 − z2Þ4�
ð2πÞ10z1

Z
dz
z
δð1 − z − z1 − z2Þ

×
Z

d10xK1ðjx12jQ2ÞK1ðjx1020 jQ2Þ
x12 · x1020

jx12jjx1020 j
NcCF½S122010 − S12 − S1020 þ 1�eip·x101eiq·x202Δð3Þ

101e
i zz1

p·x101 ;

ð18Þ

where we have defined the radiation kernel,

Δð3Þ
ij ¼ x3i · x3j

x2
3ix

2
3j

; ð19Þ

while the virtual correction is given by

dσT9
d2pd2qdy1dy2

¼ −e2g2Q2ðz1z2Þ2ðz21 þ z22Þ
2ð2πÞ8

Z
d8xK1ðjx12jQ1ÞK1ðjx1020 jQ1Þ

x12 · x1020

jx12jjx1020 j
δð1 − z1 − z2Þ

× NcCF½S122010 − S12 − S1020 þ 1�eip·x101eiq·x202
Z

z1

0

dz
z

�
z21 þ ðz1 − zÞ2

z21

� Z
d2k
ð2πÞ2

1

ðk − z
z1
pÞ2 : ð20Þ

Integrating over the antiquark phase space then gives the contribution of real and virtual corrections to single inclusive
quark production,

FIG. 1. The NLO real (left) and virtual (right) diagrams giving large double logs. The arrows on fermion lines indicate fermion number
flow, all momenta flow to the right, except for gluon momenta. The thick solid line indicates interaction with the target.
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dσT1×1
d2pdy1

¼ e2g2Q2

ð2πÞ8
Z

1−z1

0

dz
z
ð1 − z − z1Þðzþ z1Þ

z1
½z21ð1 − z − z1Þ2 þ ðz21 þ ð1 − z − z1Þ2Þðzþ z1Þ2 þ ðzþ z1Þ4�

×
Z

d8xK1ðjx12jQ1zÞK1ðjx102jQ1zÞNcCF½S110 − S12 − S210 þ 1� x12 · x102

jx12jjx102j
Δð3Þ

110e
i
z1þz
z1

p·x101 : ð21Þ

dσT9
d2pdy1

¼ −
e2g2Q2

2ð2πÞ6
Z

z1

0

dz
z
ð1 − z1Þðz21 þ ð1 − z1Þ2Þ½z21 þ ðz1 − zÞ2�

Z
d6xK1ðjx12jQ1ÞK1ðjx102jQ1Þeip·x101

× NcCF½S110 − S12 − S210 þ 1� x12 · x102

jx12jjx102j
Z

d2x3

ð2πÞ2
1

x2
31

; ð22Þ

with

Q2
1z ≡ ð1 − z − z1Þðzþ z1ÞQ2: ð23Þ

Indeed, since we have integrated over z2, the definition of Q1 remains the same as before but Q2 is now changed into Q1z.
For these NLO expressions, the extraction of the leading power in the largeQ2 limit can be achieved in a similar manner as
in the previous section.
Let us start with the real-emission contribution. The hadron-level cross sections is

dσγ
�A→hðph;yhÞX
1×1T

d2phdyh
¼ e2g2

ð2πÞ8NcCF

Z
1

zh

dz1
zh

Dh=qðzh=z1Þ
Z

1−z1

0

dz
z
Q2

1z

z1
½z21ð1− z− z1Þ2 þ ðz21 þ ð1− z− z1Þ2Þðzþ z1Þ2 þ ðzþ z1Þ4�

×
Z

d8x½S110 − S12 − S210 þ 1�K1ðjx12jQ1zÞK1ðjx102jQ1zÞ
x12 · x102

jx12jjx102j
ei

z1þz
z1

×
z1
zh
ph·x101Δð3Þ

101; ð24Þ

and the leading-power contribution can be written as

dσγ
�A→hðph;yhÞX
1×1T

d2phdyh

����
LP

¼ πe2

Q2

Z
d2x110

ð2πÞ2 e
−iðph=zhÞ·x110xq̃ðx;x110 Þ

g2CF

ð2πÞ3
Z

1−zh

0

dz
zð1− zÞ

Dh=qðzh=ð1− zÞÞ
zh

½1þ ð1− zÞ2�
Z

d2x3Δ
ð3Þ
101;

ð25Þ

where we have used the definition of the b-space TMD (17).
Now let us discuss the virtual contribution. At hadron-level, it reads

dσγ
�A→hðph;yhÞX
9T

d2phdyh
¼ −

e2g2

2ð2πÞ6 NcCF

Z
1

zh

dz1
z1

Dh=qðzh=z1Þ
zh

½z21 þ ð1 − z1Þ2�
Z

z1

0

dz
z
½z21 þ ðz1 − zÞ2�

×
Z

d6x
x12 · x102

jx12jjx102j
Q2

1K1ðjx12jQ1ÞK1ðjx102jQ1Þei
z1
zh
ph·x101 ½S110 − S12 − S210 þ 1�

Z
d2x3

ð2πÞ2
1

x2
3

: ð26Þ

Before extracting the leading-power, one should recall that in the full calculation, the UV divergence in this diagram is
canceled by the UV divergent part of another virtual diagram, as explained in [40] [labeled dσ14ð1Þ there]. We shall take this
into account by introducing the scale μ in the x3 integral. Then, the high-Q2 limit is given by

dσγ
�A→hðph;yhÞX
9T

d2phdyh

����
LP

¼ πe2

Q2

Dh=qðzhÞ
zh

Z
d2x110

ð2πÞ2 e
−iðph=zhÞ·x110xq̃ðx;x110 Þ

�
−
αsCF

4π2

�Z
1

0

dz
z
½1þ ð1 − zÞ2�

Z
jx3jμ>1

d2x3

x2
3

: ð27Þ

Adding the LO and NLO (we need to multiply σT9 by 2 since that contribution is the product of diagram A9 in Fig. 1 with
the conjugate LO amplitude) terms, we get
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dσγ
�A→hðph;yhÞX
LOþNLO

d2phdyh

����
LP

¼ πe2

Q2

1

zh

Z
d2x110

ð2πÞ2 e
−iphzh ·x110xq̃ðx;x110 Þ

��
1 −

αsCF

2π2

Z
1

0

dz
z
½1þ ð1 − zÞ2�

Z
jx3jμ>1

d2x3

x2
3

�
Dh=qðzhÞ

þ
�
αsCF

2π2

Z
1−zh

0

dz
z
½1þ ð1 − zÞ2�

1 − z

Z
d2x3Δ

ð3Þ
101

�
Dh=q

�
zh

1 − z

��
: ð28Þ

We next add (to virtual) and subtract (from the real part) the collinear divergence (for simplicity, we also use μ as the
factorization scale),

dσγ
�A→hðph;yhÞX
LOþNLO

d2phdyh

����
LP

¼πe2

Q2

1

zh

Z
d2x110

ð2πÞ2 e
−iphzh ·x110xq̃ðx;x110 Þ

×

�
Dh=qðzhÞþ

�
αsCF

2π2

�Z
1−zh

0

dz
z
1þð1−zÞ2

1−z
Dh=q

�
zh
1−z

�
−
Z

1

0

dz
z
½1þð1−zÞ2�Dh=qðzhÞ

��Z
jx3jμ>1

d2x3

x2
3

þ
�
αsCF

2π2

Z
1−zh

0

dz
z
½1þð1−zÞ2�

1−z

�Z
d2x3Δ

ð3Þ
101−

Z
jx3jμ>1

d2x3

x2
3

��
Dh=q

�
zh
1−z

��
: ð29Þ

The first two terms in the curly bracket in Eq. (29) correspond to the leading-order cross section convoluted with DGLAP-
evolved quark-hadron fragmentation function. Indeed, defined as the expectation value of two bare field operators which
becomes singular in the short distance limit, the fragmentation function gets renormalized (evolves) by loop corrections,
where the renormalized quark-hadron fragmentation function is defined as (see [40])

Dh=qðzh;μ2Þ≡
�
D0

h=qðzhÞþ
αsCF

2π

�Z
1−zh

0

dz
z
1þð1−zÞ2

1−z
Dh=q

�
zh
1−z

�
−
Z

1

0

dz
z
½1þð1−zÞ2�Dh=qðzhÞ

�Z
1=μ2

d2x
x2

�
: ð30Þ

Therefore, we can isolate the collinearly divergent part of the cross section, which leads to the standard DGLAP evolution
of the fragmentation function (where the splitting function is defined with þ prescription), which is then convoluted with
the Leading Order cross section. The result can be then be written as

dσγ
�A→hðph;yhÞX
LOþNLO

d2phdyh

����
LP

¼ dσLO ⊗ Dh=qðzh; μ2Þ þ
1

Q2

πe2

zh

Z
d2x110

ð2πÞ2 e
−iphzh ·x110xq̃ðx;x110 Þ

×

�
αsCF

2π2

�Z
d2x3Δ

ð3Þ
101 −

Z
jx3jμ>1

d2x3

x2
3

�Z
1−zh

0

dz
z
½1þ ð1 − zÞ2�

1 − z
Dh=q

�
zh

1 − z

��
: ð31Þ

In the second line of that equation, one can already point
out the origin of the Sudakov logarithms. They will come
from the integration over x3, in the range between and 1=μ
and x110 , where the virtual (subtracted, to be precise) term
does not get canceled by the real-emission one. Indeed, the
combination inside the parenthesis is infrared finite, and in
the real-emission integration, small dipole sizes are natu-
rally cut off by x110, while for the virtual term the integration
over x3 extends down to 1=μ. From now on, since
we are only after double logs, we may set the scale as
μ ¼ Q, which is the natural choice in SIDIS. We note
however that scale setting is more intricate for the extrac-
tion of the single logarithms. The μ dependence ofDh=qðzhÞ
may be applied in the αs correction as well, since

Dh=qðzh; μ2Þ ≃Dh=qðzhÞ þOðαsÞ will generate NNLO cor-
rections beyond the accuracy of our calculation.
The final step is to isolate the rapidity divergences, which

will result in the JIMWLKevolution of the dipole amplitude.
To do so,we introduce zf, a factorization scale in z and break
up the z integral in Eq. (31) into two regions as follows:

Z
1−zh

0

dz ¼
Z

zf

0

dzþ
Z

1−zh

zf

dz; ð32Þ

where the first term contains the rapidity divergence, while
the second term is rapidity-finite and constitute part of the
NLO corrections to the production cross section. We may
now write
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dσγ
�A→hðph;yhÞX
LOþNLO

d2phdyh

����
LP

¼ dσLO ⊗ Dh=qðzh;Q2Þ þ dσNLO−rap−finite þ
πe2

Q2

Dh=qðzh;Q2Þ
zh

Z
d2x110

ð2πÞ2 e
−iphzh ·x110xq̃ðx;x110 Þ

×
�
αsCF

π2

�Z
d2x3Δ

ð3Þ
101 −

Z
jx3jQ>1

d2x3

x2
3

�Z
zf

0

dz
z

�
: ð33Þ

It is customary in CGC calculations to absorb the entire
second line of this expression into the leading-order term,
making the dipole amplitudes zf dependent and evolving
according to the leading log (LL) BK-JIMWLK equation.
That was shown explicitly for the double-inclusive cross
section—and consequently, for SIDIS—in [32,34,35].
Because the z → 0 limit does not contribute to the evolution
of the fragmentation function Dh=qðzh;Q2Þ [the collinear
divergence in (30) cancels in that limit], one may safely
send the integration limit jx3j > 1=Q to zero in the rapidity
subtraction term; the apparent UV divergence will cancel
when the rapidity-subtraction terms from all the diagrams
are put together to build the evolution equation.
In the rapidity-finite term however, that jx3j > 1=Q

lower limit must be kept, and this will generate a
lnðjxj110 jQÞ factor. But this rapidity-subtraction procedure
leaves us without double logarithms, in contradiction with
TMD factorization. In the following section, we will utilize
a different subtraction scheme. In the NLO diagrams that
possess only a rapidity divergence, that alternate scheme
will generate single logs of Q2 that would otherwise be
absent. In the NLO diagrams that we considered in this
section, which contain both a rapidity and a collinear
divergence, the original single log will be turned into a
double log, the very focus of the present work.

IV. EXTRACTION OF SUDAKOV LOGARITHMS

The extraction of Sudakov double logs was addressed
recently for the case of back-to-back dijet production,
where LL JIMWLK evolution of dipoles and quadrupoles
resulted in Sudakov double logs with the wrong sign. To
remedy this problem and restore compatibility with TMD
factorization, a kinematically constrained JIMWLK evo-
lution was introduced. We shall implement a similar idea in
the present case of SIDIS at large Q2.
The idea is that in addition to restricting the þ compo-

nent of the gluon momentum kþ < zflþ with zf < 1,
i.e., z < zf, we must also constrain their − component
k− > z̃fjl−j with z̃f > 1 (we recall that l� refers to the
momentum of the incoming virtual photon). This constraint
enforces the gluon formation time 1=k− ¼ 2kþ=k2 to be
small enough to participate in the small-x evolution of the
target: 1=k− < ð1=z̃fÞ=jl−j, where 1=jl−j ¼ 2lþ=Q2 repre-
sents the virtual photon lifetime. Gluons with formation
time comparable to that of the photon lifetime must be
excluded from the small-x evolution of the target and will

contribute to the Sudakov phase space. A detailed dis-
cussion of how to implement such a constraint in the small-
x evolution equations—in a more general context than that
of the resummation of Sudakov logarithms in two-scale
processes—can be found in the pioneering work [67]. Here,
we shall use a minimal subtraction scheme, which allows us
to extract the double logarithms.
Eventually, both zf and z̃f will have to be chosen in

relation with the external kinematical variables of the
process, and in order to insure the absence of additional
large logarithms in the NLO finite pieces, the choices must
respect zfz̃f ∼ 1. The gluon lifetime constraint is then
naturally written in momentum space as

Θðkin:const:Þ ¼ Θ
�
zf

k2

Q2
− z

�
; ð34Þ

and we will show that taking this into account in the
rapidity subtraction terms, i.e., writing now

Z
1−zh

0

dz ¼
Z

1−zh

zf

dzþ
Z

zf

0

dz½1 − Θðkin:const:Þ�

þ
Z

zf

0

dzΘðkin:const:Þ; ð35Þ

will restore the Sudakov double logarithms. Indeed, after
absorbing a kinematically constrained second-line of equa-
tion (33) into the LO cross section, in which the dipole
amplitudes shall now evolve according to a kinematically
constrained JIMWLK equation, we are left with the
following z integral:

Z
zf

0

dz
z

�
1−Θ

�
zf

k2

Q2
−z

��
¼
Z

zf

0

dz
z
Θ
�
z−zf

k2

Q2

�

¼ΘðQ2−k2Þln
�
Q2

k2

�
: ð36Þ

We then write our coordinate-space expression (33) in
momentum space using

Z
d2x3Δ

ð3Þ
101−

Z
jx3jQ>1

d2x3

x2
3

¼
Z

d2k
k2

eik·x101 −
Z
Q>jkj

d2k
k2

;

ð37Þ

and we get
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dσγ
�A→hðph;yhÞX
LOþNLO

d2phdyh

����
LP

¼ dσLOðzfÞ ⊗ Dh=qðzh; Q2Þ þ dσNLO−rap−finite þ
πe2

Q2

Dh=qðzh; Q2Þ
zh

Z
d2x110

ð2πÞ2 e
−iphzh ·x110xq̃ðx;x110 Þ

×

�
αsCF

π2

Z
Q2 d2k

k2
ðeik·x101 − 1Þ ln

�
Q2

k2

��
: ð38Þ

The leading order term corresponds to Eq. (11), but with
the fragmentation function evaluated at the scale μ ¼ Q,
and the quark TMD evaluated (though the dipole ampli-
tudes) at the rapidity scale lnð1=zfÞ. Up to NNLO correc-
tions, the zf dependence of xq̃ðxÞ may be applied in the αs
corrections as well.
The dipole amplitudes appear as zf dependent quantities

because we have emitted the final-state gluon from the
photon wave function. In practice however, the dipole
amplitudes are obtained by implementing the small-x
evolution from the target perspective, from an initial con-
dition at some x0 value down to a factorizationvariable in the
“−” direction, chosen as the longitudinal momentum frac-
tion x. Indeed, it is natural towork in a frame in which all the
final-state particles other than the struck quark originate
from partons in the target wave function with a longitudinal
momentum fraction bigger than xP−. This choice sets
z̃f ¼ x=xB and then zf ¼ xB=x ¼ Q2=ðp2

h=z
2
h þQ2Þ≲ 1,

although again the value of zf is of no practical usewhen the
evolution is done from the target perspective.
The final step is to perform the p integral,

Z
Q2 d2k

k2
½e−ik·x110 − 1� ln

�
Q2

k2

�

¼ 4π

Z
Qjx110 j

0

dτ
τ
½J0ðτÞ − 1� ln

�
Qjx110 j

τ

�
; ð39Þ

which can be evaluated byusing the followinggeneric results:

Z
X

0

dτ
τ
½J0ðτÞ − 1� ¼ − ln

�
X
c0

�
þO

�
1ffiffiffiffi
X

p
�

ð40Þ

Z
X

0

dτ
τ
lnðτÞ½J0ðτÞ − 1� ¼ −

1

2
½lnðXÞ�2

þ 1

2
½lnðc0Þ�2 þO

�
1ffiffiffiffi
X

p
�
; ð41Þ

in the X → þ∞ limit with c0 ¼ 2e−γE . Using these results,
the integral in Eq. (39) can be written as

4π

Z
Qjx110 j

0

dτ
τ
½J0ðτÞ − 1� ln

�
Qjx110 j

τ

�

¼ −
π

2
ln2 ðQ2x2

110=c
2
0Þ þO

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Qjx110 j
p

�
: ð42Þ

Then, we finally have “factorized” the contribution of the
Sudakov double logs inside the “b-space” x110 integral.
Adding them to the LO cross section gives the factor,

1 −
αsCF

2π
ln2 ðQ2x2

110=c
2
0Þ ¼ 1 − Ssudðx110 Þ: ð43Þ

Further assuming exponentiation of the Sudakov logs, we get
the following result for Sudakov resummed single-inclusive
hadron production in DIS:

dσγ
�A→hðph;yhÞX
LOþNLO

d2phdyh

����
LP

¼ πe2

Q2

Dh=qðzh; Q2Þ
zh

Z
d2x110

ð2πÞ2 e
−iphzh ·x110xq̃ðx;x110 Þe−Ssudðx110 Þ þ dσNLO−rap−finite: ð44Þ

This restore compatibility with TMD factorization [83].
Note that we have obtained the global coefficient of the
Sudakov double log, while in TMD factorization, half of
that double log is assigned to the parton distribution
function and the other half to the fragmentation function
[100]. Hence, our coefficient is twice the one indicated in,
e.g., [83], but our result is nevertheless consistent with
TMD factorization.

V. CONCLUSIONS AND OUTLOOK

In this work, we have studied the single-inclusive hadron
production in DIS at NLO, focusing on the limit of large
photon virtuality, i.e., large Q2. In order to study this

process, we started from the dihadron production in DIS at
NLO [32,39] and integrated over the antiquark to get the
cross section for single-inclusive hadron production. As is
known [96], at large Q2, hadron production occurs pre-
dominantly via the so-called aligned-jet configuration and
processes initiated by longitudinally polarized photons are
suppressed by 1=Q2 when compared to production via
transversely polarized photons, thus we focused only on the
transverse case.
In the case of dijet production at NLO, one can connect

the CGC and the TMD factorization frameworks in the so-
called correlation limit, where the two jets are produced
almost back-to-back [35,36]. In this kinematic region, the
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hard scale is set by the large transverse momentum of the
produced jets while the semihard scale is set by the vector
sum of the transverse momenta of the produced jets. In
[35,36], it has been shown that in the case dijet production
in DIS, in order to get the correct sign of the large double
logarithms of the ratio of hard to soft scales, which is
known as the double Sudakov logarithms, one has to adopt
kinematically constrained BK-JIMWLK evolution equa-
tion instead of the standard one when resumming the
rapidity divergences.
The extraction of the Sudakov double logarithms in the

case of single inclusive hadron production in DIS is quite
different from that in the case of back-to-back production.
Indeed, when considering the SIDIS, the hard scale
that appears in the argument of Sudakov logarithms is
provided by the virtuality of the incoming photon Q2, and
the semihard scale by the hadron transverse momentum
p2
h. Imposing the ordering p2

h ≪ Q2 does not modify the
Wilson line structures but rather acts on the photon
splitting wave function. The outcome of our study is that
in this process, double Sudakov logarithms emerge
only when the kinematically constraint BK-JIMWLK
evolution equation is adopted for resumming the rapidity
divergences.
In this work, we only focused on Sudakov double

logarithms, and a natural continuation would be to study
the Sudakov single logarithms in SIDIS. Another interest-
ing avenue of research to further connect the CGC and the
TMD factorization frameworks in SIDIS will be to relax the

eikonal approximation. Recently, studies were performed
for inclusive DIS in [101,102] and dijet production in DIS
in [103–105]. In SIDIS, including a t-channel quark
exchange, which goes beyond the eikonal approximation,
does appear necessary in order to complete the connection
with the TMD picture, as in the eikonal case, the CGC only
contains the gluon-splitting contribution to the quark TMD.
These studies are left for future investigations.
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