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1 Introduction

It is well known that an energetic charged particle does not exist in isolation. It is instead
surrounded by a cloud of soft and collinear radiation. This observation plays a key role
when exploring the factorization properties of QCD [1], and is critical to the success of the
Soft Collinear Effective Theory (SCET) [2–4], see [5–7] for reviews. This physical picture is
captured by matrix elements of Wilson line dressed operators, which interpolate a hard charged
particle. These matrix elements are typically called “form factors” in the literature [1, 8–13].
These objects have a wide variety of applications. They serve as a key component of SCET
calculations, for example appearing in the “jet functions” [3] (after removing the contribution
from soft radiation). Form factors are also the input for QCD “splitting functions” [14–25],
which are an important probe of the soft and collinear divergence structure of gauge theories
and have applications for higher order calculations [26–30].

Our goal in this work is to explore the properties of the simplest class of form factors
that appear in gauge theories. This study will be facilitated by the introduction of a novel
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recursive approach to calculating form factors at tree level. Recursive approaches to computing
quantum field theory amplitudes have become established as a significantly more efficient
methodology over Feynman diagrams, especially for the case of massless particles, see [31–36]
for reviews. One of the key organizing principles is to express the color ordered amplitudes
in terms of spinor helicity variables, and to compute amplitudes for each choice of helicity for
the massless external particles. In particular, this leads to a natural organization for QCD
processes by first identifying the “maximally helicity violating” (MHV) amplitudes [37, 38].
The MHV amplitudes have a particularly simple form, and for some recursive approaches
serve as the input building blocks for the construction of the rest of the amplitudes, organized
using a “next-to-· · · -next-to-MHV” (NkMHV) classification. We show that the same approach
reveals simple and universal properties of form factors.1 We identify an MHV helicity form
factor, which takes a remarkably simple form, inherited from the fact that such object arises
as the collinear limit of on-shell amplitudes [43–45]. The MHV helicity form factor (along with
the MHV expansion for the amplitudes) serve as the starting point of a recursive methodology.

Recursion relations can be derived as a consequence of the Cauchy residue theorem. By
deforming amplitudes into the complex plane, one can show that the physical amplitude of
interest can be reconstructed by summing the factorizable contributions due to the presence
of poles and a (potential) non-factorizable contribution that lives along the contour at infinity.
To prove that a higher point object can be constructed from lower point inputs alone requires
showing that the non-factorizable contribution vanishes. There are a number of recursion
relations for amplitudes, e.g. the BCFW [46, 47], CSW [48], and Berends-Giele [49] recursion
relations. The key difference is the choice of how to deform the physical amplitude into the
complex plane; BCFW relies on introducing a complex shift for two of the external momenta,
while CSW shifts all the external lines, see [50] for a study of all-line shifts for general theories.
In exactly the same spirit, we show that helicity form factors can be constructed recursively
from lower point inputs. One novelty of our form factor recursion relations is that they are
derived as a consequence of a single-line shift.

We demonstrate the power of our recursion relations for helicity form factors by explicitly
computing a variety of non-trivial results. Another well known aspect of recursion relations
for amplitudes is that one can find very different expressions by implementing different shifts,
which are nonetheless completely equivalent. We will show that the same is true of the
recursive approach introduced here. As a validation of our methods, we provide new compact
representations for some of the 1 → 2 [14] and 1 → 3 [51, 52] QCD splitting functions,
providing a highly non-trivial check on our results. Furthermore, in the recursive approach,
these objects serve as the inputs for higher point splitting functions.

The rest of this paper is organized as follows. In section 2, we set up the form factor
formalism, we introduce the one-line shift recursion relations, and we give a proof that
higher point form factors can be fully constructed using lower point form factors and on-shell
amplitudes as inputs. Then we show how to apply the recursion relations to QED in section 3
and QCD in section 4, with an emphasis on the MHV classification. We provide some
outlook and future directions in section 5. In appendix A, we show how to compute splitting
functions from the helicity form factors.

1For other work applying spinor helicity methods in the context of SCET, see [39–42].
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2 Recursion relations for helicity form factors

In this section, we begin by reviewing the definition of the Wilson line form factors, which
will allow us to introduce the matrix elements of interest in this paper. We then review the
spinor helicity formalism for light-cone coordinates, which provides us with a convenient
set of variables with which to define the helicity form factors. With these building blocks
in hand, we then introduce a class of complex momentum shifts that facilitates a recursive
approach to computing the helicity form factors. This is followed by an argument that the
helicity form factors can be computed recursively from lower point building blocks.

2.1 Wilson line preliminaries

The form factors of interest here take the generic form

FO
η (α) = ⟨α|W †

η (0)O(0)|0⟩ , (2.1)

where ⟨α| is some multiparticle state with momentum qµ, O(x) is an operator that transforms
in a representation of the gauge group, and W †

η (x) is a Wilson line in the direction ηµ whose
transformation is fixed by the requirement that the form factor is gauge invariant:

W †
η (x) = P exp

(
ig

∫ ∞

0
dt η ·A(x+ tη)

)
, (2.2)

where P denotes path ordering, g is a gauge coupling, Aµ(x) is a gauge field, and t is an
affine parameter. Note that the momentum qµ injected into the operator must be equal
to the total momentum of the external state.

We will consider operators O that interpolate single particle states: a scalar field ϕ, a
fermionic field Ψ, and a covariant derivative of a Wilson line DµWη. The corresponding
form factors with single particle states, at leading order, are given by the free wavefunctions
that are associated with the external massless state:

⟨ϕq|W †
ηϕ

∗|0⟩ = 1 , (2.3a)

⟨fq|W †
η Ψ|0⟩ = ū(q) , (2.3b)

⟨γq|
i

g
W †

ηD
µWη|0⟩ = ϵµ(q)∗ , (2.3c)

for the free scalar ϕ, fermion f , and gauge boson γ with momentum qµ.
Form factors of the type given in eqs. (2.3) appear when formulating factorization

theorems for soft and collinear modes in gauge theories [1, 8, 9, 12, 13]. The physical setting
is that some hard process produces a particle (the scalar, fermion or vector as determined
by the choice of operator O(x)) moving in the direction η̄µ. This particle emits collinear
radiation leading to a multiparticle final state ⟨α| composed of collinear and soft quanta,
whose total momentum is qµ. In the case where the momentum qµ is massive, we take the
leading approximation in the soft and collinear limit where it is a null vector along the
direction η̄µ = (1, q⃗/|q⃗|), that we refer as the collinear direction. The collinear radiation
about this direction is determined by the form factor in eq. (2.1), which is gauge invariant
due to the inclusion of the Wilson line. Specifying that a gauge boson is radiated by a given
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particle is not a gauge invariant statement. Physically, the Wilson line encodes the radiation
from the rest of the scattering process; the state traveling in the η̄-collinear direction sees a
charged classical source moving in an opposite direction given by ηµ = (1,−q⃗/|q⃗|).

One of our primary goals is to provide a novel helicity decomposition of the form factors
that can be constructed recursively at tree-level. The natural variables for expressing these
objects are Weyl spinors and we show that the spinors associated to the collinear and
anti-collinear directions η̄ and η form a complete basis that allows us to decompose the
leading components of the form factor in the soft and collinear expansion. This is the
topic we discuss next.

2.2 Light-cone spinor helicity

Without loss of generality, we take the null direction ηµ to be along the z-axis. We call
the parity-opposite null direction η̄. We also need to define the two transverse directions
η⊥ and η∗⊥. We take the explicit basis to be

ηµ = (1, 0, 0, 1) , ηµ
⊥ = (0,−1,−i, 0) , (2.4a)

η̄µ = (1, 0, 0,−1) , η∗µ
⊥ = (0,−1,+i, 0) . (2.4b)

In terms of these basis elements, and using the mostly minus metric, the components of
the momenta are given by

η̄ · p = p0 + p3 ≡ p+ , η⊥ · p = p1 + ip2 ≡ p⊥ , (2.5a)

η · p = p0 − p3 ≡ p− , η∗⊥ · p = p1 − ip2 ≡ p∗⊥ . (2.5b)

A generic lightlike momentum pµ = E(1, sθcϕ, sθsϕ, cθ) becomes collinear to ηµ in the small
θ angle limit. In this limit, its components scale as

(p+, p−, p⃗⊥) ∼ p+(1, θ2, θ) +O(θ3) . (2.6)

In other words, θ is the usual collinear expansion parameter in SCET. The form factors
studied here capture the collinear limit of amplitudes at leading order in θ.

Since the vectors ηµ, η̄µ are null, it is natural to associate them with two-component
Weyl spinors,

|η⟩ =
√

2
(

1
0

)
, |η̄⟩ =

√
2
(

0
1

)
, |η] =

√
2
(

0
1

)
, |η̄] =

√
2
(
−1
0

)
, (2.7)

where we are using the spinor helicity conventions in [53]. The transverse directions are not
null, and therefore it is not possible to associate a single Weyl spinor with them. However,
all the η-basis vectors do have a simple representation in terms of the spinors in eqs. (2.7)
when they are contracted with a gamma matrix:

/η = |η⟩[η| + |η]⟨η| , /η⊥ = |η⟩[η̄| + |η̄]⟨η| , (2.8a)

/̄η = |η̄⟩[η̄| + |η̄]⟨η̄| , /η
∗
⊥ = |η̄⟩[η| + |η]⟨η̄| . (2.8b)
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We can use these to write the collinear fermionic projector familiar from SCET as

Pη = /η/̄η

4 = |η⟩⟨η̄| + |η][η̄|
2 . (2.9)

When applied to an arbitrary spinor |p⟩ =
√

2E(cθ/2, sθ/2e
iϕ)T, the projector Pη extracts

the leading component of the spinor in the η direction. For the basis defined above,
Pη|p⟩ =

√
2Ecθ/2|η⟩ ≃

√
p+|η⟩.

We will also need the formalism for gauge bosons. Note that the metric can be written as

2gµν = ηµη̄ν + η̄µην − ηµ
⊥η

∗ν
⊥ − η∗µ

⊥ ην
⊥ . (2.10)

The direction of the polarization associated with a vector propagating in the ηµ direction
is, to leading order in θ, perpendicular to both ηµ and η̄µ, and perpendicular/parallel to
ηµ
⊥ and η∗µ

⊥ depending on the helicity of the vector. Therefore, the analog of the fermionic
projectors in eq. (2.9) for the vectors is given by

Pµν
η+ = −

ηµ
⊥η

∗ν
⊥

2 , and Pµν
η− = −

η∗µ
⊥ ην

⊥
2 . (2.11)

Indeed, one can check that Pµν
η+ projects the leading component of a polarization vector

corresponding to a plus helicity state

ϵµ+(p) = 1√
2

[p|γµ|ξ⟩
⟨ξp⟩

, (2.12)

(|ξ⟩ is a reference spinor) as follows:

Pµν
η+ ϵ

µ
+(p) ∝ −

[p|/η⊥|ξ⟩
⟨ξp⟩

η∗ν
⊥ = − [pη̄]⟨ηξ⟩

⟨ξp⟩
η∗ν
⊥ = η∗ν

⊥ +O(θ2) , (2.13)

where we used |p⟩ =
√
p+|η⟩ + O(θ2) and [pη̄] ∼

√
p+.

2.3 Helicity form factors

We now use the notation introduced in the previous section to define the “helicity form
factors” that are our central object of interest, see [10, 11] for related studies.2 If the operator
is a Dirac fermion field Ψ = (|Ψ⟩, |Ψ]), we can define two scalar operators by projecting the
left and right chiral parts of the field using Pη defined in eq. (2.9):

Of− = ⟨Ψ(x)|η⟩ , and Of+ = [Ψ(x)|η] . (2.14)

The labels f− and f+ indicate that the operator interpolates minus and plus helicity fermions
respectively at leading order. Then, the form factors can be defined to be

Ff−
η (α) = ⟨α|W †

η Of− |0⟩ , (2.15a)

Ff+
η (α) = ⟨α|W †

η Of+ |0⟩ , (2.15b)
2A subset of form factors considered in this work are related to amplitudes that contain off-shell gluons,

see [54–58].
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where ⟨α| is some multiparticle state. At leading order, Ff−(f−1 ) = ⟨1η⟩; the interpretation is
that the form factor gives the leading component of the negative helicity fermion wavefunction
in the η̄ direction. Also note that the projection eliminates Ff−(f+

1 ), and therefore the
projected form factor only interpolates a negative helicity fermion.

The gluon form factors for each helicity are

Fg−
η (α) = ⟨α| i

g
W †

η

η⊥ ·D√
2

Wη|0⟩ , (2.16a)

Fg+
η (α) = ⟨α| i

g
W †

η

η∗⊥ ·D√
2

Wη|0⟩ , (2.16b)

where Dµ is a gauge covariant derivative. At leading order, the unprojected gluon form
factor is proportional to the vector polarization with the arbitrary reference spinor replaced
by the Wilson line direction, |p⟩[η|

[ηp] . We can instead choose some other direction for the
Wilson line η′, which can always be decomposed as |η′] = a|η] + b|p], for some a and b. If we
express the form factor along the η′ direction, then the new form factor shifts by a vector
proportional to pµ as compared to the form factor defined in the original η direction. As
long as the matrix element obeys the Ward identity, this extra term proportional to |p] does
not contribute to physical observables, and the matrix element contracted with the form
factor is independent of the Wilson line direction.

Therefore, given a η̄-collinear photon or gluon, the leading order form factor for gauge
bosons is given by

Fg+
η (f+

1 ) = [1η]
⟨1η⟩ , and Fg−

η (f−1 ) = ⟨1η⟩
[1η] . (2.17)

These are just the standard polarization vectors expressed in spinor helicity notation, where
the arbitrary reference spinor is given by η and contracted by ηµ

⊥ and η∗µ
⊥ , respectively. So

each projection leads to an operator that sources only one polarization. All other components
of the form factor are at least of order θ1 in the SCET power counting. Note that one
consequence of defining the helicity form factors is that the little group scaling of the
η dependence in the resulting expressions corresponds to the helicity of the hard parton
interpolated by the projected operator.

2.4 Recursion relations for amplitudes

We begin this section by reviewing the recursive techniques for on-shell helicity scattering
amplitudes, see e.g. [59]. Our generalization to helicity form factors is then straightforward
to explain.

The expansion of perturbative amplitudes in terms of Feynman diagrams is known
to include redundancies that obscure the underlying analytic structure. At tree level,
the amplitude is a meromorphic function of the external kinematics and can therefore
be completely determined from its poles. It is possible to take advantage of this fact to design
a recursive algorithm to compute the tree level amplitudes in an efficient, non-redundant
way by constructing higher order amplitudes out of lower order building blocks. This both
provides new insight into the structure of the amplitudes, while also resulting in a multitude
of new results that would not have been feasible to derive in terms of Feynman diagrams.
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A recursion relation for tree-level scattering amplitudes can be obtained by deforming
or “shifting” the external on-shell momenta pµ

i into the complex plane, while maintaining
the on-shell condition. The shifted momentum is given by

p̂µ
i = pµ

i + zrµ
i , (2.18)

where z is a complex number, and rµ
i are a set of vectors that define the shift. The amplitude

with shifted momenta Â then depends on z.
When computing amplitudes, a class of recursion relations can be derived by enforcing

that the rµ
i obey the following properties:

Momentum shift for amplitudes

(1) ri · rj = 0 for any pair, including i = j ;

(2) pi · ri = 0 for all i ; (2.19)

(3)
∑

i

rµ
i = 0 .

The reason for each condition is as follows. Since we are considering tree-level amplitudes
with massless particles, there will be physical poles I when P 2

I = 0 with Pµ
I = pµ

i1
+ . . . pµ

in
,

where the different set of momenta {i} that appear accommodates all of the allowed channels
of the process under consideration. Then condition (1) implies that the poles of the shifted
amplitudes are linear in z, such that P̂ 2

I = −P 2
I (z − zI)/zI , with zI = −P 2

I /2PI · RI , and
Rµ

I = rµ
i1

+ . . . rµ
in

. In other words, condition (1) implies that the shifted amplitude only
includes single poles in the variable z. Condition (2) ensures that the shifted momenta are
on-shell, p̂2

i = 0. Finally, condition (3) is necessary in order to ensure total momentum
conservation of the amplitude with the shifted momenta,

∑
i p̂

µ
i = 0.

One then shifts the momenta that appear in the original tree-level amplitude A to define
the shifted amplitude Â(z). Using the Cauchy theorem, it is possible to write the n-point
unshifted amplitude A ≡ Â(z = 0) in terms of shifted lower point amplitudes:

A =
∑
zI

ÂL(zI) 1
P 2

I

ÂR(zI) +B , (2.20)

where ÂL,R(zI) are the two shifted lower point amplitudes that appear on either side of
the factorization on the pole zI , and B is a boundary term coming from the z → ∞ region.
Therefore, under a shift where B = 0, the calculation of tree-level on-shell amplitudes is
reduced to finding solutions to the linear equations P̂ 2

i = 0, which accounts for all possible
factorization channels, where the residues of the shifted amplitude are lower point on-shell
amplitudes. The shifted amplitude is therefore determined by combining lower point on-shell
amplitudes connected by scalar propagators.

Note that condition (3) forces that there must be at least two shifted momenta. This
minimal option leads to the BCFW shift [47]. Non-minimal options include the shift of all
the external lines, as explored in [50, 60], which is also known as the CSW shift [48].
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2.5 Recursion relations for form factors

We now apply the same ideas to the case of form factors. In a scattering amplitude with all
momenta outgoing, the sum of their momenta vanishes by momentum conservation. However,
in a form factor FO

η (α) the operator O injects an arbitrary momentum, so the sum of momenta
is nonvanishing. Therefore, when building a recursion relation for form factors, condition
(3) in eq. (2.19) should be dropped. This implies that it is possible to analytically continue
the form factor by considering a single line shift. Moreover, since the tree-level form factors
include Wilson lines, they contain “eikonal poles” when gluon momenta are collinear to the
Wilson line ∼ 1/η · q, in addition to the normal poles from on-shell propagators.

When defining a shifted form factor, we can eliminate the would be additional z depen-
dence from the eikonal poles by imposing the condition η · ri = 0 for each i. So we define
a shift in the external momenta pµ

i of a form factor with a Wilson line in the direction ηµ

such that p̂µ
i = pµ

i + zrµ
i with the conditions:

Momentum shift for form factors

(1) ri · rj = 0 for any pair, including i = j ;

(2) pi · ri = 0 for all i ; (2.21)

(3) η · ri = 0 for all i .

Conditions (1) and (2) serve the same purpose as in the case of amplitudes. Enforcing
condition (3) avoids having z-dependent eikonal poles; the only poles in form factors are
the ones coming from intermediate particles going on-shell. We can again use the Cauchy
theorem to write

FO
η =

∑
zI

Â(zI) 1
P 2

I

F̂O
η (zI) +Bη , (2.22)

where the Bη term corresponds to the contribution from z → ∞. If Bη vanishes, the form
factor FO

η ≡ F̂O
η (z = 0) can be computed using the shifted lower point form factor F̂O

η and
a shifted on-shell amplitude Â(zI) connected by a scalar propagator. Note that the shifted
momenta must always be connected to the scattering amplitude side, due to momentum
conservation. Another way to see this is that a shift of a momentum connected to the form
factor would never lead to a cut propagator with non-trivial z-dependence.

We will show that Bη = 0 for gauge theories with scalar and/or fermionic matter for the
appropriate choice of momentum shift. Then we only have the factorizable contributions,
and the recursion relation can be represented diagrammatically:

where the black vertices denote Wilson line form factors and the white vertices denote on-shell
amplitudes. The minimal choice that satisfies the conditions in eq. (2.21) is given by a single
line shift, where only one of the rµ

i is non-vanishing. The hat (̂ ) in the diagram denotes

– 8 –
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Figure 1. Here we show a characteristic example of a Feynman diagram that appears in the form
factors. There are used as inputs for the characterization of the large-z behavior of the form factors.
The dot denotes the operator insertion, and the double line denotes the eikonal factors coming from
the perturbative expansion of the Wilson line. Shifting an external gluon injects a z-dependence into
the momentum that flows from the gluon to the operator insertion, necessarily going through either
the charged matter line (single-line shift corresponding to the pink flow) or the Wilson line (single-line
shift corresponding to the red flow).

the shifted momenta, which necessarily belongs to the on-shell amplitude in the right hand
side. Using spinor helicity variables, this is either an |̂i⟩-shift

|̂i⟩ = |i⟩ − z|η⟩ , (2.23a)

or an |̂i]-shift

|̂i] = |i] − z|η] , (2.23b)

where |η⟩ or |η] are the spinors in eq. (2.7) associated with the null direction of the Wilson
line. The choice of shift depends on the behavior at infinity of the particular form factor
of interest, as we explore in the next section.

2.6 Large-z behavior and constructibility

Now we discuss the z → ∞ limit of the helicity form factors. Our goal is to derive conditions
for when the boundary term Bη in eq. (2.20) vanishes so that the form factors are constructible
in terms of lower point inputs. This argument is based on considering the scaling behavior
of all possible Feynman diagrams that can appear, following the approach from [47]. An
example diagram is drawn in figure 1.

A generic Feynman diagram for a form factor is a combination of propagators, vertices,
eikonal propagators, eikonal vertices, external polarizations, and momenta insertions. When
shifting the momenta of an external leg, the z-dependence flows from this leg to the operator
insertion going through n vertices and n propagators. Since the shift is proportional to
η, eikonal propagators and eikonal vertices do not depend on z. Gauge boson and scalar
propagators scale as 1/z, while fermion propagators scale at worst as z0. The fermion-gauge
boson vertex scales as z0, the gauge boson 4-point self-interaction scales as z0, and the gauge
boson 3-point self-interaction and the scalar-gauge boson vertex scale at worst as z. Therefore,
the worst large-z scaling of a diagram due to the presence of vertices and propagators is z0.

– 9 –
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The only wavefunction that can scale with z is the one corresponding to the particle
whose momentum is being shifted. If the particle is a fermion, the best possible scaling
of the associated wavefunction is z0, when one chooses to shift the spinor that has the
opposite helicity of the fermion wavefunction. If the particle is a gauge boson, it is possible
to always choose a shift such that the polarization vector scales as z−1. For example, the
wavefunction for a negative-helicity vector with momentum pµ is proportional to |p⟩[ξ|

[ξp] , so
that a |p̂]-shift ensures a z−1 scaling.

Next, we discuss the z-dependence associated with the different operators. As emphasized
above, we only consider the operators listed in eq. (2.3), which are associated with the leading
behavior in the collinear limit. We leave the study of the convergence of form factors associated
with subleading corrections [42, 61, 62] for future work.

2.6.1 Scalar and fermionic operators

Consider the case where the operator O corresponds to a scalar or a fermion. The Bη factors
vanish for both scalar and fermionic form factors if one shifts an external gauge boson. In
the case where the shifted particle is a gauge boson of a fixed polarization, one is free to
choose either an |̂i⟩-shift or a |̂i]-shift since the full diagram scales as 1/z.

Next, we consider the case where the external state does not contain gauge bosons and
only fermions are present. If the shifted fermion is connected to an internal gluon, this leads
to diagrams that can scale at most as 1/z. The only potentially problematic ∼ z0 contribution
comes from the case where the shifted fermion connects directly with the operator insertion.
However, one can always avoid such a contribution by shifting the fermion with a different
chirality than that of the operator. We conclude that for the case where there is no external
gauge boson, then one can shift an external fermion with the opposite helicity as compared
to the operator insertion. Finally, we note that the scalar case with no external gauge bosons
is not constructible using a 1-line shift.

2.6.2 Gauge boson operators

We now consider the case where the operator insertion corresponds to the one interpolating
a non-Abelian gauge boson, see eqs. (2.16). We argue that the Bη terms vanish if one
shifts an external gauge boson line with the opposite helicity as compared to that of the
operator insertion.

Consider the case where one shifts a gauge boson line, such that corresponding shifted
wavefunction scales as 1/z. Then the combination of vertices, propagators and wavefunction
scales at worst as 1/z. However, contrary to the fermion case, now the operator insertion
contains a momentum and potentially scales as z. Under a |̂i⟩-shift, the left-chiral part
of the momentum proportional to z that runs through the operator is proportional to ⟨η|.
Therefore, the projection along η⊥ kills this contribution. Note that if one projected along
the η∗⊥ direction, this form factor would grow with z, see eqs. (2.8) and (2.16). We therefore
conclude that the Bη terms only vanish if one shifts a gauge boson with the opposite helicity
from the gauge boson interpolated by the operator.

This argument implies that we can not discard the possibility of having a z0 contribution
in the case where the form factor has an external state where all of the gauge bosons have
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the same helicity as the one coming from the operator. For such cases, a two-line shift is
required. However, as it will be discussed in section 4.2.3 below, this case is also constructible
from single-line shifts. The physical reason is that the minimal form factor with a single
gluon is chiral, in the sense that only its left or right chiral part is dynamical, and the
rest is fixed by the Wilson line.

If there are only fermions in the external state, shifting the chirality of an external
momentum corresponding to the same chirality of the operator ensures that the diagram
scales as 1/z. Since there is always a fermion whose wavefunction will not scale under the
shift, such form factors are always constructible.

2.7 Recursion for massive wilson lines

So far we have assumed that the quarks are massless and the Wilson lines correspond to null
directions. It is straightforward to extend the formalism to the case where the Wilson line
corresponds to a massive trajectory, so η2 ̸= 0. Using the massive spinor formalism [63], one
can write /η = |ηI⟩[ηI |, with I being a little group index. Then, the shift

|p̂⟩ = |p⟩ + z /η|p] (2.24)

leaves the massless momenta p̂µ on-shell, p̂2 = 0, and yields no z-dependence from eikonal
propagators, η · p̂ = η ·p since [p|/η/η|p] = η2[pp] = 0. All the conclusions from above then follow.

In the case of QED and QCD with massive matter, shifting an external photon or gluon
leads to a convergent recursion relation, the reason being that the z scaling in the z → ∞
limit is not changed by the presence of masses. However, shifting massive fermions becomes
nontrivial. Development of these techniques for this case would allow to cross check and
push the state-of-the art calculation of splitting functions with massive partons [64, 65].
In the case of a spontaneously broken gauge theory, it would be interesting to explore the
connections with electroweak radiation [66, 67].

3 QED

In this section, we apply the recursion relations above to derive tree-level helicity form
factors in QED, a theory with scalar or fermionic matter coupled to an Abelian gauge boson
(a photon). We will emphasize some universal features that emerge and will present an
organization in terms of “minimal helicity violating” form factors, in close analogy with the
well known properties of helicity amplitudes.

3.1 MHV form factors in scalar QED

In the case of a scalar, the free theory wavefunction is trivial, so the form factor is Fϕ
η (ϕ1) = 1,

see eq. (2.3a). At first order in the gauge coupling the operator overlaps with a state containing
a scalar and a photon. If this photon has positive helicity, the form factor Fϕ

η (ϕ1γ
+
2 ) can

be computed from the recursion relation

= 1
⟨12⟩

⟨1η⟩
⟨2η⟩ . (3.1)
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It is interesting that this result has an explicit dependence on the ηµ direction, even though
the building blocks entering the recursive calculation did not. In other words, the presence
of the Wilson line is emergent from the recursive point of view.

The generic form factor with an arbitrary number of same-helicity photons in the final
state can be computed recursively as follows. Using the fact that the on-shell amplitude with
two scalars and n same-helicity photons vanishes for n ≥ 2, only the three point amplitude
appears in the recursive calculation. If we shift |2̂⟩ in Fϕ

η (ϕ1γ
+
2 . . . γ+

n ), the only contribution
comes from the three point amplitude and the form factor with n− 1 same-helicity photons.
Using induction, we find that the scalar QED tree-level form factor Fϕ

η (ϕ1γ
+
2 . . . γ+

n ) is given by

= [12][2P̂ ]
[1P̂ ]

1
⟨12⟩[21]

⟨P̂ η⟩n−2

⟨P̂3⟩⟨3η⟩ . . . ⟨P̂ n⟩⟨nη⟩

= ⟨η1⟩n−1

⟨12⟩⟨2η⟩ . . . ⟨1n⟩⟨nη⟩ . (3.2)

The second line is obtained by performing the usual manipulations for these kinds of cal-
culations. The term [2P̂ ]/[1P̂ ] can be multiplied by ⟨P̂ η⟩/⟨P̂ η⟩, and using momentum
conservation and the fact that |η⟩ annihilates the z-dependent part of the momentum, one
obtains [2P̂ ]/[1P̂ ] = −⟨1η⟩/⟨2η⟩. For the terms of the type ⟨P̂ η⟩/⟨P̂ k⟩, one can multiply and
divide by [P̂1] to get ⟨P̂ η⟩/⟨P̂ k⟩ = ⟨η2⟩/⟨k2̂⟩. This last term depends on z, which is however
fixed by the on-shell condition P̂ 2 = ⟨12̂⟩[21] = 0, which implies 0 = ⟨12̂⟩ = ⟨12⟩ − z⟨1η⟩, and
therefore z = ⟨12⟩/⟨1η⟩. Using this, one gets the last line of eq. (3.2).

We will refer to this form factor as the “Maximally Helicity Violating” (MHV) form
factor, in analogy with the common terminology in the scattering amplitudes literature. As in
the case of scattering amplitudes, it is expressed as a holomorphic function that only depends
on the angle spinors. A similar calculation yields the MHV form factor

Fϕ
η (ϕ1γ

−
2 . . . γ−n ) = [η1]n−1

[12][2η] . . . [1n][nη] , (3.3)

which is an anti-holomorphic function that only depends on the square spinors. Note that
contrary to the case of scattering amplitudes, a form factor where all vectors have the same
helicity is non-vanishing, so the MHV classification starts with this configuration.

3.2 MHV form factors and soft radiation

We will now explain that the MHV form factors are entirely determined by soft photon
exchanges. To show this, we begin by identifying a connection between the MHV form factor
and the form factor with two Wilson lines. Taking the limit of infinite energy for the scalar,
limω→∞ pµ

1 with pµ
1 = ωρµ, corresponds to the eikonal limit for the scalar such that it becomes

a recoilless probe. In this limit, the scalar becomes a Wilson line in the direction ρµ, and
the form factor computed above should reproduce a form factor for two Wilson lines, which
we will denote Fηρ. Indeed, the latter is given by

Fηρ(γ+
2 . . . γ+

n ) = lim
ω→∞

Fϕ
η (ϕ1 γ

+
2 . . . γ+

n )|pµ
1 =ωρµ = ⟨ηρ⟩n−1

⟨ρ2⟩⟨2η⟩ . . . ⟨ρn⟩⟨nη⟩ , (3.4)
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where Fηρ(γ+
2 . . . γ+

n ) = ⟨γ+
2 . . . γ+

n |W †
η (0)Wρ(0)|0⟩. The fact that this result takes the same

form as eq. (3.2) demonstrates that the scalar in the MHV form factor acts as a Wilson
line. Since the scalar has infinite momentum, any radiated photons are soft since they have
finite momentum. We can check this explicitly as follows.

There is a suggestive way to write the result in eq. (3.2) that makes clear that the
MHV form factor contains purely soft interactions. We can identify eq. (3.1) with the
eikonal factor [33]

Sab
k ≡ ⟨ab⟩

⟨ak⟩⟨kb⟩
, (3.5)

which captures the soft limit of a photon being emitted by a pair of eikonal lines [68]. Then
we can rewrite the MHV form factor to show that it is given by the product of soft factors:

= [12][2P̂ ]
[1P̂ ]

1
⟨12⟩[21]

n∏
i=2

S P̂ η
k . (3.6)

The explicit spinor factors in this expression are equivalent to S1η
2 , while the rest of the soft

factors reduce to S P̂ η
k = S1η

k , which leads to the MHV result in eq. (3.2) above. This shows
that the soft structure is correctly reproduced by the recursion relation, and indeed one
obtains the eikonal form in eq. (3.4). This is in contrast with the non-MHV form factors,
which cannot be expressed only in terms of soft factors, as we will see below.

The relevance of this observation is that jet functions are defined as a ratio between the
Wilson line form factors of the type in eq. (2.1) and the form factors where the operator
is replaced by a Wilson line in the direction of motion of the hard particle in the jet [13].
Therefore, the jet functions are trivial in the MHV sector. To our knowledge this is a novel
observation, whose consequences we will explore in future work.

3.3 MHV form factors in fermion QED

Now we turn to the case where the charged matter is composed of fermions. The logic follows
in close analogy with the scalar QED case. The form factors that describe the leading effects
of collinear and soft emission of external particles emerge from the free wavefunction, which
in the fermion case is either |p⟩ or |p], depending on the fermion helicity, see eq. (2.3b).

The main difference with respect to the scalar case is that now there are two distinct
form factors, one for each helicity of the fermion. Both can be computed using the free
fermion wavefunction and the three point amplitude. This calculation yields the following
form for the MHV form factor,

Ff−
η (f−1 γ

+
2 ) = ⟨η1⟩⟨1|

⟨12⟩⟨2η⟩ |η⟩ , (3.7)

and the following for the next-to-MHV or NMHV form factor,

Ff−
η (f−1 γ

−
2 ) =

[η|/q
[12][2η] |η⟩ , (3.8)
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where we have defined the momentum qµ as the sum of all the momenta in the form factor,
in this case qµ = pµ

1 + pµ
2 . In writing these formulas, we have made the contraction with

the projection |η⟩ explicit. This emphasizes that the first form factor is proportional to the
fermion wavefunction and therefore it can be thought of as modifying the scalar result above.
The nomenclature chosen indicates that the MHV form factor is a holomorphic function of
the angle spinors. The NMHV form factor is not holomorphic due to the presence of [η|/q.

The fermion form factor with any number of photon legs with the same helicity can
be computed following the same approach as the scalar case presented above. The MHV
form factor is

Ff−
η (f−1 γ

+
2 . . . γ+

n ) = ⟨1η⟩n

⟨12⟩⟨2η⟩ · · · ⟨1n⟩⟨nη⟩ . (3.9)

The Nn−1MHV form factor for the same fermion helicity and with all photon helicities flipped
can also be computed for any number of photons. We find

Ff−
η (f−1 γ

−
2 . . . γ−n ) = [1η]n−2[η|q|η⟩

[12][2n] · · · [1n][nη] . (3.10)

Again, notice that while the MHV form factor is holomorphic, the Nn−1MHV form factor
is not. However, the Nn−1MHV form factor does have a simple form because the MHV
amplitude appears as a building block in its derivation.

Both fermionic MHV and Nn−1MHV form factors are related to the scalar MHV form
factor by a simple kinematic prefactor

Ff−
η (f−1 γ

+
2 . . . γ+

n ) = Fϕ
η (ϕ1γ

+
2 . . . γ+

n ) ⟨1η⟩ , (3.11a)

Ff−
η (f−1 γ

−
2 . . . γ−n ) = Fϕ

η (ϕ1γ
−
2 . . . γ−n ) [η|q|η⟩

[1η] , (3.11b)

where Fϕ
η (ϕ1γ

+
2 . . . γ+

n ) and Fϕ
η (ϕ1γ

−
2 . . . γ−n ) are given by eqs. (3.2) and (3.3) respectively. In

fact, notice that the fermionic MHV form factor is the scalar one, times the projected fermion
wavefunction ⟨1η⟩. This makes the connection between the MHV form factor and the soft
form factor explicit, following the discussion in section 3.2. Indeed, the MHV form factor is
entirely determined by eikonal gauge bosons interactions, as the only difference between the
fermion and scalar form factors is the extra factor of the fermion’s projected wavefunction.

3.4 NMHV form factors

We now turn to the calculation of the NMHV form factors. We begin with Fϕ
η (ϕ1γ

−
2 γ

+
3 ) in

scalar QED. We can compute the form factor recursively using either a |2̂]-line shift or a
|3̂⟩-line shift. Shifting |2̂], we get two contributions:

+ (3.12)

The sum of both terms gives

Fϕ
η (ϕ1γ

−
2 γ

+
3 ) = ⟨12⟩

⟨3|q|η]

( [1η]⟨η|1 + 2|η]
⟨η3⟩[2η]s12

+ ⟨2|q|η]
⟨31⟩s123

)
, (3.13)
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where the first term comes from the first diagram that involves the 3-point amplitude, and the
second term with the pole at s123 = (p1 +p2 +p3)2 = q2 comes from the second diagram which
involves the MHV amplitude and the scalar wavefunction. Note that if we had performed a
shift on |3̂⟩, we would obtain a very different (but equivalent) expression. This, together with
the appearance of the nonlocal poles of the type ⟨3|q|η], is reminiscent of the features of NMHV
amplitudes [69]. It would be therefore interesting to explore a formulation of the Wilson line
form factors akin to the Grassmannian perspective of scattering amplitudes, see e.g. [70].

Now consider the case of fermion QED. There is a single NMHV form factor:

Ff−
η (f−1 γ

−
2 γ

+
3 ) = ⟨12⟩

⟨3|q|η]

(⟨η|1 + 2|η]
[1η]

[1η]⟨η|1 + 2|η]
⟨η3⟩[2η]s12

+ ⟨12⟩⟨η|q|η]
⟨2|q|η]

⟨2|q|η]
⟨31⟩s123

)
. (3.14)

This form is expected due to the relations between MHV scalar and fermion form factors, and
MHV amplitudes between fermions and scalars. The relations between MHV form factors
are given above, while the relations among amplitudes are given by

A(f−f̄+γ+γ−) = ⟨14⟩
⟨24⟩A(ϕϕγ+γ−) , (3.15)

etc. Applying these relations recursively gives

Ff−
η (f−1 γ

−
2 γ

+
3 )diag 1 = ⟨12⟩

⟨P̂2⟩
⟨P̂ η⟩Fϕ

η (ϕ1γ
−
2 γ

+
3 )diag 1 = ⟨η|1+2|η]

[1η] Fϕ
η (ϕ1γ

−
2 γ

+
3 )diag 1 , (3.16a)

Ff−
η (f−1 γ

−
2 γ

+
3 )diag 2 = ⟨12⟩

⟨P̂2⟩
⟨P̂ η⟩Fϕ

η (ϕ1γ
−
2 γ

+
3 )diag 2 = ⟨12⟩⟨η|q|η]

⟨2|q|η] Fϕ
η (ϕ1γ

−
2 γ

+
3 )diag 2 , (3.16b)

where the “diag” subscript refers to the two recursive diagrams that appear on the right
hand side of eq. (3.12). We see that the MHV relations between scalar and fermion form
factors and amplitudes holds individually for the diagrams that appear in the recursion
relations. However, the diagrams are evaluated on different kinematic poles, which leads to a
non-homogeneous relation between scalar and fermion form factor at the NMHV level.

We can also study the eikonal limit of the NMHV form factor. We can explore this by
taking the limit as in eq. (3.4) above limω→∞ pµ

1 for the scalar momenta pµ
1 = ωρµ Applying

this limit to eq. (3.13), we find

Fηρ(γ−2 γ
+
3 ) = lim

ω→∞
Fϕ

η (ϕ1 γ
−
2 γ

+
3 )|pµ

1 =ωρµ = [ρη]⟨ηρ⟩
[η2][2ρ]⟨η3⟩⟨3ρ⟩ . (3.17)

Returning to the diagrams in eq. (3.12), one can see that the second diagram goes to zero in
this limit, so that the only contribution comes from the first diagram that involves the 3-point
amplitude. In fact, this pattern continues. In this limit there is always a contribution to the
form factor that scales as ω0. The on-shell propagator scales as 1/ω, so the only diagram that
can have a finite contribution is one that involves an amplitude that scales as ω. Because
of helicity scaling of the external wavefunctions, all amplitudes scale as ω0, except for the
three point amplitude. Indeed, the three point amplitude A(ϕ1ϕ

∗
2γ

−
3 ) = ⟨13⟩⟨32⟩/⟨12⟩ scales

as ω0 (only scaling the energy dependence of the spinors), but in the limit of interest the two
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scalars become parallel and therefore ⟨12⟩ → 0 as ω → ∞.3 This divergence compensates the
1/ω scaling of the propagator, resulting in a finite contribution to the form factor.

This observation allows us to find a general expression for the tree level radiation

Fηρ(γ−1 · · · γ−i γ
+
(i+1) · · · γ

+
n ) =

i∏
j=1

[ρη]
[jη][ρj]

n∏
k=i+1

⟨ρη⟩
⟨kη⟩⟨ρk⟩

. (3.18)

Interestingly, it is the special properties of complexified three particle kinematics that allows
us to find a general expression for this form factor in this limit. This is a very different
approach from the canonical argument that relies on the universal eikonal factor and a
sum over permutations.

3.5 Form factors with massive Wilson lines

As discussed in section 2.7, it is straightforward to consider the case where the Wilson lines
are tilted inside the lightcone and represent massive trajectories. The calculation of the form
factor Fϕ

η (ϕγ−) is very similar to the one in eq. (3.1), but with the difference that now the
shift is of the type in eq. (2.24), |2̂] = |2] + z/η|2⟩. Therefore, the on-shell condition implies
z = −[12]/⟨2|η|1]. In this case the form factor is given by

Fϕ
η (ϕ1γ

−
2 ) = 1

[12]
⟨2|η|1]
⟨2|η|2] . (3.19)

By sending ηµ to the lightcone, so /η = |η⟩[η|, this result reproduces the expression in
eq. (3.1) as it must.

4 QCD

In this section, we explore the application of the above ideas to QCD, non-Abelian gauge
theories with scalar or fermion matter in the fundamental representation. The case of QCD is
very similar to QED, except now we must keep track of color. In the following, the operator O
that appears in the form factor is either a scalar or fermion in the fundamental representation
or a vector operator transforming in the adjoint. At each order in perturbation theory,
the form factor will depend explicitly on the color index associated with the operator. The
physical picture is that the form factor arises as part of a factorized amplitude, where the hard
interaction produces a particle with a given spin, momentum, and SU(N) quantum number.

4.1 Color ordering

As in the case of the amplitudes, it is very convenient to organize the calculation in terms of
“color ordered” form factors. In the case of the scalar form factor, the color decomposition
is given by

Fϕj
η
(
ϕig

h2
A2
gh3

A3
. . . ghn

An

)
=

∑
σ∈Sn−1

(
TAσ2TAσ3 . . . TAσn

)
ij
Fϕ

η

[
ϕg

hσ2
σ2 g

hσ3
σ3 . . . ghσn

σn

]
, (4.1)

3The special kinematics of the three point amplitude allows us to set all square spinors proportional to each
other, in particular [2| = r[1| for some constant r. In the limit of interest, the two scalars become collinear
and therefore pϕ + pϕ∗ + pγ → pϕ + pϕ∗ = (|1⟩ + r|2⟩)[1| = 0, which implies ⟨12⟩ → 0.
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where i is the color index of the scalar in the state, j is the color index of the scalar field in the
operator, TAi is the generator associated with the ith gluon, and Sn is the permutation group
of n elements. On the right hand side, the square brackets denote the color-ordered form
factor, which carries only kinematic information. Similarly, the gluon form factors are given by

Fgh
A

η
(
gh1

A1
gh2

A2
. . . ghn

An

)
=
∑

σ∈Sn

tr
(
TAσ1TAσ2 . . . TAσnTA)Fgh

η

[
g

hσ1
σ1 g

hσ2
σ2 . . . ghσn

σn

]
, (4.2)

where we used the cyclic invariance of the trace to fix the last entry, which corresponds to
the generator associated with the operator O.

This basis of color-ordered form factors is redundant. As in the case of scattering
amplitudes, color ordered form factors obey a set of identities known as U(1) decoupling
identities [38, 49, 71], which can be obtained by imposing that the amplitude for a photon
and n − 1 gluons vanishes. This must be the case since the photon generator commutes
with all other generators, which implies that the coupling (which is proportional to the
associated structure constant) vanishes. By writing TA = 1, all factors with identical traces
should vanish independently:

0 = Fgh

η

[
gh1

1 gh2
2 . . . ghn

n

]
+ Fgh

η

[
gh2

2 . . . ghn
n gh1

1
]

+ · · · + Fgh

η

[
ghn

n . . . gh1
1 gh2

2
]
, (4.3)

and therefore cyclic permutations of the arguments vanish. We can also set TA1 = 1, in
which case we find another constraint:

0 = Fgh

η

[
gh1

1 gh2
2 . . . ghn

n

]
+ Fgh

η

[
gh2

2 gh1
1 . . . ghn

n

]
+ . . .

+ Fgh

η

[
gh2

2 . . . gh1
1 ghn

n

]
+ Fgh

η

[
gh2

2 . . . ghn
n gh1

1
]
. (4.4)

For n = 2 and n = 3, these U(1) identities imply that there is only one distinct color-ordered
form factor. We provide an explicit verification of these relations for n = 3 in appendix A.
On top of the U(1) decoupling, scattering amplitudes obey Kleiss-Kuijf relations [72, 73] that
further reduce the basis of independent structures and therefore imply additional relations
for the form factors.

4.2 MHV and Nn−1MHV form factors in QCD

We now explain the MHV classification of helicity form factors for QCD. As above, the MHV
(and MHV) form factors can be derived from attaching a single on-shell amplitude to the
appropriate wavefunction factor, and are (anti-)holomorphic functions of the spinors.

4.2.1 Scalar form factors

We begin with the form factor for the scalar operator and a state consisting of a single
scalar and n − 1 gluons. The one and two-point form factor have exactly the same form
as the QED case in eq. (3.1) since neither the color ordering or the non-Abelian structure
enters. The first differences appear at three points. We can compute the MHV form factor
Fϕ

η [ϕ1g
+
2 g

+
3 ] recursively either by performing a |3̂⟩-shift or a |2̂⟩-shift. For the |3̂⟩-shift, color
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ordering forces the shifted gluon to be adjacent to the operator insertion, and therefore
there is only one possible on-shell diagram,

(4.5)

In the case of the |2̂⟩-shift, one gets instead contributions from two on-shell diagrams, namely

+ (4.6)

Clearly, the |3̂⟩-shift is simpler. Nonetheless, both ways of constructing the form factor
are of course equivalent and lead to

Fϕ
η [ϕ1 g

+
2 g

+
3 ] = ⟨1η⟩

⟨12⟩⟨23⟩⟨3η⟩ . (4.7)

Similar to the QED case, the generic color ordered MHV form factor can be computed
recursively and it is given by

= ⟨1η⟩
⟨12⟩⟨23⟩ · · · ⟨nη⟩ . (4.8)

Notice that the scalar QCD form factor only contains poles for the particles that are adjacent
in the color ordering, while the QED one in eq. (3.2) contains divergences when any photon
is collinear to either the scalar or the Wilson line. However, it is still true that the eikonal
limit is trivial for the MHV form factor. Following the same logic that led to eq. (3.4) for
the QED case above, we find

Fηρ[g+
2 . . . g

+
n ] = lim

ω→∞
Fϕ

η [ϕ1 g
+
2 . . . g

+
n ]|pµ

1 =ωρµ = ⟨ρη⟩
⟨ρ2⟩⟨23⟩ . . . ⟨nη⟩ . (4.9)

Therefore, as in QED (see section 3.2 above), the MHV form factor of a scalar field is identical
to the one with a Wilson line in the direction of its momentum, indicating that the MHV
form factor contains only soft radiation. Note that the same form was found when computing
a related form factor in N = 4 Super Yang Mills [10].

4.2.2 Fermion form factors

Form factors with fermion operators and states containing a single fermion and an arbitrary
number of gluons can be computed analogously. The MHV form factor is given by

Ff−
η [f−1 g

+
2 . . . g

+
n ] = ⟨1η⟩2

⟨12⟩⟨23⟩ · · · ⟨nη⟩ , (4.10)
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and the Nn−1MHV form factor is given by

Ff−
η [f−g− . . . g−] = [η|q|η⟩

[12][23] · · · [nη] . (4.11)

Again, note that both have a simple relation to the MHV and MHV scalar form factors:

Ff−
η [f−1 g

+
2 . . . g

+
n ] = Fϕ

η [ϕ1g
+
2 . . . g

+
n ] ⟨1η⟩ , (4.12a)

Ff−
η [f−1 g

−
2 . . . g

−
n ] = Fϕ

η [ϕ1g
−
2 . . . g

−
n ] [η|q|η⟩

[1η] , (4.12b)

which coincides exactly with the same relations we found for the Abelian theory, see
eqs. (3.11b).

4.2.3 Gauge boson form factors

In the case where the operator corresponds to a gluon, we can similarly compute the MHV
form factor recursively. Starting from the operator as defined in eq. (2.16), which leads to
the one point form factors in eq. (2.17), the MHV form factor is

Fg−
η [g+

1 . . . g
−
i . . . g

+
n ] = ⟨iη⟩4

⟨η1⟩⟨12⟩ . . . ⟨nη⟩
1

[η|/q|η⟩
. (4.13)

Notice the non-holomorphic factor 1/[η|/q|η⟩. This is expected, since the form of the operator
leads to a one-point form factor that is already non-holomorphic, see eq. (2.17).4

Following the convergence arguments in section 2, one would conclude that all form
factors generated by Og can be constructed using one line shifts except the one where
the helicity of the gluon generated by the operator is the same as all the radiated gluons
Fg−

η [g− . . . g− . . . g−], the Nn−1MHV form factor. Specifically, the issue is that the arguments
for the constructibility of the Nn−1MHV form factor fail for a single line shift because this
form factor does not have any external gluons with the opposite helicity from the operator.
It therefore seems that one would need to use two-line shifts to compute these form factors
recursively. Surprisingly, we will now show that the Nn−1MHV form factor actually converges
faster than what the argument above suggests, demonstrating that a single line shift can
be used to construct it recursively.

We can construct the two-point form factor Fg−
η [g−1 g

−
2 ] using the two line shift with

|1̂] = |1] + z|η] and |2̂] = |2] + z|η]. This gives

=
⟨η|/q|η]

[η1][12][2η] , (4.14)

4We note the following curiosity. Choosing the operator as in eq. (2.16) is customary in the modern
literature of soft-collinear factorization, see e.g. [5, 13, 74]. Notice however, that a local operator like Gµνηµην

⊥
accompanied by Wilson lines, is similar to what was considered in earlier papers [1, 75], and leads to the one
point form factor given by

⟨g−|W †
η Gµνηµην

⊥|0⟩ = ⟨1η⟩2 ,

which is holomorphic. Using this as a seed, the MHV form factor obtained is given by

⟨g+
1 . . . g−

i . . . g+
n |(W †

η Gµνηµην
⊥)|0⟩ = ⟨iη⟩4

⟨η1⟩⟨12⟩ . . . ⟨nη⟩ ,

which is holomorphic.
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where qµ = pµ
1 + pµ

2 . Applying either a |1̂] or a |2̂] single line shift to this result, we see
that this form factor goes to zero as z−1 for z → ∞. The reason is that the numerator
is independent of z, so it is better behaved than the naive argument above would suggest.
Since the numerator is simply a function of |η] there is no z-dependence under any choice
of one-line shift. This can already be seen in the one point form factor in eq. (2.17), where
the numerator does not introduce any z dependence.

We can therefore compute the Nn−1MHV gluon form factor with any number of external
legs using a single-line shift or a two-line shift.5 We find the same expression in both cases:

Fg−
η [g− . . . g−] = q · η

[η1][12] . . . [nη] , (4.15)

where the numerator is the result of contracting /q|η][η| with the projector Pη+ .
As above, both forms lead to a simple relation between the MHV and Nn−1MHV gluon

form factors and the scalar MHV and MHV ones:

Fg−
η [g−g+ . . . g+] = Fϕ

η [ϕg+ . . . g+] ⟨1η⟩
2

q · η
, (4.16a)

Fg−
η [g−g− . . . g−] = Fϕ

η [ϕg− . . . g−] q · η[1η]2 . (4.16b)

4.3 NkMHV structure

Now we investigate the structure of the helicity form factors at the NkMHV level for generic
k. We focus on the form factor associated with the operator interpolating a negative helicity
gluon and a state containing n gluons where k + 1 of them have negative helicity:

FNkMHV(n)
η ≡ Fg−

η [ g− . . . g−︸ ︷︷ ︸
k+1

g+ . . . g+︸ ︷︷ ︸
n−k−1

] . (4.17)

The arguments below does not depend on the gluon ordering. The recursion relation induced
by the single-line shift allows to write this form factor in terms of an amplitude with nA
gluons, kA of them with minus helicity, and a form factor with nF gluons and kF − 1 of them
with negative helicity. The structure of the recursion relation implies that n = nA + nF − 2
and k = kA +kF − 1, since the internal propagator absorbs two legs, and one must necessarily
be associated with a negative helicity gluon.

Consider the MHV form factor, and therefore k = 0 and kA + kF = 1. Since the MHV
structure of the amplitudes requires kA ≥ 1, we necessarily have kF = 0 and indeed the only
required form factor is the MHV one. Moreover, kA = 1 is only allowed to be non-zero due to
the special kinematics of three point amplitudes with complex momentum. We therefore have
nA = 3 and thus n = nF +1, which is indeed the result used to compute the MHV form factors.

At the NMHV level, k = 1 and the two solutions (kF , kA) are either (0, 2) or (1, 1). In
the first case, the decomposition is in terms of an MHV form factor and an MHV amplitude.
In the second, an NMHV form factor is required, but again forcing a three point amplitude
and therefore a lower point NMHV form factor. At level k, there is a sum of contributions,

5Shifting |1̂⟩ and |n̂] makes two-line shift calculations simpler, but not as simple as the single-line shift.
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starting from an NkMHV amplitude with an MHV form factor, and ending on a 3-point
amplitude and an n − 1 point NkMHV form factor.

For k close to n − 1, the recursion relation gets simpler again, as we have seen above.
Indeed, for k = n− 1, the requirement is kA + kF = nA + nF − 2. This can only be satisfied
for kF = nF − 1 and kA = nA − 1, which corresponds to an Nn−1MHV form factor and
a 3-point amplitude, again as shown in the derivation of the explicit formula above. For
k = n− 2, the two contributions come from Nn−1MHV form factors with MHV amplitudes
and an Nn−2MHV form factor with a 3-point amplitude. This leads to a CSW-like expansion
where the MHV and Nn−1MHV form factors are determined in a very simple manner from
their lower points and the three point amplitudes, and act as building blocks in order to
construct form factors that are their neighbor in k.

4.4 All-line shift constructability

For completeness, we will now argue that an all-line shift can be used to construct the helicity
form factors. Note that in comparison with the all-line shift recursion relations for amplitudes
studied in [50], these form factors will depend on the “reference spinor,” since in our case
here that spinor corresponds to the null vector that defines the physical Wilson line direction.

Specifically, we can show that NkMHV form factors decay as z−k at large z. The
single-line shift allows us to write the form factor as

FNkMHV(n)
η =

∑
ÂNkAMHV(nA) × 1

P 2 × F̂NkF MHV(nF )
η , (4.18)

where the sum is over different channels is implicit and the “hat” indicates dependence on
the complex parameter controlling the deformation from the single line shift. Using this
representation of the amplitude, we can now perform an all-line shift

|̃i] = |i] + zci|η] . (4.19)

The constants ci are such that momentum is preserved under the shift, so
∑

i ci|i⟩[η| = 0
when the sum runs over all momenta, but nonvanishing whenever the sum runs over any
other subset of momenta. Under this shift, the NkMHV amplitude scales as z−k at large k,
while the propagator 1/P 2 scales as z−1 [60]. Using the fact that the MHV form factor is a
holomorphic function of the angle brackets, it scales as z0. Since k = kA + kF + 1 (taking
into account that the 3-point amplitude counts as k = −1), one can see by induction that
the NkMHV form factor indeed behaves as z−k at large z. One can verify this explicitly
taking the form in eq. (4.15), which indeed scales as zn−1. This behavior implies the existence
of bonus relations among form factors [76].

5 Outlook

In this work, we studied the form factors associated with collinear Wilson line dressed
operators, which are ubiquitous in the factorization of the soft and collinear modes in gauge
theories. We presented a novel recursive approach to computing these important objects. Our
methods lead to a powerful computational tool allowing us to build the n-point form factor
starting from the free theory wavefunctions. The recursion relation presented in section 2.5
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provides an efficient strategy based on deriving the n-point form factors using the n− 1-point
form factors and on-shell amplitudes as input building blocks. This is accomplished by relying
on a single-shift of an external momentum into the complex plane in a specific way that
avoids the poles from eikonal factors. This provides a new way to compute such objects
with respect traditional methods, and leads to novel representations of the helicity form
factors. We presented examples for both QED in section 3 and for QCD in section 4. The
non-vanishing form factors with the maximal number of same-helicity gluons are denoted
MHV and Nn−1MHV form factors, and they have a very simple form, reminiscent of the
simplicity of MHV and MHV amplitudes.

The new perspective that this work introduces opens up many directions for future
exploration. The most obvious direction is to push the calculation to higher points, perhaps
by automating the recursion relations. This would provide a cross check of the state of
the art 1 → 4 calculations [21, 22], while also producing a new representation of the result
that could both be more numerically efficient and also would provide the input to even
higher point calculations via recursion. In another direction, it would be very exciting to
apply these methods to explore the (rapidity) renormalization group evolution of these form
factors [77–82]. For example, one could attempt to extend the on-shell methods of [83]
in order to extract the rapidity anomalous dimensions of the helicity form factors. The
on-shell perspective on the renormalization group for amplitudes has been shown to make
the non-renormalization structure of these calculations transparent, while also reducing the
complexity of some multi-loop calculations [84]. First steps have been accomplished recently
in [85], and we are optimistic that extending these approaches would yield valuable insight
into the nature of the Wilson line form factors. Another interesting avenue would be to
explore the consequences for energy correlators. On the one hand, the formalism presented
provides the seed to compute the n-point energy correlator [86–89] of a quark or gluon jet.
On the other hand, it would be interesting to compare the structure provided by the MHV
classification with the underlying CFT structure of such correlators, both in QCD and N = 4
Super Yang Mills [90, 91]. Finally, we speculate that the techniques developed here could
also be applied to study gravity, with relevance to previous explorations such as [92–107].

Understanding the properties of gauge theories from an on-shell perspective has led to
remarkable insights into the structure of the amplitudes and led to a multitude of new insights
into the nature of these theories. Extending these approaches to form factors broadens the
scope of these developments to a new class of pseudo-observables. We are optimistic that
this paper only begins to scratch the surface of what can be learned using these techniques.
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A From form factors to splitting functions

In this appendix, we show how to derive splitting functions using helicity form factors as inputs.
Take ⟨α| = ⟨p1 . . . pn| in eq. (2.1) to be the state with all momenta collinear to some direction
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kµ
1 , pi ·k1 ∼ θ2 with θ ≪ 1. A scattering amplitude for this collinear configuration factorizes as

A(p1 . . . pn, k2 . . . km) =
∑
O
⟨p1 . . . pn|W †

ηO|0⟩A(q, k2 . . . km) +O(θ2) , (A.1)

with
∑

i p
µ
i = qµ, see e.g. [12, 109]. The sum runs over all operators that interpolate with

the external state. At leading order in θ2 and in QCD, due to fermion number conservation
there is no sum if the hard parton is a fermion, and a sum over helicities if it is a gluon.
From this expression, one can express the usual splitting functions P̂ ss′

1...n as defined in e.g. [52]
in terms of the form factors FO

η :(
2g

2

q2

)n−1

P̂ ss′
1...n = FOs

η (p1 . . . pn)
(
FOs′

η (p1 . . . pn)
)†
, (A.2)

where the initial parton splits into partons 1 to n with momenta pi and qµ =
∑

i pi. The
possible spin interference appears since the same final state might be interpolated by operators
with different helicity, denoted by Os and Os′ . The only non-trivial interference occurs for
the gluon operators. Note also that the MHV sector does not interfere.

Let us discuss the kinematics relevant for the splitting functions. Following the discussion
in section 2, we assume the sector to be collinear to some null direction η̄µ. The opposite
lightcone direction is denoted by ηµ, and both define a basis of spinors as in eq. (2.8). The
energy fractions xi are defined as

xi = 2pi · η
4Q = ⟨ηi⟩[iη]

⟨η|q|η] , (A.3)

where Q is the total energy of the state, and therefore ⟨η|q|η] = 4Q(x1 + . . . xn) = 4Q.
The invariants sij = (pi + pj)2 can also be written in terms of an overall scale Q2 times

dimensionless quantities:

sij = ⟨ij⟩[ji] = 4Q2xixj
1 − cos θij

2 ≡ 4Q2xixjzij , (A.4)

where zij is zero in the strict collinear limit. Poles in zij and in xi become collinear and soft
singularities, respectively. Note that the spinor products ⟨iη⟩ and [iη] are little group covariant
and therefore carry important information about the helicity of the particle, crucial when
considering processes at the amplitude level or observables sensitive to the helicity structure.

1 → 2 splitting functions. In the following, we derive the Altarelli-Parisi splitting
functions [14] from the form factors, both as a cross check and also to fix notation and
concepts. The simplest object we can consider is the form factor of a vector current. The
leading order contribution for a state containing a quark pair and a gluon is given by

⟨f−i f̄
+
j g

−
A |ψ̄γµψ|0⟩ = −g

√
2TA

ij

( [12]
[31][32]⟨1|γµ|2] + 1

[31]⟨3|γµ|2]
)
. (A.5)

This expression is given by the sum of two Feynman diagrams, corresponding to radiating a
gluon from each fermion leg. The first term of the expression contains a collinear pole whenever
the gluon is collinear to either quark, while the second term only has a pole when the gluon is
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collinear to the quark with the same helicity. Also, while the first term has a soft singularity
for p3 → 0, the second term is finite. Let us assume that the negative helicity quark and
gluon are collinear to some direction η̄µ. The leading behavior of the form factor is given by

⟨f−i f̄
+
j g

−
A |ψ̄γµψ|0⟩ ≃ Ff−

η (1−3−)⟨f−i f̄
+
j |ψ̄γµψ|0⟩ = g

√
2TA

ij

⟨η|1 + 3|η]
[31][3η] ⟨η̄|γµ|2] . (A.6)

The hard process is replaced by ⟨η̄|γµ|2]. This has the interpretation that the non-collinear
sectors cannot resolve the individual momenta that are collinear to the hard particle. Similarly,
the Wilson line direction in the form factor is given by any non-collinear momenta, in this case
p2. Note that the form factor has a spinor index like a wavefunction, but is not contracted
with the amplitude since there is a |η⟩⟨η̄| projector in between, as in eq. (2.9). Therefore,
one can use ⟨η̄| as an “external wavefunction” for the hard process.

The splitting functions for a quark splitting into a quark and a gluon are recovered by
squaring the form factors in eqs. (3.7) and (3.8) with the appropriate normalization (an extra
1/Q factor in order to make the splitting function dimensionless)

= CF

(
1
x2

+ x2
1
x2

)
, (A.7)

and the splitting functions Pqg and Pgq are obtained by writing x1 = x, x2 = 1 − x and
x1 = 1 − x, x2 = x, respectively. The gluon splitting into gluons, is given by

= 2CA

(
1

x(1−x) + x3

1−x+ (1−x)3

x

)
. (A.8)

Note that this splitting belongs to a minus helicity gluon form factor, but at this level
the inclusive splitting function cannot discriminate between both helicities. Note also that
the contributions coming from the MHV form factor contain singularities only when the
plus helicity gluon goes to zero, while the Nn−1MHV form factor contains singularities at
both x → 0 and x → 1.

The form factor of a gluon with a qq̄ state is obtained by shifting any of the quarks,
and given by Fg−

η (f−1 f̄
+
2 ) = ⟨1η⟩2

⟨12⟩⟨η|q|η] , which leads to

= TR

(
x+ (1 − x)2

)
. (A.9)

1 → 3 fermion splitting function. We now reproduce the 1 → 3 splitting function
for a quark going to a quark and a quark-anti-quark pair of a different flavor. The form
factor is given by

Ff−
η (f−1 f

′−
2 f̄ ′+3 ) = 1

⟨η|q|1]

(
⟨2η⟩2⟨η|q|η]

⟨23⟩⟨η|2 + 3|η] + ⟨η|q|3]2

s123[23]

)
. (A.10)

The two terms come from the product of the onshell quantities A[f ′−f̄ ′+g±]Ff−
η [f−g∓] and

A[f−f̄+f̄ ′+]Ff−
η [f−], respectively. The square of the form factor

|F|2 = 1
tr(ηq1q)

(
s2

2ηs
2
qη

s23(s2η + s3η)2 + tr(ηq3q)2

s2
123s23

+ sqη

s123s2
23(s2η + s3η)

(tr(ηq32)2 + c.c.)
)
,

(A.11)
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leads to a representation for the splitting function equivalent to the usual one [51]. We used
sab = 2pa · pb, with q = p1 + p2 + p3, and

tr(abcd) = ⟨a|bcd|a] = 2(gµνgρσ − gµρgνσ + gµσgρν + iϵµνρσ) aµbνcρdσ . (A.12)

1 → 3 gluon splitting function. As a final example, we compute the unpolarized 1 → 3
splitting function for a gluon going to three gluons. The splitting function was originally
derived in [15, 52]. We first compute the different three-point form factors for the operator
that corresponds to a negative helicity gluon, starting with the one point form factor

Fg−
η [1−] = ⟨1η⟩

[1η] , (A.13)

and the color ordered three point amplitudes

A[1−2−3+] = ⟨12⟩3

⟨23⟩⟨31⟩ , and A[1+2+3−] = [12]3

[23][31] . (A.14)

We are using an obvious shorthand Fg−
η [1−] = Fg−

η [g−1 ], etc. The color ordered two-point
NMHV form factor Fg−

η [1−2−] can be decomposed into lower points via either a |1̂]-shift or
a |2̂]-shift. Either way, only one diagram contributes

Fg−
η [1−2−] = A[1−2̂−P̂+] 1

⟨12⟩[21]F
g−
η [−P̂−] = − ⟨ηqη]

[η1][12][2η] , (A.15)

where qµ denotes the sum of all momenta in the form factor, qµ = pµ
1 +pµ

2 , and ⟨ηqη] ≡ ⟨η|(/p1 +
/p2)|η] = 2η·q. The MHV form factor Fg−

η [1−2+] can be computed from a |2̂⟩-shift, and one gets

Fg−
η [1−2+] = − ⟨η1⟩3

⟨12⟩⟨2η⟩
1

⟨ηqη] . (A.16)

The permutation Fg−
η [1+2−] can also be computed via a |1̂⟩-shift, but it is unnecessary

since the U(1) decoupling forces the relation Fg−
η [12] = −Fg−

η [21] for any choice of helicities,
see section 4.

Using the two point form factors and the four point amplitudes, one can construct the
three-point form factors. The Nn−1MHV one can be computed by shifting either momenta
and is given by

Fg−
η [1−2−3−] = − ⟨ηqη]

[η1][12][23][3η] . (A.17)

As explained in section 4, the most efficient way to obtain the expression is by shifting
either |1̂] or |3̂], since color ordering implies that one only diagram is nonvanishing. Similar
reasoning applies to the MHV form factor. It is given by

Fg−
η [1−2+3+] = − ⟨η1⟩4

⟨η1⟩⟨12⟩⟨23⟩⟨3η⟩
1

⟨ηqη] . (A.18)

The other form factors, Fg−
η [1+2−3+] and Fg−

η [1+2+3−], are given by the same expression
but with ⟨η2⟩4 and ⟨η3⟩4 in the numerator, respectively. One can check that they obey the
U(1) decoupling identity Fg−

η [123] + Fg−
η [231] + Fg−

η [312] = 0 due to the Schouten identity.
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For the NMHV form factor, there is a single independent color configuration, given
by e.g. Fg−

η [1+2−3−]:

Fg−
η [1+2−3−] = 1

⟨ηqηq3]

(
⟨η2⟩⟨ηqη2⟩2

⟨12⟩⟨1η3]⟨η(1 + 2)η] + 1
s123

⟨ηq1]3

[12][23]

)
. (A.19)

One can check that the form factor Fg−
η [1−2−3+] obtained via recursion relations is equal

to Fg−
η [3+2−1−] as determined by the U(1) decoupling relations. Similarly, Fg−

η [1−2+3−]
can be computed by shifting |2̂⟩,

Fg−
η [1−2+3−] = ⟨ηqη] ⟨3η⟩3

⟨23⟩⟨ηq1]⟨2η1]⟨η(2 + 3)η] + ⟨ηqη] ⟨η1⟩3

⟨12⟩⟨ηq3]⟨2η3]⟨η(1 + 2)η]

+ 1
s123

⟨ηq2]4

[12][23]⟨ηqη]⟨ηq3]⟨ηq1] . (A.20)

A powerful cross check is provided again by the U(1) decoupling, since this form factor is indeed
not independent and 0 = Fg−

η [1−2+3−] + Fg−
η [2+3−1−] + Fg−

η [3−1−2+]. We numerically
verified that this is the case.

With this, the splitting function is given by the sum of the squares of these form factors:

⟨P̂g1g2g3⟩ = 4C2
As123

( ∣∣F [1−2−3−]
∣∣2 +

∣∣∣F [1+2−3−]
∣∣∣2 +

∣∣∣F [1−2+3−]
∣∣∣2 +

∣∣∣F [1−2−3+]
∣∣∣2

+
∣∣∣F [1+2+3−]

∣∣∣2 +
∣∣∣F [1−2+3+]

∣∣∣2 +
∣∣∣F [1+2−3+]

∣∣∣2 + 5 perm.
)
. (A.21)

We have verified numerically that this result agrees with the literature [15, 52].
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