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We report on a major milestone in the construction of logarithmically accurate final-state parton showers,
achieving next-to-next-to-leading-logarithmic (NNLL) accuracy for the wide class of observables known as
event shapes. The key to this advance lies in the identification of the relation between critical NNLL
analytic resummation ingredients and their parton-shower counterparts. Our analytic discussion is
supplemented with numerical tests of the logarithmic accuracy of three shower variants for more than
a dozen distinct event-shape observables in Z → qq̄ and Higgs → gg decays. The NNLL terms are
phenomenologically sizeable, as illustrated in comparisons to data.
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Parton showers are essential tools for predicting QCD
physics at colliders across a wide range of momenta from
the TeV down to the GeV regime [1–4]. In the presence of
such disparate momenta, the perturbative expansions of
quantum field theories have coefficients enhanced by large
logarithms of the ratios of momentum scales. One way of
viewing parton showers is as automated and immensely
flexible tools for resumming those logarithms, thus cor-
rectly reproducing the corresponding physics.
The accuracy of resummations is usually classified based

on terms with the greatest logarithmic power at each order
in the strong coupling (leading logarithms or LL), and then
towers of terms with subleading powers of logarithms at
each order in the coupling (next-to-leading logarithms or
NLL, NNLL, etc.). Higher logarithmic accuracy for parton
showers should make them considerably more powerful
tools for analyzing and interpreting experimental data at
CERN’s Large Hadron Collider and potential future col-
liders. The past years have seen major breakthroughs in
advancing the logarithmic accuracy of parton showers, with
several groups taking color-dipole showers from LL to
NLL [5–18]. There has also been extensive work on

incorporating higher-order splitting kernels into showers
[19–29] and understanding the structure of subleading-
color corrections, see e.g. Refs. [6,30–41].
Here, for the first time, we show how to construct parton

showers with NNLL accuracy for the broad class of event-
shape observables at lepton colliders, like the well-known
Thrust [42,43] (see, e.g., Refs. [44–65] for calculations at
NNLL and beyond). This is achieved by developing a novel
framework that unifies several recent developments, on
(a) the inclusive structure of soft-collinear gluon emission
[58,66] up to third order in the strong coupling αs; (b) the
inclusive pattern of energetic (“hard”) collinear radiation up
to order α2s [67,68]; and (c) the incorporation of soft
radiation fully differentially up to order α2s in parton
showers, ensuring correct generation of any number of
well-separated pairs of soft emissions [29]. These are all
NNLL after integration of the respective (a) double and (b),
(c) single logarithmic phase spaces.
We will focus the discussion on the eþe− → Z → qq̄

process, with the understanding that the same arguments
apply also to H → gg. Each event has a set of emissions
with momenta fkig and we work in units where the centre-
of-mass energy Q≡ 1. We will examine the probability
ΣðvÞ that some global event shape, VðfkigÞ, has a value
VðfkigÞ < v. Event-shape observables have the property
[69] that for a single soft and collinear emission k,
VðkÞ ∝ kte−βobsjyj, where kt (y) is the transverse momentum
(rapidity) of k with respect to the Born event direction and
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βobs depends on the specific observable, e.g., βobs ¼ 1 for
Thrust. Whether considering analytic resummation or a
parton shower, for v ≪ 1 we have

ΣðvÞ ¼ F exp

�
−4

Z
dkt
kt

Z
1

kt

dzPgqðzÞMðkÞ

×
αeff
2π

ΘðVðkÞ > vÞ
�
; ð1Þ

with PgqðzÞ ¼ CFf½1þ ð1 − zÞ2�=zg and MðkÞ a function
that accounts for next-to-leading order matching, with
MðkÞ → 1 for kt → 0. The exponential is a Sudakov form
factor, encoding the suppression of emissions with
VðkÞ > v, cf. the gray region of Fig. 1. It brings the LL
contributions to lnΣ, terms αnsLnþ1 with L ¼ ln v, as well
as NLL (αnsLn), NNLL (αnsLn−1), etc., contributions. The
function F accounts [69] for the difference between the
actual condition VðfkigÞ < v and the simplified single-
emission boundary VðkÞ < v that is used in the Sudakov. It
starts at NLL.
In Eq. (1), the effective coupling, αeff , can be understood

as the intensity of gluon emission, inclusive over possible
subsequent branchings of that emission and corresponding
virtual corrections. We write it as

αeff ¼αs

�
1þ αs

2π
ðK1þΔK1ðyÞþB2ðzÞÞþ

α2s
4π2

K2

�
; ð2Þ

with αs ≡ αMS
s ðktÞ and here the rapidity y ¼ ln z=kt.

K1 ¼ ½ð67=18Þ − ðπ2=6Þ�CA − ð10=9ÞnfTR (often called
KCMW) [71] is required for NLL accuracy and the
remaining terms for NNLL. ΔK1ðyÞ is zero in the resum-
mation literature, nonzero at central rapidities for certain
showers, and vanishes for y → ∞ [29]; B2ðzÞ affects the
hard-collinear region and tends to zero in the soft limit,
z → 0. In analytic resummation it is generally included as a
constant multiplying δð1 − zÞ [44]. It has been calculated in

specific resummation schemes in Refs. [67,68], but is not
yet known for the showers that we consider, which also do
not yet include the relevant triple-collinear dynamics. At
NNLL,K2 is relevant in the whole soft-collinear region and
also so far calculated only for analytic resummation
[58,66]. Through shower unitarity, αeff is relevant also in
the Sudakov-veto region of Fig. 1, i.e., the region above the
red line, even though that region contains no emissions or
subsequent branching.
It is straightforward to see from Eq. (1) that terms up to

αnsLn−1 in lnΣðvÞ depend only on the integrals of ΔK1ðyÞ
and B2ðzÞ,

ΔKint
1 ≡

Z
∞

−∞
dyΔK1ðyÞ; Bint

2 ≡
Z

1

0

dz
PgqðzÞ
2CF

B2ðzÞ: ð3Þ

One of the key observations of this Letter is that as long as a
parton shower correctly generates double-soft emissions in
the soft-collinear region (as required for NNLL handling of
event shape sensitivity to multiple emissions), it is then
possible and sufficient to identify NNLL relations between
the ΔKint

1 , Bint
2 , and K2 in event-shape resummation and the

corresponding constants needed for a parton shower. This
holds even if the shower does not reproduce the full
relevant physics at second order in the large-angle and
hard-collinear regions and at third order in the soft-collinear
region. This is in analogy with the fact that including the
correct K1 constant is sufficient to obtain NLL accuracy
even without the real double-soft contribution.
In the next few paragraphs we will identify the relations

between individual resummation and shower ingredients
(neglecting terms beyond NNLL), and then show how they
combine to achieve overall NNLL shower accuracy. Let us
start by recalling how the Oðα2sÞ terms of Eq. (2) come
about. Consider a Born squared matrix element, B{̃, for
producing a gluon {̃ (multiplied by αs=2π). Schematically
the Oðα2sÞ terms involve the single-emission virtual cor-
rection V {̃ and an integral over a real {̃ → ij branching phase
space and matrix element, dΦijj{̃Rij [both multiply
ðαs=2πÞ2]. The key difference between a resummation
calculation and a parton shower lies in the phase-space
mapping that is encoded in dΦijj{̃. For example, in many
resummation calculations g{̃ → qiq̄j splitting implicitly
conserves transverse momentum kt;iþj ¼ kt{̃ and rapidity
yiþj ¼ y{̃ with respect to the particle that emitted {̃ [58,66].
A parton shower (PS) will organize the phase space
differently, and in a way that does not conserve these
kinematic quantities. The difference can be represented as
an effective drift in one or more kinematic variables x (e.g.,
x≡ ln kt, x≡ y) of post- versus prebranching kinematics.
The average drifts, ðαs=2πÞhΔxi, are represented as arrows
in Fig. 1. For a soft-collinear (SC) gluon k{̃, they are
independent of the kinematics of k{̃. For the CFCA and
CFnf color channels they read

FIG. 1. Schematic representation of the Lund plane [70]. A
constraint on an event shape that scales as kte−βobsjyj implies that
shower emissions above the red line are mostly vetoed. At NNLL,
one mechanism that modifies this constraint is that subsequent
branching may cause the effective transverse momentum or
rapidity to shift, as represented by the arrows.
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hΔxi ¼ lim
{̃→SC

1

B{̃

Z
dΦPS

ijj{̃Rij × ðxiþj − x{̃Þ: ð4Þ

For the C2
F channel, one replaces xiþj with the x value of

that of i and j that corresponds to the larger shower
ordering variable (vPS ¼ kte−βPSjyj). Note that the sign of
hΔyi depends on the sign of y{̃ (below, y{̃ > 0).
To understand the relation of hΔyi with ΔKint

1 , observe
that a drift to large absolute rapidities depletes radiation at
central rapidities. However the shower must correctly
reproduce the total final amount of radiation integrated
over any rapidity window. That can only be achieved with a
value for ΔKint

1 that generates just enough extra central
radiation to compensate for the drift-induced depletion.
Quantitatively, the following relation can be proven
(Supplemental Material [72], Sec. 1)

ΔKint;PS
1 ¼ 2hΔyi: ð5Þ

As a numerical check, Table I shows the result of ΔKint;PS
1

as determined in Ref. [29], compared to hΔyi as determined
for this paper. The results are given for three variants [5,29]
of the PanGlobal shower. The PGβ¼0 and PGsdf

β¼0 showers
have βPS ¼ 0 and differ in how the splitting probabilities
are assigned between the two dipole ends. For all three
variants, one observes good agreement between ΔKint;PS

1

and 2hΔyi.
Turning to B2ðzÞ, the corresponding physics differen-

tially in z cannot yet be included in our showers, insofar as
they lack triple-collinear splitting. However, we can use a
constraint analogous to Eq. (5) to determine the correct
Bint;PS
2 , starting from the NLO 1 → 2 calculations of

Refs. [67,68], which conserve the light-cone momentum-
fraction z ¼ mtey ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2t þm2

p
ey. Specifically (Ref. [72],

Sec. 2),

Bint;PS
2 ¼ Bint;NLO

2 − hΔln zi; ð6Þ

with

hΔln zi ¼ hΔyi þ hΔlnmt
i ¼ hΔyi þ hΔln kti −

β0π
2

12
: ð7Þ

The β0 ¼ ð11CA − 4nfTRÞ=6 term arises from the
relation between the drifts in mt and kt, which is
shower-independent [58,66,72]. (In the CF channel one
defines the drift from the single parton with larger kte−βPSjyj,
so mt ¼ kt and hΔlnmt

iCF
¼ hΔln ktiCF

.) Note that Eq. (6)
does not constrain the functional form of BPS

2 ðzÞ. To do so
meaningfully would require a shower that incorporates
triple-collinear splitting functions. For event-shape NNLL
accuracy, any reasonable functional form for BPS

2 ðzÞ is
equally valid, as long as it has the correct integral. We
choose the simple ansatz BPS

2 ðzÞ ∝ z, normalized so as to
satisfy Eq. (6). Note that in an analytical resummation,
Eq. (1) would use Bint;resum

2 ¼ Bint;NLO
2 þ ðβ0π2=12Þ [the

ðβ0π2=12Þ term has the same origin as in Eq. (7)].
The next ingredient that we need is K2, which, for

resummations, has been calculated in two schemes [58,66].
We adopt the scheme in which transverse momentum is
conserved and consider the amount of radiation in a (fixed-
rapidity) transverse-momentum window ktb < kt < kta,
where kt is the postbranching pair transverse momentum.
The total amount of radiation in the window should
be the same in the resummation and the shower. In the
shower specifically, one should account for the ln kt drifts
through the lower and upper edges of the window, which
involve αs at scales ktb and kta respectively. Defining
Tnðktb; ktaÞ ¼

R kta
ktb

ðdkt=ktÞ½αns ðktÞ=ð2πÞn�, that yields the
constraint

Kresum
2 T3ðktb; ktaÞ ¼ KPS

2 T3ðktb; ktaÞ

þ
�
α2sðktbÞ
4π2

−
α2sðktaÞ
4π2

�
hΔln kti; ð8Þ

where the second line accounts for the drift contributions at
the edges. Setting

KPS
2 ¼ Kresum

2 − 4β0hΔln kti; ð9Þ

ensures Eq. (8) is satisfied for all NNLL terms
α2þn
s lnnkt1=kt2, noting that for 1-loop running,

2nβ0Tnþ1ðktb; ktaÞ ¼ ½αnsðktbÞ − αns ðktaÞ�=ð2πÞn: ð10Þ

The final element in the connection with analytic resum-
mation is F , which encodes the effect of emissions near the
boundary VðkÞ ∼ v. The shower generates this factor
through the interplay between real and virtual emission.
However F PS differs from F resum because of relative drifts

TABLE I. The ΔKint;PS
1 and hΔyi and hΔln kti coefficients,

including the relevant leading-NC color factors (2CF ¼
CA ¼ 3 and nf ¼ 5). The errors on ΔKint;PS

1 are systematic
dominated and estimated only to within a factor of order 1.
Their impact on the NNLL tests below is an order of magnitude
smaller than the accuracies of those tests.

Shower Color ð1=4πÞΔKint;PS
1 ð1=2πÞhΔyi ð1=2πÞhΔln kti

PGsdf
β¼0

CF 0 0.000018(39) −1.953481ð1Þ
CA 0 0.000002(2) 1.162602(2)
nfTR 0 −0.0000003ð3Þ −0.1048049ð3Þ

PGβ¼0 CF 0.04967(3) 0.049576(8) −1.964624ð6Þ
CA 0.0323(5) 0.032107(4) 1.174900(4)
nfTR 0.0040(1) 0.003962(1) −0.104655ð1Þ

PGβ¼1
2

CF 1.6725(5) 1.672942(9) −1.749920ð5Þ
CA 0.0172(11) 0.015303(5) 1.172042(5)
nfTR 0.0535(2) 0.053476(1) −0.094205ð1Þ
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across the boundary (Ref. [72], Sec. 3)

F PS

F resum ¼ 1þ 8CFT2ðv; vhcÞ
�
hΔyi −

1

βobs
hΔln kti

�
; ð11Þ

with vhc ≡ v½1=ð1þβobsÞ�. Concentrating on the right-hand half
of the Lund plane in Fig. 1, it encodes the fact that a
positive y drift increases the number of events that pass the
constraint VðfkgÞ < v, because emissions to the left of the
boundary move to the right of the boundary, and vice versa
for a positive ln kt drift.
We are now in a position to write the ratio of ΣðvÞ in the

shower as compared to a resummation. Assembling the
contributions discussed above into Eq. (1) yields

ΣPSðvÞ
ΣresumðvÞ − 1 ¼ 8CF

�
−hΔyiT2ðv; 1Þ

þ ½hΔyi þ hΔln kti�T2ðvhc; 1Þ

þ hΔln kti
�

1

βobs
T2ðv; vhcÞ − T2ðvhc; 1Þ

�

þ
�
hΔyi −

1

βobs
hΔln kti

�
T2ðv; vhcÞ

�
¼ 0;

ð12Þ

up to NNLL. The lines account, respectively, for the shower
contributions to ΔK1, B2, K2 [using Eq. (10) and then
trading rapidity and kt integrations] and F . The fact that
they add up to zero ensures shower NNLL accuracy for
arbitrary global event shapes. The last line necessarily
involves real double-soft emissions in the soft-collinear
region, thus tying the other three lines (which just involve
the Sudakov nonemission probability) to the shower’s
double-soft emissions, as anticipated below Eq. (3). The
connection with the ARES NNLL formalism [51,52,58] is
discussed in Ref. [72], Sec. 4.
Besides the analytic proof, we also carry out a series of

numerical verifications of the NNLL accuracy of several
parton showers with the above elements, using a leading-
color limit 2CF ¼ CA ¼ 3. These tests help provide con-
fidence both in the overall picture and in our specific
implementation for final-state showers. Figure 2 shows a
suitably normalized logarithm of the ratio of the cumulative
shower and resummed cross sections, for a specific
observable, the two-to-three jet resolution parameter, y23,
for the Cambridge jet algorithm [73] in Z → qq̄ (left) and
H → gg (right) processes. Focusing on the PGsdf

βPS¼0 shower,
the plots show results with various subsets of ingredients. A
zero result indicates NNLL accuracy. Only with 2-jet NLO
matching [74], double-soft corrections [29], B2 [67,68]
terms, 3-loop running of αs [75,76], K2 contributions
[58,66], and the drift correction of this Letter does one
obtain agreement with the known NNLL predictions

[52,77]. For this shower and observable, the drift correction
dominates.
Tests across a wider range of observables and shower

variants are shown in Fig. 3 for a fixed value of
λ ¼ αs ln v ¼ −0.4. With the drifts and all other contribu-
tions included, there is good agreement with the NNLL
predictions [45–52,58,61,77].
Earlier work on NLL accuracy had found that the

coefficients of NLL violations in common showers tended

FIG. 2. Test of NNLL accuracy of the PanGlobal (PGsdf
β¼0)

shower for the cumulative distribution of the Cambridge y23
resolution variable, compared to known results for Z → qq̄ [52]
(left) and H → gg [77] (right). The curves show the difference
relative to NNLL for various subsets of ingredients. Starting from
the red curve, DS additionally includes double soft contributions
and 2-jet NLO matching; 3l includes 3-loop running of αs and
the Kresum

2 term. B2 in the legend refers only to its resummation
part, Bint;NLO

2 . Including all effects (blue line) gives a result that is
consistent with zero, i.e., in agreement with NNLL.

FIG. 3. Summary of NNLL tests across observables and shower
variants. Results consistent with zero (shown in green) are in
agreement with NNLL. The observables correspond to the event
shapes used in Ref. [5] and they are grouped according to the
power (βobs) of their dependence on the emission angle. All
showers that include the corrections of this Letter agree
with NNLL.
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to be moderate for relatively inclusive observables like
event shapes [5]. In contrast, here we see that non-NNLL
showers differ from NNLL accuracy with coefficients
of order one. That suggests a potential non-negligible
phenomenological effect.
Figure 4 compares three PanGlobal showers with

ALEPH data [78] using Rivet v3 [79], illustrating
the showers in their NLL and NNLL variants, with

αMS
s ðMZÞ ¼ 0.118 for both. We use 2-jet NLO matching

[74], and the NODS color scheme [6], which guarantees
full-color accuracy in terms up to NLL for global event
shapes. Our showers are implemented in a pre-release of
PanScales [80] v0.2.0, interfaced to Pythia v8.311 [3] for
hadronization, with nonperturbative parameters tuned to
ALEPH [78,81] and L3 [82] data (starting from the Monash
13 tune [83], cf. Ref. [72] Sec. 5; the tune has only a modest
impact on the observables of Fig. 4). The impact of the
NNLL terms is significant and brings the showers into good
agreement with ALEPH data [78], both in terms of
normalization and shape. Some caution is required in
interpreting the results: given that the logarithms are not
particularly large at LEP energies, NLO 3-jet corrections
(not included) may also play a significant role and should
be studied in future work. Furthermore, the PanGlobal
showers do not include finite quark-mass effects. Still,
Fig. 4 suggests that NNLL terms have the potential to
resolve a long-standing issue in which a number of dipole
showers (including notably the Pythia 8 shower, but also the
PanGlobal NLL shower) required an anomalously large
value of αsðmZÞ≳ 0.130 [83] to achieve agreement with
the data.
The parton showers developed here are expected to

achieve NNLL (leading-color) accuracy also for nonglobal
event shapes such as hemisphere or jet observables, and
αnsLn−1 (NSL) accuracy [54,62–64,68,85,86] for the soft-
drop [87,88] family of observables, in the limit where either
their zcut parameter is taken small or βSD > 0. (We have not

carried out corresponding logarithmic-accuracy tests,
because the small zcut limit renders them somewhat more
complicated than those of Figs. 2 and 3. In the case of
nonglobal event shapes, there exist no reference calcula-
tions.) This is in addition to the NSL accuracy for energy
flow in a slice [89–91] and αnsL2n−2 (NNDL) accuracy for
subjet multiplicities [92] that was already achieved with the
inclusion of double-soft corrections [29].
Next objectives in the programme of bringing higher

logarithmic accuracy to parton showers should include
incorporation of full triple-collinear splitting functions (as
relevant for experimentally important observables such as
fragmentation functions), the extension to initial-state
radiation, and logarithmically consistent higher-order
matching for a variety of hadron-collider processes. The
results presented here, a significant advance in their own
right, also serve to give confidence in the feasibility and
value of this broad endeavor.
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