Open charm tetraquarks in broken $SU(3)_F$ symmetry

L. Maiani†∗, A.D. Polosa† and V. Riquer†∗

† Sapienza University of Rome and INFN, Piazzale Aldo Moro 2, I-00185, Italy. [∗] CERN, 1211 Geneva 23, Switzerland.

July 15, 2024

Abstract

Prompted by a recent lattice QCD calculation, we review the SU(3) light quark flavor structure of charmed tetraquarks with spin 0 diquarks. Fermi statistics forces the three light quarks to be in the representation $\bar{3} \otimes \bar{3} = 3 \oplus \bar{6}$. This agrees with the weak repulsion in the 15 of the $3 \otimes 8$ in $\bar{D}K$ scattering studied on the lattice. We analyze the $3 \oplus \bar{6}$ multiplet broken by the strange quark mass and determine the five independent masses from the known masses of diquarks. The mass of $D_{s0}^*(2317)$ is predicted within 50 MeV accuracy. The recently observed $\bar{D}_s^{-1}(2900)$ and $\bar{D}_s^0(2900)$, likely part of a $I=1$ multiplet, with flavor composition $\bar{c}\bar{q}q's$, and $X_0(2900)$, an isosinglet with flavor composition $\bar{c}\bar{s}ud$, fit naturally in a $3 \oplus \bar{6}$ structure as the first radial excitations. We discuss also the decay modes of $D_{s0}^*(2317)$, of the radial excitations and of the predicted particles.

1 Introduction

Charmed-strange tetraquarks are studied in a recent lattice QCD calculation [\[1\]](#page-8-0) in connection with the SU(3)_F configurations of possible bound states in the DK channel. Allowed SU(3)_F multiplets are those appearing as irreducible components of the tensor product

$$
\bar{D}K = 3 \otimes 8 = 3 \oplus \bar{6} \oplus 15 \tag{1}
$$

Ref. [\[1\]](#page-8-0) finds attraction in 3 and $\bar{6}$ but not in 15.

Tetraquark of the same flavor have been considered earlier in connection with the SELEX observation of a charm-strange meson decaying into^{[1](#page-0-0)}: $D_s^+ + \eta$ or $D^0 + K^+$ [\[2\]](#page-8-1).

With reference to $SU(3)_F$, we consider here the antidiquark-diquark composition

$$
[\bar{c}\bar{v}]_0^{3_c} [q_1 q_2]_0^{\bar{3}_c} \tag{2}
$$

where the subscript refers to spin zero and $(v, q_1, q_2 = u, d, s)$.

¹We define: $\bar{D}_s^- = (\bar{c}s), \bar{D} = (\bar{c}q), K = (\bar{q}s).$

2 Quantum numbers and states

Fermi statistics requires the product q_1q_2 to be antisymmetric in flavour, it being already antisymmetric in spin (to get total spin 0) and color (to obtain a $\bar{3}_c$). The corresponding $SU(3)_F$ multiplets are in the tensor product

$$
\bar{\mathbf{3}} \otimes \bar{\mathbf{3}} = \mathbf{3} \oplus \bar{\mathbf{6}} \tag{3}
$$

the same attractive channels found in [\[1\]](#page-8-0) and no 15.

Some authors have considered diquark-antidiquark states with diquarks in color 6. Spin 0 diquarks would be antisymmetric under spin \times color exchange therefore they would be in a 6 representation of $SU(3)_F$. Uncharmed, quarks would belong then to the flavour representations $\bar{3} \otimes \bar{6} = 3 \oplus \bar{15}$, in disagreement with [\[1\]](#page-8-0).

Let us find the explicit form of tetraquarks [\(2\)](#page-0-1). We introduce the tensors T^i in the $\mathbf{3}_F$ representation and the tensors S_{ij} in the $\bar{\mathbf{6}}_F$ representation as ^{[2](#page-1-0)}:

$$
T^i = \bar{v}_{\alpha}(q^{\beta}q^{\gamma})\epsilon_{\beta\gamma\delta}\epsilon^{\delta\alpha i} \propto \bar{v}_{\alpha}q^{\alpha}q^i
$$
\n(4)

since quark fields anticommute. The normalized vectors for triplet (T) tetraquarks are (diquark spin 0 understood)

$$
S = 0 \qquad T^1 = \frac{[\bar{c}\bar{d}][du] + [\bar{c}\bar{s}][su]}{\sqrt{2}} \qquad T^2 = \frac{[\bar{c}\bar{u}][ud] + [\bar{c}\bar{s}][sd]}{\sqrt{2}} \qquad (5)
$$

$$
S = -1 \qquad T^3 = \frac{[\bar{c}\bar{u}][su] + [\bar{c}\bar{d}][sd]}{\sqrt{2}} \tag{6}
$$

Similarly in the flavor sextet (S) tetraquarks

$$
S_{ij} = \frac{1}{2} [\bar{v}_i (q^\beta q^\gamma) \epsilon_{j\beta\gamma} + (i \leftrightarrow j)] \tag{7}
$$

and the normalized $\bar{6}$ vectors are

$$
S = +1 \qquad S_{33} = [\bar{c}\bar{s}][ud] \tag{8}
$$

$$
S = 0 \qquad S_{13} = \frac{[\bar{c}\bar{u}][ud] + [\bar{c}\bar{s}][ds]}{\sqrt{2}} \qquad S_{23} = \frac{[\bar{c}\bar{d}][ud] + [\bar{c}\bar{s}][su]}{\sqrt{2}} \tag{9}
$$

$$
S = -1 \qquad S_{11} = [\bar{c}\bar{u}][ds] \qquad S_{12} = \frac{[\bar{c}\bar{u}][su] - [\bar{c}\bar{d}][sd]}{\sqrt{2}} \qquad S_{22} = [\bar{c}\bar{d}][su] \qquad (10)
$$

In presence of $SU(3)_F$ breaking, $m_u = m_d < m_s$, we expect the mass eigenstates with $S = 0$ to correspond to the combinations

$$
S_{13} \pm T^2 \qquad S_{23} \pm T^1 \tag{11}
$$

Fig. [1](#page-2-0) gives the pattern of Sextet and Triplet states in the I_3 -Strangeness plane.

Following [\[1\]](#page-8-0), we identify T^3 in Eq. [\(6\)](#page-1-1) with the observed $D_{s0}^*(2317)$ [\[6\]](#page-8-2) (see also the re-view [\[11\]](#page-8-3)). In Sect. [5](#page-5-0) we will discuss the particles observed by LHCb: $D_{s0}(2900)^0 \to D_s^+\pi^- = [cd\bar{s}\bar{u}],$ $D_{s0}(2900)^{++} \to D_s^+\pi^+ = [cu\bar{s}\bar{d}]$ [\[7\]](#page-8-4) and $X_0(2900) \to D^-K^+ = [\bar{c}\bar{s}du]$ [\[8\]](#page-8-5).

²The convention is that quarks (antiquarks) carry a upper (lower) flavor index.

Figure 1: The $3 \oplus \bar{6}$ representation in the I₃-Strangeness plane. Electric charges are as follows $Q(S_{11}) = -2, Q(S_{13}) = Q(S_{12}) = -1$ and $Q(S_{33}) = Q(S_{23}) = Q(S_{22}) = 0.$

3 Mass formulae in broken $SU(3)_F$

We introduce the symmetric masses with $M_{\bar{6}}$, M_3 , and add octet SU(3)_F breaking using the symbols m_6 and m_3 . In the product $\bar{6} \otimes 6$ representation 8 appears only once, so there is only one operator to describe the symmetry breaking, namely the Hypercharge of the light quarks, given by the formula

$$
Q_{\ell} = I_3 + \frac{1}{2}Y_{\ell} \tag{12}
$$

and suffix ℓ means that we ignore the charm antiquark. For the representation $\bar{6}$

$$
Y_{\ell,\bar{\mathbf{6}}} = \text{diag}\left(\frac{4}{3}, \frac{1}{3}, -\frac{2}{3}\right) \text{ for } (S_{33}, S_{12}, S_{11}) \text{ and } \text{Tr}(Y_{\ell,\bar{\mathbf{6}}}) = 0 \tag{13}
$$

The symmetry breaking mass in the representation $\bar{6}$ is

$$
m_{\bar{\mathbf{6}}} = \beta_{\bar{\mathbf{6}}} \frac{1}{2} \left(Y_{\ell, \bar{\mathbf{6}}} + \frac{2}{3} \right) \tag{14}
$$

explicitely

$$
m_{\bar{\mathbf{6}}} = \beta_{\bar{\mathbf{6}}} \operatorname{diag}\left(1, \frac{1}{2}, 0\right) \quad \text{for} \quad (S_{33}, S_{12}, S_{11}) \tag{15}
$$

Similarly, for the 3 representation

$$
Y_{\ell,3} = \text{diag}\left(\frac{1}{3}, -\frac{2}{3}\right)
$$
 for (T^1, T^3) and $\text{Tr}(Y_{\ell,3}) = 0$ (16)

with the symmetry breaking

$$
m_3 = \beta_3 \left(Y_{\ell,3} + \frac{2}{3}\right) = \beta_3 \text{ diag}(1,0) \text{ for } (T_1, T_3)
$$
 (17)

Mixing $3 - \bar{6}$ is described by the by the matrix

$$
m_{\text{mix}} \propto \lambda_8 = \text{diag}(1, 1, -2) \tag{18}
$$

and the matrix \mathcal{M} mixing T^1 , S_{23} or equivalently T^2 , S_{13} is

$$
\mathcal{M} = \begin{pmatrix} M_3 + \beta_3 & \delta \\ \delta & M_{\bar{6}} + \frac{\beta_{\bar{6}}}{2} \end{pmatrix}
$$
 (19)

In total we have 5 states and 4 independent physical masses: i) $M(S_{33})$; ii) and iii) corresponding to the masses M_{\pm} (see Eq. [\(22\)](#page-3-0)) of the two $S = 0$ states arising from the mixing matrix [\(19\)](#page-3-1), and iv) $M(S_{11}) = M(T^3)$, since they have the same flavour composition. Enforcing the latter condition gives the relation

$$
M_{\mathbf{3}} = M_{\bar{\mathbf{6}}}
$$
 (20)

and we remain with 4 parameters, $M_{\bar{\mathbf{6}}}=M, \beta_3, \beta_{\bar{\mathbf{6}}}, \delta$. The magic mixing in [\(11\)](#page-1-2) is obtained for equal diagonal terms in Eq. [\(19\)](#page-3-1), that is

$$
\beta_3 = \frac{\beta_{\bar{6}}}{2} \tag{21}
$$

To first order in β_3 and β_6 , eigenvalues and eigenstates of the mixing matrix [\(11\)](#page-1-2) with the substitution [\(20\)](#page-3-2) are given by

$$
M_{\pm} = M + \frac{2\beta_3 + \beta_6}{4} \pm \delta; \tag{22}
$$

In addition to the equality of $M(S_{11})$ and $M(T^3)$, the quark composition of the $\mathbf{3} \oplus \mathbf{6}$ suggests an interesting regularity, namely that β_3 and β_6 have to be very small, if not vanishing at all. Indeed, according to (7) , the lower indices in S_{11} correspond to the quark-diquark antisymmetric configuration $\bar{u} \otimes [ds]_A$ while the lower indices in S_{33} correspond to $\bar{s} \otimes [ud]_A$ which have obviously the same content in quark masses, two light and one heavy.

Exact equality of the bound states masses corresponds to $\beta_3 = \beta_{\bar{6}} = 0$: same masses at the upper vertex and lower corners of the triangle in Fig. [1.](#page-2-0) In this case, symmetry breaking is restricted to the mass difference between the two $S = 0, I = 1/2$ multiplets induced by $3 - \bar{6}$ mixing and of order $\mu \sim 2(m_s - m_q)$, with all other masses degenerate at M.

Small values of β_3 and β_6 could result from differences in the hyperfine interactions, which are between different pairs in the two cases (see below, Eq. [\(33\)](#page-5-1)).

The situation can be compared to the case of charmed baryons, where the two light quarks in spin one are also in a flavour symmetric 6 representation. In this case indices 1 or 3 univocally correspond to u or s quarks, and the top and bottom particles (Σ_c and Ω_c) differ in mass by 240 MeV^{[3](#page-3-3)}, of the order of $2(m_s - m_q)$.

Group theory is effective at disentangling the ambiguity in these two cases by making use of the parameters allowed by the Wigner-Eckart theorem.

Another interesting case is that of hidden charm $SU(3)_F$ tetraquarks where a lower or upper index 3 is unequivocally associated with a strange quark or antiquark and, correspondingly, the octet obeys the equal spacing rule of vector mesons, with spacing $\sim (m_s - m_q)$, well satisfied by the masses of $X(3872) - Z_{cs}(4003) - X(4140)$ [\[10\]](#page-8-6).

³Baryon and meson spectroscopy suggests a value: $m_s - m_q \sim 170$ MeV (see e.g. [\[9\]](#page-8-7)), however the difference $M(\Omega_c) - M(\Sigma_c)$ receives a contribution of opposite sign from the hyperfine, spin-spin interaction.

4 Comparing with the diquark-antidiquark model

Mass formulae for tetraquarks in terms of diquark masses and hyperfine interactions have been spelled in Ref. [\[3\]](#page-8-8), with reference to hidden charm tetraquarks.

For hyperfine interactions, the formula proposed in Ref. [\[3\]](#page-8-8) is

$$
(Hh.f.)ij = 2\kappa_{ij} (s_i \cdot s_j) = \kappa_{ij} \left[s(s+1) - \frac{3}{2} \right]
$$

$$
\kappa_{ij} = \frac{|\Psi(0)|^2}{m_i m_j}
$$
 (23)

where s is the total spin of the ij pair belonging to the same diquark, under the assumption that the overlap probability for quarks in different diquarks is negligible. This hypothesis reproduces the observed mass ordering: $X(3872), Z(3900) < Z(4020)$.

To simplify the notation, we define "complete diquark masses" which include the hyperfine interaction appropriate to diquarks with spin $= 0$, e.g.

$$
\overline{M}_{cq} = M_{cq} - \frac{3}{2} \kappa_{cq}, \text{ etc.}
$$
\n(24)

Numerical values are reported in Tab. [1.](#page-4-0) Charmed diquark masses and hyperfine interactions are taken from Refs. [\[3,](#page-8-8) [4\]](#page-8-9) and complete masses for uncharmed, spin 0 diquarks from the, not so well determined, masses of the light scalar mesons [\[5\]](#page-8-10), $f_0(500)$ and $f_0(980)$ (see the errors in Tab. [1\)](#page-4-0)

$$
\overline{M}_{qq} = \frac{1}{2}M(f_0(500)) \qquad \overline{M}_{sq} = \frac{1}{2}M(a_0(980)). \tag{25}
$$

With reference to Eq. [\(8\)](#page-1-4) and [\(10\)](#page-1-5) one has

$$
M(S_{33}) = \overline{M}_{cs} + \overline{M}_{qq} = M + \beta_{\bar{6}}
$$
\n(26)

$$
M(S_{11}) = M(T^3) = \overline{M}_{cq} + \overline{M}_{sq} = M \tag{27}
$$

where we used the first and third entries respectively of $m_{\bar{\pmb{6}}}$ in Eq. [\(15\)](#page-2-1). Here and in the following, we assume $\overline{M}_{cs} = \overline{M}_{\overline{cs}}$ etc. and $q = u, d$. Mixed states

$$
M(S_{13}) = M(S_{23}) = M + \frac{1}{2}\beta_{\bar{6}}
$$

$$
M(T^1) = M(T^2) = M + \beta_3
$$
 (28)

where we used the second entry of $m_{\bar{\mathbf{6}}}$ in [\(15\)](#page-2-1) and the first entry of m_{3} in [\(17\)](#page-2-2). The sum of these two quantities is the trace of the matrix [\(19\)](#page-3-1). Using [\(11\)](#page-1-2) and [\(22\)](#page-3-0)

$$
M_{+} + M_{-} = 2M + \frac{2\beta_3 + \beta_6}{2} \tag{29}
$$

quark			c
	300 ± 100	490 ± 10	1877
S	490 ± 10		2035
	187	2035	

Table 1: Complete diquark masses, \overline{M}_{ij} , in MeV.

that is

$$
\frac{2\beta_3 + \beta_6}{2} = M_+ + M_- - 2M = \left[(\overline{M}_{cs} - \overline{M}_{cq}) - (\overline{M}_{sq} - \overline{M}_{qq}) \right]
$$
(30)

given that (from [\(9\)](#page-1-6)) $M_+ + M_- = \overline{M}_{cs} + \overline{M}_{sq} + \overline{M}_{cq} + \overline{M}_{qq}$. Similarly:

$$
M(S_{33}) - M(T^3) = \beta_{\bar{\mathbf{G}}} = \left[(\overline{M}_{cs} - \overline{M}_{cq}) - (\overline{M}_{sq} - \overline{M}_{qq}) \right]
$$
(31)

and we find

$$
\beta_{\bar{\mathbf{6}}} = -32 \pm 100 \text{ MeV} \tag{32}
$$

Predicted masses of 3 and $\bar{6}$ are (use values in Table 1)

$$
M(S_{11}) = M(T_3) = \overline{M}_{cu} + \overline{M}_{sd} = 2367 \pm 10 \text{ MeV}
$$

\n
$$
M(T_{-}) = \overline{M}_{cu} + \overline{M}_{ud} = 2177 \pm 100 \text{ MeV}
$$

\n
$$
M(T_{+}) = \overline{M}_{cs} + \overline{M}_{sd} = 2525 \pm 10 \text{ MeV}
$$

\n
$$
M(S_{33}) = \overline{M}_{cs} + \overline{M}_{ud} = 2335 \pm 100 \text{ MeV}
$$
\n(33)

The first value compares favorably with the mass of the observed $D_{s0}^{*-}(2317)$, with a difference of 50 ± 10 MeV.

5 The multiplet of radial excitations

The particles $D_{s0}^0(2900) \to D_s^+\pi^- = [cd\bar{s}\bar{u}], D_{s0}^{++}(2900) \to D_s^+\pi^+ = [cu\bar{s}\bar{d}]$ recently observed by LHCb [\[7\]](#page-8-4) and $X_0(2900) \to D^-K^+ = [\bar{c}\bar{s}du]$, , [\[8\]](#page-8-5) are too heavy to be included in the basic $\mathbf{3} \oplus \bar{\mathbf{6}}$ together with $D_{s0}^*(2317)$. The mass difference:

$$
M(2900) - M(2317) = 583 \text{ MeV}
$$
 (34)

is similar to the mass gap between $\psi(2S)$ and J/ψ ($\Delta = 590$ MeV) or between X(3872) and Z(4430) $(\Delta = 558 \text{ MeV})$ and we shall similarly interpret the LHCb resonances as the first radial excitations $(n = 2)$ of the basic multiplet the $D_{s0}^*(2317)$ belongs to.

We have to fit in the same multiplet $X_0(2900)$ with $D_{s0}^{--,0}$ $_{s0}^{-0.0}$ (2900), antiparticles of the resonances observed in [\[7\]](#page-8-4), in order to have the same charm quantum number, see Fig. [2.](#page-6-0) The expected $n = 1$ multiplet is shown in Fig. [3](#page-6-1)

The positive strangeness $X_0(2900)$ mass close to the masses of the negative strangeness particle $D_{s0}^{--,0}$ $_{s0}^{-0.0}$ (2900) is a remarkable confirmation of the regularity noted in Section [3,](#page-2-3) a real footprint of the tetraquark compositions: $[\bar{c}\bar{s}]_0[ud]_0$ and $[\bar{c}\bar{u}]_0[sd]_0$.

6 Decays

The case of $D_{s0}^-(2317)$. As shown by Eq. [\(6\)](#page-1-1), T^3 has $I = 0$ and it should decay into $D_s^- \eta$, which however is forbidden by phase space. We can consider two independent mechanisms for the observed, isospin violating, $D_s^- \pi^0$ decay, both related to the $m_d - m_u$ mass difference: mixing of T^3 with S_{12} $(I = 1, I_3 = 0)$, or $\eta - \pi^0$ mixing.

In both cases, mixing allows the decay $D_{s0}^* \to D_s \pi^0$ with a small width ($\Gamma < 3.8$ MeV is reported in [\[6\]](#page-8-2)). It would be interesting to observe the decay $D_{s0}^* \to D_s \gamma \gamma$, quoted in [6] with an

Figure 2: The $n = 2$ multiplet. $\bar{D}_s \pi$, $S = -1$ and $\bar{D}K$, $S = +1$ resonances observed by LHCb [\[7,](#page-8-4)[8\]](#page-8-5) in the $n = 2$ multiplet.

Figure 3: The $n = 1$ multiplet. The diquarks in S_{23} are $[\bar{c}\bar{s}][su](2525 \pm 10) \rightarrow \bar{D}_s^- K^0, \bar{D}^0 \eta$ and $[\bar{c}\bar{d}][ud](2177 \pm 100) \to \bar{D}^0 \pi^0$

upper bound to the branching ratio $B(\gamma\gamma) < 0.18$, to compare with $D_{s0}^*(2317) \to D_s^-\eta^* \to D_s^-\gamma\gamma$ via the virtual η .

The missing partners of $D_{s0}^{-}(2317)$. With reference to Fig. [3,](#page-6-1) the bottom corners must be filled by two, isovector mesons in the channels $D_s^-\pi^{\pm}$, in all similar to those found at mass 2900 MeV in [\[7\]](#page-8-4). In addition a companion of $D_{s0}^*(2317)$ is needed, close in mass and in the same channels: $\bar{D}_s^-\pi^0$ or $\gamma\gamma$, most likely with a larger width.

The lighter, zero strangeness state, predicted at 2177, could be identified with the lower pole under $D[*](2300)$ reported in PDG [\[6\]](#page-8-2) at mass 2105.

The most intriguing case is the particle in the upper vertex, which is predicted to be very close to the $\bar{D}K$ threshold, the channel where $X_0(2900)$ is seen. If it is below the threshold of this channel, it has to decay weakly into $K^+K^0\pi^-$.

Radial excitations. With the larger mass of the radial excitations shown in Fig. [2](#page-6-0) all possible

two body decays are open:

$$
(S_{12}, T^3)_{(n=2)} \to D_s^- \pi^0, D_s^- \eta,
$$

$$
(S_{12}, T^3)_{(n=2)} \to \bar{D}^0 K^-, \bar{D}^- \bar{K}^0
$$
 (35)

The mixing of $n = 2$ states S_{12} and T^3 can be determined from the decay rates as in Ref. [\[2\]](#page-8-1).

For zero strangeness states, we expect the OZI mixing to produce tetraquarks with and without one $s\bar{s}$ pair:

$$
[\bar{c}\bar{s}][sd]_{(n=2)} \to \bar{D}^-\eta, \ \bar{D}_s^-K^0, [\bar{c}\bar{u}][ud]_{(n=2)}, \ [\bar{c}\bar{d}][ud]_{(n=2)} \to \bar{D}\pi.
$$
 (36)

7 The role of Fermi statistics in single charm tetraquarks

In a very interesting paper, the authors of Ref. [\[13\]](#page-8-11) utilize the so-called light quark spin symmetry in the static quark approximation [\[14\]](#page-9-0) to classify spin states of hidden charm molecules of quark composition $(\bar{c}q)(\bar{q}'c)$, with fixed Isospin I. Calling $S_{\ell,I}$ and $S_{c\bar{c}}(=1,0)$ the light quarks and $c\bar{c}$ total spin, the possible combinations of light and heavy spin generate six states with definite Isospin, total angular momentum and charge conjugation: $J_I^{PC} = 0_I^{++}, 1_I^{+-}, 1_I^{++}, 1_I^{++}, 0_I^{++}, 2_I^{++}$. No surprise, these are the same six J_I^{PC} states produced by diquark-antidiquark color singlet tetraquarks of the form $[cq]$ ³ $[\bar{c}\bar{q}']$ ³, considered in [\[2,](#page-8-1)3].

The situation is different in the case considered in Eq. [\(2\)](#page-0-1) of the present paper. Assuminig diquark ⊗ antidiquark colors to be $\bar{3} \otimes 3 \to 1$, there is a correlation between total spin and Isospin (or $SU(3)$ flavour) of the light quarks pair q_1q_2 induced by Fermi statistics. The latter requires either (a): $\bar{\mathbf{3}}_f \leftrightarrow (S_{12} = 0)$ or (b): $\mathbf{6}_f \leftrightarrow (S_{12} = 1)$. Therefore, in the case at hand we are led univocally to flavour $\bar{\bf 3}_f$ and to the ${\bf 3}_f\oplus \bar{\bf 6}_f$ composition of the tetraquark structure studied in this paper.

The situation is different for the molecular structure $(\bar{c}q_1)(\bar{v}q_2)$, in that the colors of q_1 and q_2 are not correlated and there are no apparent reasons for spin 0 molecules not to display all flavours in the representations appearing in the $SU(3)$ flavour decomposition of the product $\bar{D}K$, Eq. [\(1\)](#page-0-2).

For $J^P = 0^+$ single charm exotics, the suppression of the 15 was derived in Ref. [\[15\]](#page-9-1) for the molecular case, from an explicit calculation using chiral dynamics, following the lines indicated in [\[16\]](#page-9-2).

8 Conclusions

We show how the resonance $D_{s0}^{--,0}$ $_{s0}^{-0}(2900)$ and $X_0(2900)$ nicely fit in a $\bar{6}$ representation of $\text{SU}(3)_F$ with the prediction of a few more states in the sextet, in addition to the very likely $D_{s0}^{-}(2900)$ to fill an isotriplet with $D_{s0}^{--,0}$ $\frac{1}{s_0}$ (2900). The observation that $M(2900) - M(2317) =$ 583 MeV $\simeq M(\psi(2S)) - M(\psi(1S))$ suggests that the sextet we discuss could be a radial excitation of a lower sextet containing the $D_{s0}^*(2317)$, in a similar way in which $Z(4430)$ can be interpreted as a radial excitation of $X(3872)$ [\[3\]](#page-8-8). Using $SU(3)_F$ symmetry breaking we obtain mass predictions for the missing states. Our results are in agreement with a recent lattice calculation [\[1\]](#page-8-0) showing that in the DK scattering there are no bound states in the 15 representation, something which is expected in the quark model description we present here.

Acknowledgements

We are grateful to Vanya Belyaev and Tim Gershon for a very useful discussion of LHCb results on the single charm, single strange mesons discussed here. We are indebted to Christofer Hanhart for pointing us the lattice result in [\[1\]](#page-8-0) that has been at the origin of the present article and for an interesting discussion on the molecular picture of exotic hadrons.

References

- [1] J. D. E. Yeo, C. E. Thomas and D. J. Wilson, [\[arXiv:2403.10498](http://arxiv.org/abs/2403.10498) [hep-lat]].
- [2] L. Maiani, F. Piccinini, A. D. Polosa and V. Riquer, Phys. Rev. D 70 (2004), 054009 doi:10.1103/PhysRevD.70.054009 [\[arXiv:hep-ph/0407025](http://arxiv.org/abs/hep-ph/0407025) [hep-ph]].
- [3] L. Maiani, F. Piccinini, A. D. Polosa and V. Riquer, Phys. Rev. D 89 (2014), 114010 [\[arXiv:1405.1551](http://arxiv.org/abs/1405.1551) [hep-ph]].
- [4] L. Maiani, A. D. Polosa and V. Riquer, Phys. Rev. D 94 (2016) , 054026 [\[arXiv:1607.02405](http://arxiv.org/abs/1607.02405) [hep-ph]].
- [5] R. L. Jaffe, Phys. Rev. D 15 (1977), 281 doi:10.1103/PhysRevD.15.281
- [6] R. L. Workman et al. [Particle Data Group], doi:10.1093/ptep/ptac097 PTEP 2022 (2022), 083C01
- [7] R. Aaij *et al.* [LHCb], Phys. Rev. Lett. **131** (2023) 041902;
- [8] R. Aaij et al. [LHCb], Phys. Rev. D 102 (2020), 112003 [\[arXiv:2009.00026](http://arxiv.org/abs/2009.00026) [hep-ex]].
- [9] A. Ali, L. Maiani and A. D. Polosa, Cambridge University Press, 2019, ISBN 978-1-316-76146-5, 978-1-107-17158-9, 978-1-316-77419-9 doi:10.1017/9781316761465.
- [10] L. Maiani, A. D. Polosa and V. Riquer, Sci. Bull. 66 (2021), 1616 [\[arXiv:2103.08331](http://arxiv.org/abs/2103.08331) [hep-ph]].
- [11] S. Eidelman et al., Heavy Non-q \bar{q} Mesons, RPP 2022. [arXiv:2212.02716](http://arxiv.org/abs/2212.02716) [hep-ex].
- [12] L. Maiani, F. Piccinini, A. D. Polosa and V. Riquer, Phys. Rev. Lett. 93 (2004), 212002 [\[arXiv:hep-ph/0407017](http://arxiv.org/abs/hep-ph/0407017) [hep-ph]].
- [13] Z. H. Zhang, T. Ji, X. K. Dong, F. K. Guo, C. Hanhart, U. G. Meißner and A. Rusetsky, [\[arXiv:2404.11215](http://arxiv.org/abs/2404.11215) [hep-ph]].
- [14] N. Isgur and M. B. Wise, Phys. Lett. B 232 (1989), 113-117 doi:10.1016/0370-2693(89)90566-2
- [15] M. Albaladejo, P. Fernandez-Soler, F. K. Guo and J. Nieves, Phys. Lett. B 767 (2017), 465-469 doi:10.1016/j.physletb.2017.02.036 [\[arXiv:1610.06727](http://arxiv.org/abs/1610.06727) [hep-ph]].
- [16] E. E. Kolomeitsev and M. F. M. Lutz, Phys. Lett. B 582 (2004), 39-48 doi:10.1016/j.physletb.2003.10.118 [\[arXiv:hep-ph/0307133](http://arxiv.org/abs/hep-ph/0307133) [hep-ph]].