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We consider resonant wavelike dark matter conversion into low-frequency radio waves in the Earth’s
ionosphere. Resonant conversion occurs when the dark matter mass and the plasma frequency coincide,
defining a range mDM ∼ 10−9–10−8 eV where this approach is best suited. Owing to the nonrelativistic
nature of dark matter and the typical variational scale of the Earth’s ionosphere, the standard linearized
approach to computing dark matter conversion is not suitable. We therefore solve a second-order boundary-
value problem, effectively framing the ionosphere as a driven cavity filled with a positionally varying
plasma. An electrically small dipole antenna targeting the generated radio waves can be orders of
magnitude more sensitive to dark photon and axionlike particle dark matter in the relevant mass range. This
Letter opens up a promising way of testing hitherto unexplored parameter space that could be further
improved with a dedicated instrument.
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Introduction—The nature of dark matter (DM) remains a
puzzle that requires an explanation from beyond the
standard model (SM) of particle physics. Wavelike dark
matter such as an axionlike particle (ALP) or a massive
dark photon (DP) are well-motivated candidates [1–10].
Dark photons can naturally have a small coupling to SM
photons through kinetic mixing [11], while ALPs can have
a CP-odd coupling to two SM photons [12–16]. These two
couplings are the subject of intensive theoretical and
experimental work [17–21].
A massive DP could arise from an additionalUð1Þ gauge

group broken by a compact scalar field, a possibility
strongly motivated by UV completions of the SM [22–
32]. The small kinetic mixing with the SM photon enables
an extensive experimental program to search for DP dark
matter (see, e.g., [33] for a summary of ongoing efforts and
experimental optimization strategies). UV completions of
the SM also often predict the existence of many ALPs
[34–37]. These typically couple to photons, with a coupling
strength that can be as large as gaγγ ∼ 10−12 GeV−1 [38,39].
ALPs areCP-odd pseudoscalars, while DPs are CP-even

vectors, making these quite different dark matter candi-
dates. However, they nevertheless often share similar
phenomenology. We consider a possible signal due to
resonant conversion of wavelike dark matter into radio

waves in the Earth’s ionosphere that is common to both
ALPs and DPs. For the DP signal to exist, the presence of a
plasma is sufficient, while for ALPs, a background mag-
netic field must also be present. Both conditions are met in
the weakly ionized plasma of the Earth’s ionosphere, where
the Earth’s small magnetic field (B ∼ 0.1 G) is present.
Nonresonant signatures using the Earth and its ionosphere
at lower masses have been studied previously [40–43].
The structure of the interactions between either DPs or

ALPs and the SM photon are such that in a medium the
mass eigenstates no longer correspond to the vacuum mass
eigenstates. When the plasma frequency of the medium and
the vacuum mass of the DM are degenerate, resonant level
crossing between one state and the other can occur. For
DPs, this condition has been exploited to study resonant
conversion in various astrophysical environments such as
the solar corona [44,45], neutron star magnetospheres [46],
or the intergalactic medium [47–50]. For ALPs, this effect
has also been studied in many astrophysical environments
[51–60].
In this Letter we propose searching for the conversion

of dark matter in the Earth’s own ionosphere. This appro-
ach has two advantageous properties: the ionosphere is
well-studied and monitored (see Ref. [61] and references
therein), allowing for a precise understanding of the con-
version and propagation of the resulting radio waves; the
peak plasma frequency in the ionosphere is ωpl ∼ 10−8 eV,
such that the mass range that can be probed is comple-
mentary to existing searches (see Fig. 1). Further-
more, galactic noise is reflected by the ionosphere, such
that the dominant noise source is either anthropogenic or
atmospheric, both of which can be monitored or even
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partially mitigated. Several features of the ionosphere
might allow for an improved ability to distinguish true
signals from spurious ones. For example, there is a daily
modulation due to solar irradiation varying the free-electron
number density, introducing a spectral feature in the true
signal that would be absent for certain spurious signals.
Finally, for ALP searches, the dependence on the transverse
component of the magnetic field makes the amplitude of
the signal latitude-dependent. Such variations are the
subject of constant monitoring [62], and would have to
be accounted for when analyzing collected data.
The idea to resonantly convert dark photons into photons

in the Earth’s ionosphere was sketched in Ref. [63].
However, Ref. [63] uses an unsuitable approach to estimate
the signal, introduced a somewhat arbitrary boost from
gravitational focusing to enhance it, and did not conduct an
accurate noise analysis, which, as we show, is crucial, and
thus did not produce a compelling sensitivity curve.
Furthermore, a different measurement technique using a
stratospheric balloon was proposed whereas we discuss a
ground based antenna. Finally, Ref. [63] did not consider
axion conversion.
DM conversion to electromagnetic waves—The DP-

photon system is described by the Lagrangian

L ⊃ −
1

4
ðFμνFμν − 2ϵF0

μνFμν þ F0
μνF0μνÞ

þ 1

2
m2

A0A0
μA0μ − AμJ μ; ð1Þ

where primed quantities are associated to the DP, while the
axion Lagrangian is

L ⊃ −
1

4

�
FμνFμν − 2∂μa∂μaþ gaγγaFμνF̃μν

�

−
1

2
m2

aa2 − AμJ μ: ð2Þ
The parameter ϵ is the kinetic mixing between the photon
and the DP, gaγγ is the axion-photon coupling, while mA0

and ma are the masses of DPs and axions, respectively. For
convenience, we define the effective dark matter-photon
coupling geff ¼ ϵ for DPs and geff ¼ gaγγjBT j=ma for
axions [64].
The evolution of the photon and dark matter system can

be modeled as a two-state system of equations. While in
vacuum the photon and dark matter are mass eigenstates, so
no mixing can occur, in a medium such as a weakly coupled
plasma, the equations of motion of the two states become
coupled through their interaction strength geff . The form of
the coupled equations implies that as long as geff is
nonzero, resonant two-level crossing can occur when the
effective photon mass (i.e., the plasma mass) and the dark
matter mass are equivalent. If the spatial variations of the
plasma frequency occur on scales much larger than the de
Broglie wavelength of the DM [66], then the conversion
probability is well-approximated by the Landau-Zener

formula [45,69–72]

Pα→γ ≃ ðfpolπÞ
g2effmα

vr

���� ∂ lnω
2
pl

∂r

����
−1

rc

; ð3Þ

where α ¼ A0; a depends on the dark matter candidate
being considered. The polarization fraction is fpol ¼ 2=3, 1
for the DP and axion, respectively. The probability is
evaluated at the conversion radius rc, where ωplðrcÞ ¼ mα.
The velocity factor vr ∼ v0 is the radial component of the
dark matter velocity, with v0 ≃ 220 km=s the galactic
dispersion velocity of dark matter [73].
Unfortunately, for the Earth’s ionosphere—which we

model in what follows using a Chapman profile [74,75]
(see the Supplemental Material [76])—and for the dark
matter masses of interest, the plasma frequency varies on a
scale similar to or smaller than the de Broglie wavelength of
the dark matter. As a result, the WKB approximation used
in the derivation of the simplified formula in Eq. (3) does
not hold, and the full second-order differential equations
must be solved. We use the fact that the ionosphere plasma
density has a strong gradient only along the z direction to
model the problem as a driven one-dimensional cavity filled
with plasma, where the driver is the DM field. This is a
very good approximation due to Snell’s law [80]: light rays
in the ionosphere naturally experience strong refraction
toward the z direction as they propagate downward.
Therefore, considering only propagation vertical with
respect to the ground is good up to corrections that we
expect to be suppressed by the ratio h=R⊕ ∼ 10−2 (with h
being the width of the ionosphere), which sets the differ-
ence between the gradients along the parallel and orthogo-
nal directions to the ground.
Thus, the equation to be studied reduces to

�
∂
2
z þ ω2 −

ω2ω2
plðzÞ

ω2 þ iνcω

�
ETðzÞ ¼ iωgeffm2

αVðzÞ; ð4Þ

where ET is the sourced electric field, V ¼ A0
TðaB̂TÞ for

the DP (axion), νc is the electron-ion collision frequency in
the ionosphere, and z is the height into the ionosphere
as measured from the Earth’s surface. The form of
Eq. (4) shows the salient aspects of the problem. When
ð∂2z þ ω2ÞET ¼ m2

αET ¼ ω2
plET , we see that there is a

resonance as expected. Meanwhile, when ω2
pl ≪ ω2, we

obtain the evolution of the transverse electric field as a
function of z, subject to the appropriate boundary con-
ditions. For the wavelengths of interest, the Earth acts as a
good conductor [40], so that the field should vanish within
one skin depth of the surface. Similarly, the plasma of the
ionosphere behaves as a conductor for frequencies below
ωpl, imposing that the field should also vanish deep inside
the plasma. In the above, we are neglecting the effect of
the Earth’s magnetic field on the motion of the electrons
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in the plasma. Including it introduces modifications of
the equation of motion by the cyclotron frequency,
ΩB ∼ 10−9ðB=0.1GaussÞ eV. While this frequency is sim-
ilar to the dark matter masses we consider, we have
numerically verified that its impact is limited. Particularly,
it does not affect the magnitude of the signal strength.
However, for specific dark matter masses (depending on the
detector’s location), cyclotron motion suppresses one polari-
zation of the signal fields. This effect could possibly aid in
detection, so it is important to account for it when analyzing
experimental data.
This 1D model breaks down if we consider DM waves

with de Broglie wavelengths comparable to the Earth’s
radius, i.e., for mα ≲ 10−10 eV. In practice, for DM masses
belowmα ≲ 10−9 eV, our model of the ionosphere is a poor
approximation of the real data [81], so we restrict ourselves
to only considering masses above this value. A technical
description of our solution to Eq. (4) is provided in the
Supplemental Material. Our formalism automatically takes
into account all the wave propagation phenomena, includ-
ing reflection, absorption, and refraction of the electro-
magnetic (EM) waves that ultimately arrive at the detector.
In fact, because of these propagation effects, the amplitude
of the wave at detection point is expected to be different
than the amplitude at the resonance point, as we now show.
Figure 2 shows the EM energy density in natural units as

a function of the ionosphere height for a fixed effective
coupling, geff ¼ 10−10. Different colors correspond to
different DM masses; the solid curves are our numerical
results, while the horizontal dashed lines show the result of
applying Eq. (3). We notice that the resonant peak of each
of our curves never deviates too much from the naive
calculation. However, the energy density near the Earth’s
surface, which is the quantity relevant for detection, is
typically suppressed with respect to the peak. This is a
particularly important effect for large masses, ∼10−8 eV,
whose resonant conversion condition is only satisfied for
the largest electron densities near the peak of the Chapman
profile. An EM wave produced at that height undergoes
many reflections as it propagates through the plasma, and
its amplitude is therefore attenuated before it reaches the
detector. The effect is less evident for smaller masses,
where reflection plays only a minor role. The EM energy
density near the Earth’s surface is approximated to within
∼10% by the following sigmoid function:

ρEM ≃
3 × 10−23 eV4ð geff

10−10
Þ2

1þ exp
h
−
�

mα

2.3×10−9 eV − 3.8
�i ; ð5Þ

which is valid for masses in the range
10−9 ≤ mα=eV≲ 3 × 10−8. The lower boundary is defined
by the aforementioned issues with the validity of our
calculation, while the upper bound is defined by the peak
values of the free-electron number density. Ultimately, a

detailed analysis taking into account the detector location
and time could be performed using real ionosphere data
[81], and could extend our sensitivity to smaller masses. We
leave this to future work.
Signal detection—The EM radiation incident on the

Earth’s surface has a characteristic wavelength λ ≫ 1 m,
and can therefore be detected with an electrically small
antenna [82]. The signal approximated by Eq. (5) is the
total integrated energy density. For detection, the more
relevant quantity is the spectral density of the EM radiation
SsigðωÞ ∼ ρEMfðωÞ. The function fðωÞ is approximately a
Maxwell-Boltzmann distribution [73,83], normalized asR
dωfðωÞ ¼ 1, which describes the frequency dispersion

of the signal inherited from the dark matter velocity
distribution. The signal is spread between frequencies
ω∈mα½1; 1þ σ2=2�, where σ ∼ 200 km=s is the DM
dispersion velocity. The bandwidth of the signal is thus
narrow, and can be approximated as having an effective
quality factor of Qsig ∼ 106. Full details are given in the
Supplemental Material.
The dominant noise at the relevant frequencies is from

processes external to the receiver antenna. It is primarily a
combination of atmospheric and anthropogenic radiation.
As a fiducial noise level, we adopt the anthropogenic noise
expected at a quiet rural location given by the International
Telecommunication Union; see, for example, curve C of
Fig. 2 of Ref. [84]. This can be characterized by the
characteristic temperature of the Gaussian component of
the noise

TNðνÞ ≃ 6.1 × 107
	
MHz
ν



2.75

K: ð6Þ

Under the assumption of an equivalent loss-free receiving
antenna, this temperature can then be converted to a noise
spectral density (see, e.g., Ref. [82] for a pedagogical
derivation),

SNðνÞ ≃
32

3
π2ν2TNðνÞ: ð7Þ

A real device might contend not only with this typical
anthropogenic noise, but also with impulsive components
at particular frequencies. Furthermore, atmospheric noise
leads to a temperature that can vary significantly depending
on weather conditions, sometimes exceeding typical
anthropogenic noise by many orders of magnitude [84].
Both the signal and the noise are external to the antenna,

and are filtered by the same transfer function determining
the antenna response, which therefore does not enter the
signal-to-noise ratio (SNR). As a result, the optimal SNR is
given by [67,85]

SNR ¼
�
tint

Z
∞

0

dν

	
SSig

SN



2
�
1=2

; ð8Þ
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where tint is the integration time of our measurement
(assumed to be larger than the dark matter coherence time).
If the receiver antenna is critically coupled, it will have a
narrow bandwidth owing to the small radiation resistance.
As a result, it is optimal to couple the antenna to an
additional in-series resistance. In the Supplemental
Material we provide a simple model for an RLC circuit
that allows to broaden the frequency response up to
Δν ∼MHz. The circuit we describe, and the value of its
parameters, are similar to those of very old radio missions

[86,87]. The result of this broad frequency response is that
in order to scan an e-fold in DM mass te, an integration
time at a given frequency of tint ∼ te min ð1; 2πΔν=mαÞ is
required.
Figure 1 shows our fiducial prospects (solid purple lines)

for a broadband search with 1MHz bandwidth, for 10 h and
1 yr of e-fold time, for both DPs (left panel) and axions
(right panel). In both panels light gray regions are excluded
by cosmological and astrophysical probes [2,49,50,88–92].
Observations by LOFAR of the solar corona are shown in
light orange [45] in both panels. For the DP panel the dark
gray region is excluded by haloscopes. The dashed black
lines indicate possible future sensitivity of DM radio [93],
as well as LOFAR sensitivity to direct absorption by the
antenna. For the axion panel, the dark gray regions are
excluded by terrestrial DM experiments ABRA [94] and
SHAFT [95], while the light yellow region is excluded by
CAST [96].
In case anthropogenic noise can be mitigated, we also

show a dashed purple curve corresponding to the typical
atmospheric noise in Western Australia around midday on a
winter day (see Fig. 18 of Ref. [84]), assuming a single
hour of e-fold time.
Conclusion—In this Letter we proposed a new way to

detect bosonic dark matter with mass mα ≲ 3 × 10−8 eV,
i.e., below the typical maximum ionosphere plasma fre-
quency. When DM waves pass through the ionosphere of
the Earth, they can get resonantly converted into radio
waves that are detectable by a small meter-scale antenna.

FIG. 1. Left: prospective reach in the DP kinetic mixing ϵ by considering a broadband search with integration time of 10 h and 1 yr
(solid curves), for both a 95% (purple) and 5σ (green) discovery potential. The dashed curves indicate the reach of 1 h of observation
when measurements are limited by atmospheric noise rather than anthropogenic noise. The light gray region is excluded by
cosmological probes [2,49,50], the dark gray region by haloscopes, while the light gold region is excluded by LOFAR observation of the
solar corona [45]. The dashed black lines indicate possible future reach of LC-resonator DM radio [93], as well as LOFAR reach for DP
direct detection in the antenna [97]. Right: projections for the axion to photon coupling gaγγ , with the same experimental setup used for
the DP. The light gray region is excluded by astrophysical probes [88–92], the dark gray regions by terrestrial DM experiments ABRA
[94] and SHAFT [95], while the light yellow region is excluded by CAST [96]. The limits from LOFAR observation of the solar corona
[45] are shown in light orange.

FIG. 2. EM energy density in natural units as a function of the
distance z from the Earth surface. Different colors correspond to
different DM masses, while the effective coupling is always fixed
to geff ¼ 10−10. The solid curves are our full numerical solutions,
while the horizontal dashed lines correspond to the Landau-Zener
conversion probability from Eq. (3).
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Our projections suggest many decades of DP parameter
space could be probed in just a few hours of observation
time. The small magnetic field of the Earth affects the
sensitivity to axions, but we nevertheless project that a
similar setup can improve on the best laboratory con-
straints, and possibly the best astrophysical constraints.
The present work naturally leaves open questions to be

addressed in future studies. Fully characterizing the elec-
trical and physical properties of the antenna should be
done. The location of the antenna can also be optimized,
depending on anthropogenic and atmospheric noise, as well
as the Earth’s magnetic field for the axion. With a precise
detector design and location in mind, a more realistic
modeling of the ionosphere plasma frequency using avail-
able data [81] can be performed, accounting for diurnal
variations. The diurnal variation can be used to look for
modulations of our signal, which could be useful in
discriminating it from backgrounds. Moreover, our signal
can be characterized by the propagation of the signal
radially toward the Earth’s surface, k ∝ r̂, imprinted by
the large plasma gradient in this direction.
Finally, given the simplicity, (small) size, and low cost of

the proposed antennas, we envision the use of an array of
antennas operating in an interferometric mode. Placing N
antennas ∼Oð10Þ km from each other can improve the
signal-to-noise ratio by at least a factor

ffiffiffiffi
N

p
. The coherence

length of the DM signal would exceed the antenna
separation, while anthropogenic noise varies more over
these scales, thus the potential for improvement is greater if
it enables the subtraction of anthropogenic noise sources.
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