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We investigate the high Q2 (photon virtuality) limit of single-inclusive hadron production in DIS
(SIDIS) at small x, using the color glass condensate formalism at next-to-leading order. We focus on
the Λ2

QCD ≪ p2
h ≪ Q2 kinematic regime where ph is the produced hadron transverse momentum,

and extract the Sudakov double logarithms. We further argue that compatibility between the CGC
calculation and TMD factorization at one-loop order can only be achieved if the small-x evolution
is kinematically constrained.

I. INTRODUCTION

The Color Glass Condensate (CGC) effective theory [1–3] is commonly used to describe the hadronic scattering
processes at high collision energies in the Regge-Gribov limit. This effective theory is based on the gluon saturation
phenomena which can be briefly described as follows; in the Regge-Gribov limit the increase in collision energy leads
to a decrease of the longitudinal momentum fraction carried by the interacting partons. With decreasing x the
gluon density of the interacting hadrons increases rapidly. This rapid increase in the density is tamed by nonlinear
interactions of the emitted gluons and cause the above mentioned gluon saturation phenomena at sufficiently high
energies. The non-linear functional evolution equation with increasing energy (or equivalently with rapidity) is given
by Balitsky-Kovchegov / Jalilian-Marian-Iancu-McLerran-Wiegert-Leonidov-Kovner (BK-JIMWLK) equation [4–15].

Even though hints of gluon saturation phenomena have been seen in the experimental data from the Relativistic
Heavy Ion Collider (RHIC) in the USA and the Large Hadron Collider (LHC) at CERN, a conclusive evidence is
expected to be seen at the Electron Ion Collider (EIC) to be built in the USA. Deep inelastic scattering (DIS) on
a dense target is one of the processes that will be at the focus of EIC to study the gluon saturation effects since it
provides a clean environment to probe saturation. Theoretical computations of DIS related observables are frequently
performed in the dipole factorization framework [16, 17], where the incoming lepton emits a virtual photon which
splits into a quark-antiquark pair that scatters on the target. The splitting of the virtual photon into quark-antiquark
pair is computed perturbatively while the interaction of the pair with the target is treated in the CGC framework by
encoding the rescattering effects in the Wilson lines.

With the advent of the EIC, there have been a lot of efforts to increase the precision of the theoretical calculations of
DIS related observables. Inclusive DIS [18–24] and its fits to HERA data [25] for massless quarks have been computed
at next-to-leading order (NLO) in strong coupling αs. Quark mass has been included in the NLO computations of
inclusive DIS in [26–28] and fits of the results to HERA data have been performed in [29]. Single inclusive jet/hadron
production have been studied both at leading order (LO) [30] and at NLO [31–33]. Inclusive dijet (and/or dihadron)
production in DIS have been computed at NLO1 in [39–46]. Finally, many different aspects of diffractive jet and dijet
production have been studied in detail both at LO [47–57] and at NLO [58–63].

A remarkable aspect of dijet production is studied in [64, 65] where the equivalence between the CGC and transverse
momentum dependent distributions (TMDs) have been shown once the appropriate limits are applied. Namely, the
high energy limit of the dijet cross section computed in TMD factorization and the correlation limit (when the two jets
are produced back-to-back) of the dijet cross section computed in the CGC framework (see [66, 67] for recent reviews).
The back-to-back limit of the dijet production in DIS has been computed in [68, 69] at LO and both unpolarized
and linearly polarized gluon TMDs are extracted in the CGC framework. The production of three-particule final
states has also been considered in [70–74]. The equivalence between the CGC and TMD factorization frameworks are
extended beyond the correlation limit for dijet production by resumming the kinematic twist corrections in [75–81]
and this new framework is referred to as small-x improved TMD (iTMD) factorization that interpolates between the
dilute limit of the CGC and the TMD limit of the CGC.

1 An alternative way of increasing the precision of computations of DIS related observables is to relax the eikonal approximation that is
routinely adopted in the CGC computations. Recently, these studies are performed for inclusive DIS in [34, 35] and dijet production in
DIS in [36–38].
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An important question whether the equivalence between the CGC and TMD frameworks holds beyond LO for
dijet production in DIS in the back-to-back limit have been addressed in [40, 41]. It was shown that in order
to get the correct Sudakov double logarithm that was conjectured in [82, 83], one should adopt a kinematically
constrained BK evolution [84, 85] to properly resum the rapidity divergences that arise at NLO. More generally, the
use of a kinematically-constrained non-linear small-x evolution is rapidly becoming unavoidable in CGC calculations,
something which was realized long ago in the context of linear BFKL evolution [86, 87]. In addition, combining low-x
and Sudakov resummation has been the subject of intensive research in various alternative approaches [88–110].

In this paper, we focus on the single inclusive hadron production in DIS. In section II, we start from the dihadron
production cross section in DIS, integrate over the antiquark to get the single inclusive hadron production cross section
at LO and discuss the kinematic region where one can expect the emergence of the Sudakov double logarithms once
the next-to-leading order corrections to the cross section are included in the analysis. In section III, we include the
next-to-leading order corrections to SIDIS cross section, identify the diagrams that will contribute to the Sudakov
double logarithms in the appropriate kinematic region and discuss the divergences that appear. In section IV we
discuss how to extract these double logarithms. Finally, in section V we present a brief discussion of our results.

II. SINGLE INCLUSIVE HADRON PRODUCTION IN DIS AT LEADING ORDER

The dominant channel for single inclusive particle production in the forward rapidity region in Deep Inelastic
Scattering at small x is production of a quark antiquark pair, either of which can hadronize and be measured. At
small x this is a two-step process; first the virtual photon splits into a quark antiquark pair which subsequently
scatters on the target proton or nucleus. The cross section for this process can be written as [65]:

dσγ∗A→qq̄X

d2pd2q dy1 dy2
=

e2Q2(z1z2)
2Nc

(2π)7
δ(1− z1 − z2)

∫
d8x [S122′1′ − S12 − S1′2′ + 1]

eip·x1′1eiq·x2′2

[
4z1z2K0(|x12|Q1)K0(|x1′2′ |Q1) +

(z21 + z22)
x12 · x1′2′

|x12||x1′2′ |
K1(|x12|Q1)K1(|x1′2′ |Q1)

]
. (1)

where (p, y1) and (q, y2) are the transverse momentum and rapidity of the produced quark and antiquark respectively,
and Q2 is the virtuality of the incoming photon. The QED coupling e2 should be understood as encompassing the
various (massless) quark flavors: e2 = 4παem

∑
f e

2
f . The first (second) term inside the big square bracket corresponds

to contribution of longitudinal (transverse) photons. Multiple scattering of the partons on the dense target are encoded
in the dipole (Sij) and quadrupole (Sijkl) operators that are defined as

Sij =
1

Nc
tr
〈
ViV

†
j

〉
, Sijkl =

1

Nc
tr
〈
ViV

†
j VkV

†
l

〉
(2)

where the index i corresponds to the transverse coordinate xi and the Wilson lines Vi are given in terms of the
background field of the target A− as

Vi = P̂ exp
(
ig

∫
dx+A−(x+,xi)

)
. (3)

Furthermore x1(x2) is the transverse coordinate of the quark (antiquark) going through the target in the amplitude
while the primed coordinates correspond to the same in the complex conjugate amplitude. We have defined z1 ≡
p+

l+ , z2 ≡ q+

l+ as the momentum fractions carried by the final state quark and antiquark relative to the photon’s
longitudinal momentum l+. Rapidity of a parton is related to its momentum fraction via dyi = dzi

zi
. We are also

using the following definitions and short hand notations,

Qi = Q
√
zi(1− zi), xij = xi − xj , d8x = d2x1 d

2x2 d
2x1′ d

2x2′ . (4)

In order to get the single inclusive production cross section one must integrate over either quark or antiquark in
the final state. Both cases lead to identical results (this can also be shown to be true when we calculate the next to
leading order corrections) so that it is enough to consider production of a quark only and multiply the final result by
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two, which is what we will do here.

dσγ∗A→q(p,y)X

d2pdy1
= 2× e2Q2Nc

(2π)5

∫
dz2δ(1− z1 − z2) (z

2
1 z2)

∫
d6x [S11′ − S12 − S1′2 + 1] eip·x1′1{

4z1z2K0(|x12|Q1)K0(|x1′2|Q1) + (z21 + z22)
x12 · x1′2

|x12||x1′2|
K1(|x12|Q1)K1(|x1′2|Q1)

}
. (5)

As hadronization of a colored parton is a genuinely non-perturbative phenomenon it is common to describe it by a
parton-hadron fragmentation function when considering hadron production at moderate to high transverse momenta.
We will follow this approach here and convolute the partonic cross section with a quark-hadron fragmentation function
to get

dσγ∗A→h(ph,yh)X

d2ph dyh
= 2

e2Nc

(2π)5

∫ 1

zh

dz1
zh

Dh/q(zh/z1) z1Q
2
1

∫
d6x [S11′ − S12 − S1′2 + 1] ei(z1/zh)ph·x1′1{

4Q2
1

Q2
K0(|x12|Q1)K0(|x1′2|Q1) +

[
z21 + (1− z1)

2
] x12 · x1′2

|x12||x1′2|
K1(|x12|Q1)K1(|x1′2|Q1)

}
(6)

where zh is fraction of the photon momentum carried by the produced hadron. We note that in collinear fragmentation
the produced hadron and (massless) parton rapidities are the same.

In this work we are interested in particle production when the photon virtuality is large, so that we need the large
Q2 limit of our expressions. However taking the large Q2 limit of the Bessel functions is a bit tricky; their argument
depend on Q2 through the combination with momentum fraction z which is integrated over so that the argument of
Bessel functions z1(1 − z1)Q

2 can go to zero even at very large Q2. Clearly taking this limit requires some care; to
accomplish this, we reformulate the procedure presented in [30] to extract the leading 1/Q2 behavior. We introduce
a delta function of the form

Q2n
1 K(0,1)(|x12|Q1)K(0,1)(|x1′2|Q1) =

∫ Q2/4

0

dQ̄2 (Q̄2)nK(0,1)(|x12|Q̄)K(0,1)(|x1′2|Q̄) δ
[
Q̄2 − z1(1− z1)Q

2
]

(7)

and insert it in the various hadron-level cross-sections. We then do the z1 integral using the delta function via

δ
[
Q̄2 − z1(1− z1)Q

2
]
=

δ(z1 − z+)

Q2|1− 2z+|
+

δ(z1 − z−)

Q2|1− 2z−|
with z± =

1

2

(
1±

√
1− 4Q̄2/Q2

)
. (8)

As we are interested in the high Q2 limit, we keep only the leading power (in Q2) terms, which comes from z1 = z+ ∼ 1.,
the so-called aligned jet configuration in which the quark that fragments into the measured hadron carries almost
all of the photon longitudinal momentum. For the LO cross section this gives (transverse and longitudinal cases
respectively):

dσγ∗A→h(ph,yh)X

d2ph dyh

∣∣∣∣
T,LP

=
1

Q2

e2Nc

(2π)5
Dh/q(zh)

zh

∫
d6x [S11′ − S12 − S1′2 + 1] ei(ph/zh)·x1′1

x12 · x1′2

|x12||x1′2|

∫ ∞

0

dQ̄2Q̄2 K1(|x12|Q̄)K1(|x1′2|Q̄). (9)

dσγ∗A→h(ph,yh)X

d2ph dyh

∣∣∣∣
L,LP

=
1

Q2

e2Nc

(2π)5
Dh/q(zh)

zh

∫
d6x [S11′ − S12 − S1′2 + 1] ei(ph/zh)·x1′1

4

Q2

∫ ∞

0

dQ̄2Q̄4K0(|x12|Q̄)K0(|x1′2|Q̄). (10)

Since the SIDIS production cross section via longitudinal photon is suppressed by a power of 1/Q2 in the high
virtuality limit compared to the SIDIS production cross section via transverse photon, we restrict ourselves to the
latter in this study. Moreover, one can rewrite the leading power expression of the transverse cross section by using
the definition of the quark TMD distributions as [30, 99]:

dσγ∗A→h(ph,yh)X

d2ph dyh

∣∣∣∣
T,LP

=
πe2

Q2

Dh/q(zh)

zh
xq(x,ph/zh) (11)
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where the small-x quark TMD distribution xq(x,p) is defined as

xq(x,p) =
2Nc

(2π)6

∫
d6x e−ip·x11′ [S11′ − S12 − S1′2 + 1]

x12 · x1′2

|x12||x1′2|

∫ ∞

0

dQ̄2Q̄2 K1(|x12|Q̄)K1(|x1′2|Q̄) (12)

where the x dependence on xq(x) enters through the dipole amplitudes, or more precisely, through the rapidity scale
choice at which they are to be evaluated, as will be discussed below. Let us finally introduce the so-called b-space
TMD given by:

xq(x,p) =

∫
d2x11′

(2π)2
e−ip·x11′ xq̃(x,x11′) . (13)

Note that the b variable used in the TMD literature is the "dipole" size x11′ here in our work, where the dipole
is made up of the quark in the amplitude at transverse position x1 and the quark in the conjugate amplitude at
transverse position x1′ , and should not be confused with the impact parameter b⊥ = (x1 + x′

1)/2.

III. SINGLE INCLUSIVE HADRON PRODUCTION IN DIS AT NLO

Next to leading corrections to this leading order result have been calculated in [33]. In principle one must consider
radiation of a gluon from either the quark or antiquark. This radiated gluon then can either be absorbed in the
amplitude (virtual corrections) or in the complex conjugate amplitude (real corrections). In either case, the radiation
can happen either after going through the target in which case only the original quark and antiquark scatter from the
target, or before going through the target in which case all three partons scatter from the target. However as we are
interested only in terms in the the cross section which are enhanced by (Sudakov) double logs we will consider only
the diagrams which contain a collinear divergence. These are depicted in Fig. (1) where the labeling follows [44, 45],

l

p

q

k1

l − k1

a

k

iAa
1

l

p

q

l − k1

k1

iA9

k2

k2 − p

FIG. 1: The NLO real (left) and virtual (right) diagrams giving large double logs. The arrows on fermion lines
indicate fermion number flow, all momenta flow to the right, except for gluon momenta. The thick solid line indicates
interaction with the target.

In this work we will focus on transversely polarized photons since the cross section with longitudinal photons is
suppressed by Q2 (photon virtuality) as compared with transverse photons. Partonic production cross sections are
then obtained by squaring the production amplitude and including the appropriate phase space and flux factors.
Contribution of the real correction is then given by [45]

dσT
1×1

d2p d2q dy1 dy2
=

e2g2Q2z22(1− z2)[z
2
1z

2
2 + (z21 + z22)(1− z2)

2 + (1− z2)
4]

(2π)10z1

∫
dz

z
δ(1− z − z1 − z2)∫

d10xK1(|x12|Q2)K1(|x1′2′ |Q2)
x12 · x1′2′

|x12||x1′2′ |
NcCF [S122′1′ − S12 − S1′2′ + 1]eip·x1′1eiq·x2′2 ∆

(3)
1′1 e

i z
z1

p·x1′1 (14)

where we have defined the radiation kernel

∆
(3)
ij =

x3i · x3j

x2
3ix

2
3j

. (15)
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while the virtual correction is given by

dσT
9

d2p d2q dy1 dy2
=
−e2g2Q2(z1z2)

2(z21 + z22)

2(2π)8

∫
d8xK1(|x12|Q1)K1(|x1′2′ |Q1)

x12 · x1′2′

|x12||x1′2′ |
δ(1− z1 − z2)

NcCF

[
S122′1′ − S12 − S1′2′ + 1

]
eip·x1′1eiq·x2′2

∫ z1

0

dz

z

[
z21 + (z1 − z)2

z21

] ∫
d2k

(2π)2
1(

k− z
z1
p
)2 .

(16)

Integrating over the antiquark phase space then gives contribution of real and virtual corrections to single inclusive
quark production,

dσT
1×1

d2pdy1
=
e2g2Q2

(2π)8

∫ 1−z1

0

dz

z

(1− z − z1)(z + z1)

z1

[
z21(1− z − z1)

2 +
(
z21 + (1− z − z1)

2
)
(z + z1)

2 + (z + z1)
4
]

∫
d8xK1(|x12|Q1z)K1(|x1′2|Q1z)NcCF [S11′ − S12 − S21′ + 1]

x12 · x1′2

|x12||x1′2|
∆

(3)
11′ e

i
z1+z
z1

p·x1′1 . (17)

dσT
9

d2pdy1
=− e2g2Q2

2(2π)6

∫ z1

0

dz

z
(1− z1)(z

2
1 + (1− z1)

2)
[
z21 + (z1 − z)2

] ∫
d6xK1(|x12|Q1)K1(|x1′2|Q1)e

ip·x1′1

NcCF [S11′ − S12 − S21′ + 1]
x12 · x1′2

|x12||x1′2|

∫
d2x3

(2π)2
1

x2
31

(18)

with

Q2
1z ≡ (1− z − z1)(z + z1)Q

2 . (19)

Indeed, since we have integrated over z2 the definition of Q1 remains the same as before but Q2 is now changed into
Q1z. For these NLO expressions, the extraction of the leading power in the large Q2 limit can be achieved in a similar
manner as in the previous section.

Let us start with the real-emission contribution. The hadron-level cross sections is

dσ
γ∗A→h(ph,yh)X

1×1T

d2ph dyh
=

e2g2

(2π)8
NcCF

∫ 1

zh

dz1
zh

Dh/q(zh/z1)

×
∫ 1−z1

0

dz

z

Q2
1z

z1

[
z21(1− z − z1)

2 +
(
z21 + (1− z − z1)

2
)
(z + z1)

2 + (z + z1)
4
]

×
∫

d8x[S11′ − S12 − S21′ + 1]K1(|x12|Q1z)K1(|x1′2|Q1z)
x12 · x1′2

|x12||x1′2|
e
i
z1+z
z1

z1
zh

ph·x1′1∆
(3)
1′1. (20)

and the leading-power contribution can be written as

dσ
γ∗A→h(ph,yh)X

1×1T

d2ph dyh

∣∣∣∣∣
LP

=
πe2

Q2

∫
d2x11′

(2π)2
e−i(ph/zh)·x11′ xq̃(x,x11′)

× g2CF

(2π)3

∫ 1−zh

0

dz

z(1− z)

Dh/q(zh/(1− z))

zh

[
1 + (1− z)2

] ∫
d2x3 ∆

(3)
1′1. (21)

where we have used the definition of the b-space TMD

xq̃(x,x11′) =
2Nc

(2π)4

∫
d4x [S11′ − S12 − S1′2 + 1]

x12 · x1′2

|x12||x1′2|

∫ ∞

0

dQ̄2Q̄2 K1(|x12|Q̄)K1(|x1′2|Q̄) (22)

with d4x ≡ d2b⊥ d2x2.
Now let us discuss the virtual contribution. At hadron-level it reads

dσ
γ∗A→h(ph,yh)X

9T

d2ph dyh
= − e2g2

2(2π)6
NcCF

∫ 1

zh

dz1
z1

Dh/q(zh/z1)

zh
[z21 + (1− z1)

2]

∫ z1

0

dz

z

[
z21 + (z1 − z)2

]
∫

d6x
x12 · x1′2

|x12||x1′2|
Q2

1K1(|x12|Q1)K1(|x1′2|Q1)e
i
z1
zh

ph·x1′1

[
S11′ − S12 − S21′ + 1

] ∫
d2x3

(2π)2
1

x2
3

. (23)
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Before extracting the leading-power, one should recall that in the full calculation, the UV divergence in this diagram
is canceled by the UV divergent part of another virtual diagram, as explained in [45] (labeled dσ14(1) there). We shall
take this into account by introducing the scale µ in the x3 intregral. Then, the high-Q2 limit is given by

dσ
γ∗A→h(ph,yh)X

9T

d2ph dyh

∣∣∣∣∣
LP

=
πe2

Q2

Dh/q(zh)

zh

∫
d2x11′

(2π)2
e−i(ph/zh)·x11′ xq̃(x,x11′)

×
(
−αsCF

4π2

)∫ 1

0

dz

z

[
1 + (1− z)2

] ∫
|x3|µ>1

d2x3

x2
3

. (24)

Adding the LO and NLO (we need to multiply σ9T by 2 since that contribution is the product of diagram A9 in
Fig. 1 with the conjugate LO amplitude) terms we get

dσ
γ∗A→h(ph,yh)X
LO+NLO

d2ph dyh

∣∣∣∣∣
LP

=
πe2

Q2

1

zh

∫
d2x11′

(2π)2
e
−i

ph
zh

·x11′ xq̃(x,x11′)

{[
1− αsCF

2π2

∫ 1

0

dz

z

[
1 + (1− z)2

] ∫
|x3|µ>1

d2x3

x2
3

]
Dh/q(zh)

+

[
αsCF

2π2

∫ 1−zh

0

dz

z

[
1 + (1− z)2

]
1− z

∫
d2x3 ∆

(3)
1′1

]
Dh/q(

zh
1− z

)

}
(25)

We next add (to virtual) and subtract (from the real part) the collinear divergence (for simplicity we also use µ as
the factorization scale):

dσ
γ∗A→h(ph,yh)X
LO+NLO

d2ph dyh

∣∣∣∣∣
LP

=
πe2

Q2

1

zh

∫
d2x11′

(2π)2
e
−i

ph
zh

·x11′ xq̃(x,x11′)

×
{
Dh/q(zh) +

[
αsCF

2π2

(∫ 1−zh

0

dz

z

1 + (1− z)2

1− z
Dh/q(

zh
1− z

)−
∫ 1

0

dz

z
[1 + (1− z)2]Dh/q(zh)

)]∫
|x3|µ>1

d2x3

x2
3

+

[
αsCF

2π2

∫ 1−zh

0

dz

z

[
1 + (1− z)2

]
1− z

(∫
d2x3 ∆

(3)
1′1 −

∫
|x3|µ>1

d2x3

x2
3

)]
Dh/q(

zh
1− z

)

}
(26)

The first two terms in the curly bracket in Eq. (26) correspond to the Leading Order cross section convoluted with
DGLAP-evolved quark-hadron fragmentation function. Indeed, defined as the expectation value of two bare field
operators which becomes singular in the short distance limit, the fragmentation function gets renormalized (evolves)
by loop corrections where the renormalized quark-hadron fragmentation function is defined as (see [45])

Dh/q(zh, µ
2) ≡

[
D0

h/q(zh) +
αsCF

2π

(∫ 1−zh

0

dz

z

1 + (1− z)2

1− z
Dh/q(

zh
1− z

)−
∫ 1

0

dz

z
[1 + (1− z)2]Dh/q(zh)

)∫
1/µ2

d2x

x2

]
(27)

Therefore, we can isolate the collinearly-divergent part of the cross section which leads to the standard DGLAP
evolution of the fragmentation function (where the splitting function is defined with + prescription) which is then
convoluted with the Leading Order cross section. The result can be then be written as

dσ
γ∗A→h(ph,yh)X
LO+NLO

d2ph dyh

∣∣∣∣∣
LP

= dσLO ⊗Dh/q(zh, µ
2) +

1

Q2

πe2

zh

∫
d2x11′

(2π)2
e
−i

ph
zh

·x11′ xq̃(x,x11′)

×
[
αsCF

2π2

(∫
d2x3 ∆

(3)
1′1 −

∫
|x3|µ>1

d2x3

x2
3

)∫ 1−zh

0

dz

z

[
1 + (1− z)2

]
1− z

Dh/q(
zh

1− z
)

]
. (28)

In the second line of that equation, one can already point out the origin of the Sudakov logarithms. They will come
from the integration over x3, in the range between and 1/µ and x11′ where the virtual (subtracted, to be precise)
term does not get canceled by the real-emisson one. Indeed, the combination inside the parenthesis is infrared finite,
and in the real-emission integration, small dipole sizes are naturally cut-off by x11′ , while for the virtual term the



7

integration over x3 extends down to 1/µ. From now on, since we are only after double logs, we may set the scale as
µ = Q, which is the natural choice in SIDIS. We note however that scale setting is more intricate for the extraction
of the single logarithms.

The final step is to isolate the rapidity divergences which will result in the JIMWLK evolution of the dipole
amplitude. To do so we introduce zf , a factorization scale in z and break up the z integral in Eqs. (28) into two
regions as follows, ∫ 1−zh

0

dz =

∫ zf

0

dz +

∫ 1−zh

zf

dz (29)

where the first term contains the rapidity divergence while the second term is rapidity-finite and constitute part of
the NLO corrections to the production cross section. We may now write:

dσ
γ∗A→h(ph,yh)X
LO+NLO

d2ph dyh

∣∣∣∣∣
LP

= dσLO ⊗Dh/q(zh, Q
2) + dσNLO−rap−finite

+
πe2

Q2

Dh/q(zh)

zh

∫
d2x11′

(2π)2
e
−i

ph
zh

·x11′ xq̃(x,x11′)

[
αsCF

π2

(∫
d2x3 ∆

(3)
1′1 −

∫
|x3|Q>1

d2x3

x2
3

)∫ zf

0

dz

z

]
(30)

It is customary in CGC calculations to absorb the entire second line of this expression into the leading-order term,
making the dipole amplitudes zf dependent and evolving according to the Leading Log (LL) BK-JIMWLK equation.
That was shown explicitly for the double-inclusive cross-section – and consequently for SIDIS – in [33, 39, 40]. However,
doing do leaves us without Sudakov logarithms, in contradiction with TMD factorization.

IV. EXTRACTION OF SUDAKOV LOGARITHMS

The extraction of Sudakov double logs was addressed recently for the case of back-to-back di-jet production, where
LL JIMWLK evolution of dipoles and quadrupoles resulted in Sudakov double logs with the wrong sign. To remedy
this problem and restore compatibility with TMD factorization, a kinematically constrained JIMWLK evolution was
introduced. We shall implement a similar idea in the present case of SIDIS at large Q2. The idea is that in addition to
the restricting the + component of the gluon momentum, i.e. k+ < zf l+ so that z < zf , we must also constrain their -
component k− > z̃f l− where l± is the momentum of the incoming virtual photon and it is natural to choose zf z̃f = 1.
This constraint enforces the gluon lifetime ∼ 1/k− to be small enough to participate in the small-x evolution of the
target. This constraint on the gluon kinematica is naturally written in momentum space as

Θ(kin.const.) = Θ

(
zf

p2

Q2
− z

)
, (31)

and we will show that it restores the Sudakov double logarithms.
After absorbing a kinematically-constrained second-line of equation 30 into the LO cross-section, in which the dipole

amplitudes shall now evolve according to kinematically constrained JIMWLK equation, we are left with the following
z integral: ∫ zf

0

dz

z

[
1−Θ

(
zf

p2

Q2
− z

)]
=

∫ zf

0

dz

z
Θ

(
z − zf

p2

Q2

)
= Θ

(
Q2

p2

)
ln

(
Q2

p2

)
. (32)

We then write our coordinate-space expression (30) in momentum space using∫
d2x3 ∆

(3)
1′1 −

∫
|x3|Q>1

d2x3

x2
3

=

∫
d2p

p2
eip·x1′1 −

∫
Q>|p|

d2p

p2
(33)

and we get

dσ
γ∗A→h(ph,yh)X
LO+NLO

d2ph dyh

∣∣∣∣∣
LP

= dσLO(zf )⊗Dh/q(zh, Q
2) + dσNLO−rap−finite +

πe2

Q2

Dh/q(zh)

zh

∫
d2x11′

(2π)2
e
−i

ph
zh

·x11′ xq̃(x,x11′)

×
{
αsCF

π2

∫ Q2

d2p

p2

(
eip·x1′1 − 1

)
ln

(
Q2

p2

)}
(34)
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The leading order term corresponds to Eq 11, but with the fragmentation function evaluated at the scale µ = Q, and
the quark TMD evaluated (though the dipole amplitudes) at the rapidity scale zf , which we may now set to zf = x,
giving its meaning to our notation. The last term contains the large logarithms. The final step is to perform the p
integral ∫ Q2

d2p

p2

[
e−ip·x11′ − 1

]
ln

(
Q2

p2

)
= 4π

∫ Q|x11′ |

0

dτ

τ
[J0(τ)− 1] ln

(
Q|x11′ |

τ

)
(35)

which can be evaluated by using the following generic results:∫ X

0

dτ

τ

[
J0(τ)− 1

]
=− ln

(
X

c0

)
+O

(
1√
X

)
(36)∫ X

0

dτ

τ
ln(τ)

[
J0(τ)− 1

]
=− 1

2

[
ln(X)

]2
+

1

2

[
ln(c0)

]2
+O

(
1√
X

)
(37)

in the X → +∞ limit with c0 = 2 e−γE . Using these results, the integral in Eq. (35) can be written as

4π

∫ Q|x11′ |

0

dτ

τ
[J0(τ)− 1] ln

(
Q|x11′ |

τ

)
= −π

2
ln2
(
Q2x2

11′/c
2
0

)
+O

(
1√

Q|x11′ |

)
(38)

Then, we finally have "factorized" the contribution of the Sudakov double logs inside the "b-space" x11′ integral.
Adding them to the LO cross-section gives the factor

1− αsCF

2π
ln2
(
Q2x2

11′/c
2
0

)
= 1− Ssud(x11′) (39)

Further assuming exponentiation of the Sudakov logs we get the following result for Sudakov-resummed single inclusive
hadron production in DIS,

dσ
γ∗A→h(ph,yh)X
LO+NLO

d2ph dyh

∣∣∣∣∣
LP

=
πe2

Q2

Dh/q(zh, Q
2)

zh

∫
d2x11′

(2π)2
e
−i

ph
zh

·x11′ xq̃(x,x11′) e
−Ssud(x11′ ) + dσNLO−rap−finite (40)

where we have used the fact that Dh/q(zh, Q
2) ≃ Dh/q(zh) + O(αs) to replace the bare fragmentation function with

the DGLAP evolved one. This restore compatibility with TMD factorization [99].

V. CONCLUSIONS AND OUTLOOK

In this work we have studied the single inclusive hadron production in DIS at NLO focusing on the limit of large
photon virtuality, i.e. large Q2. In order to study this processes, we started from the dihadron production in DIS at
NLO [33, 44], integrate over the antiquark to get the cross section for single inclusive hadron production in DIS. As
is known, in the large photon virtuality limit, production via longitudinally-polarized photons is suppressed by 1/Q2

when compared to production via transversely-polarized photons, and thus we focused on the transverse case.
In the case of dijet production at NLO, one gets the connection between the CGC and standard TMD factorization

frameworks in the so called correlation limit where the two jets are produced almost back-to-back [40, 41]. In this
kinematic region, the hard scale is set by the large transverse momentum of the produced jets while the semi-hard
scale is set by the vector sum of the transverse momenta of the produced jets. In [40, 41], it has been shown that
in the case dijet production in DIS, in order to get the correct sign of the large double logarithms of the ratio of
hard to soft scales, which is known as the double Sudakov logarithms, one has to adopt kinematically constrained
BK-JIMWLK evolution equation instead of the standard one when resumming the rapidity divergences. Extraction
of the Sudakov double logarithms in the case of single inclusive hadron production in DIS is quite different from the
back-to-back dihadron production. First of all, when considering the single inclusive hadron (or jet) production in
DIS, the hard scale that appears in the argument of Sudakov logarithms is provided by the virtuality of the incoming
photon. Therefore, these logarithms become large and require resummation only in the large Q2 limit which we
consider in this paper. The second and most remarkable outcome of this study is that in this process, double Sudakov
logarithms emerge only when the kinematically constraint BK-JIMWLK evolution equation is adopted for resumming
the rapidity divergences.

Finally, in this work we only focus on double Sudakov logarithms and understand the role of the kinematically
constrained rapidity evolution on the emergence of these double logarithms. A natural continuation of this work is to
study the single Sudakov logarithms in single inclusive hadron production in DIS which we leave for a future work.
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