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A R T I C L E I N F O A B S T R A C T

Editor: M. Doser The first search for the lepton number violating decay 𝐾+ → 𝜋0𝜋−𝜇+𝑒+ and lepton flavour violating decays 
𝐾+ → 𝜋0𝜋+𝜇−𝑒+, 𝐾+ → 𝜋0𝜋+𝜇+𝑒− has been performed using a dataset collected by the NA62 experiment at 
CERN in 2016–2018. Upper limits of 2.9 × 10−10, 3.1 × 10−10 and 5.0 × 10−10, respectively, are obtained at 90% 
CL for the branching ratios of the three decays on the assumption of uniform phase-space distributions.

0. Introduction

In the Standard Model (SM), neutrinos are strictly massless due to the 
absence of right-handed chiral states. The discovery of neutrino oscilla-

tions requires non-zero neutrino masses, making it possible to discrim-

inate experimentally between the Dirac and Majorana neutrino. Strong 
evidence for the Majorana nature of the neutrino would be provided by 
the observation of lepton number violating (LNV) processes, including 
kaon decays [1–4]. Furthermore, lepton flavour violating (LFV) kaon 
decays are expected in new physics models involving ALPs and 𝑍′ par-

ticles [5,6].

The NA62 experiment at CERN collected a large sample of 𝐾+ decays 
to lepton pairs using dedicated trigger lines in 2016–2018. This dataset 
has been analysed to establish stringent upper limits on the LNV decays 
𝐾+ → 𝜋−(𝜋0)𝑒+𝑒+ [7], 𝐾+ → 𝜋−𝜇+𝜇+ [8] and 𝐾+ → 𝜋−𝜇+𝑒+ [9], LFV 
decays 𝐾+ → 𝜋+𝜇−𝑒+ and 𝜋0 → 𝜇−𝑒+ [9], and the 𝐾+ → 𝜇−𝜈𝑒+𝑒+ de-

cay violating either LN or LF conservation depending on the flavour of 
the emitted neutrino [10]. The first search for the LNV decay 𝐾+ →
𝜋0𝜋−𝜇+𝑒+ and LFV decays 𝐾+ → 𝜋0𝜋+𝜇±𝑒∓ performed with the above 
dataset is reported here.

1. Beam, detector and data sample

The NA62 beamline and detector layout [11] used in 2018 is shown 
schematically in Fig. 1. An unseparated secondary beam of 𝜋+ (70%), 
protons (23%) and 𝐾+ (6%) is created by directing 400 GeV/𝑐 protons 
extracted from the CERN SPS onto a beryllium target in spills of 4.8 s 
duration. The beam central momentum is 75 GeV/𝑐, with a momentum 
spread of 1% (rms).

Beam kaons are tagged with a time resolution of 70 ps by a differen-

tial Cherenkov counter (KTAG), which uses nitrogen gas at 1.75 bar pres-

sure contained in a 5 m long vessel as radiator. Beam particle positions, 
momenta and times (to better than 100 ps resolution) are measured by 
a silicon pixel spectrometer consisting of three stations (GTK1,2,3) and 
four dipole magnets forming an achromat. A toroidal muon sweeper 
(scraper, SCR) is installed between GTK1 and GTK2. A 1.2 m thick steel 

collimator (COL) with a 76 × 40 mm2 central aperture and 1.7 × 1.8 m2

outer dimensions is placed upstream of GTK3 to absorb hadrons from 
upstream 𝐾+ decays; a variable-aperture collimator of 0.15 × 0.15 m2

outer dimensions was used up to early 2018. Inelastic interactions of 
beam particles in GTK3 are detected by an array of scintillator ho-

doscopes (CHANTI). A dipole magnet (TRIM5) providing a 90 MeV/𝑐

horizontal momentum kick is located in front of GTK3. The beam is de-

livered into a vacuum tank evacuated to a pressure of 10−6 mbar, which 
contains a 75 m long fiducial volume (FV) starting 2.6 m downstream of 
GTK3. The beam angular spread at the FV entrance is 0.11 mrad (rms) in 
both horizontal and vertical planes. The probability of beam kaon decay 
in the FV is 12.5%. Downstream of the FV, undecayed beam particles 
continue their path in vacuum.

Momenta of charged particles produced in 𝐾+ decays in the FV are 
measured by a magnetic spectrometer (STRAW) located in the vacuum 
tank downstream of the FV. The spectrometer consists of four track-

ing chambers made of straw tubes, and a dipole magnet (M) located 
between the second and third chambers that provides a horizontal mo-

mentum kick of 270 MeV/𝑐 in a direction opposite to that produced by 
TRIM5. The momentum resolution is 𝜎𝑝∕𝑝 = (0.30 ⊕ 0.005 ⋅ 𝑝)%, with 
the momentum 𝑝 expressed in GeV/𝑐.

A ring-imaging Cherenkov detector (RICH) consisting of a 17.5 m 
long vessel filled with neon at atmospheric pressure (with a Cherenkov 
threshold of 12.5 GeV/𝑐 for pions) provides particle identification, 
charged particle time measurements with a typical resolution of 70 ps, 
and the trigger time. Two scintillator hodoscopes (CHOD), which in-

clude a matrix of tiles and two planes of slabs arranged in four quadrants 
located downstream of the RICH, provide trigger signals and time mea-

surements with 200 ps precision.

A 27𝑋0 thick quasi-homogeneous liquid-krypton (LKr) electromag-

netic calorimeter is used for particle identification and photon detection. 
The calorimeter has an active volume of 7 m3, segmented in the trans-

verse direction into 13248 projective cells of 2 ×2 cm2 size, and provides 
energy resolution 𝜎𝐸∕𝐸 = (4.8∕

√
𝐸⊕ 11∕𝐸 ⊕ 0.9)%, with 𝐸 expressed 

in GeV. To achieve hermetic acceptance for photons emitted in 𝐾+ de-

cays in the FV at angles up to 50 mrad from the beam axis, the LKr 
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Fig. 1. Schematic side view of the NA62 beamline and detector used in 2018.

calorimeter is complemented by annular lead glass detectors (LAV) in-

stalled in 12 positions inside and downstream of the vacuum tank, and 
two lead/scintillator sampling calorimeters (IRC, SAC) located close 
to the beam axis. An iron/scintillator sampling hadronic calorimeter 
formed of two modules (MUV1,2) and a muon detector (MUV3) con-

sisting of 148 scintillator tiles located behind an 80 cm thick iron wall 
are used for particle identification.

The data sample analysed is obtained from 8.9 × 105 SPS spills 
recorded in 2016–2018. The typical beam intensity was increased dur-

ing the data collection time from 1.3 × 1012 to 2.2 × 1012 protons per 
spill. The latter value corresponds to a 500 MHz mean instantaneous 
beam particle rate at the FV entrance, and a 3.7 MHz mean 𝐾+ decay 
rate in the FV. The main NA62 trigger line is designed for the collection 
of the very rare 𝐾+ → 𝜋+𝜈�̄� decay [12]. The present analysis is based on 
the dedicated multi-track (MT), electron multi-track (𝑒MT) and muon 
multi-track (𝜇MT) trigger lines operating concurrently with the main 
trigger line [13,14], and downscaled typically by factors 𝐷MT = 100, 
𝐷𝑒MT = 8 and 𝐷𝜇MT = 8. The downscaling factors were varied during 
data-taking to accommodate the changes in the beam intensity.

The low-level (L0) hardware trigger in all three trigger lines is based 
on RICH signal multiplicity and coincidence of signals in two opposite 
CHOD quadrants. The 𝜇MT (𝑒MT) line additionally requires a minimum 
energy deposit of 10 (20) GeV in the LKr calorimeter. The 𝜇MT line 
also requires a signal in an outer MUV3 detector tile (i.e. one of the 
140 tiles not adjacent to the beam pipe). The high-level (L1) software 
trigger involves beam 𝐾+ identification by the KTAG, reconstruction of 
a negatively-charged STRAW track and, only for the 𝜇MT trigger line, 
fewer than three in-time signals in LAV detectors 2–11. For signal-like 
samples characterised by LKr energy deposit well above 20 GeV, the 
measured inefficiencies of the CHOD (STRAW) trigger conditions are 
typically at the 1% (5%) level, while those of the RICH, MUV3, KTAG 
and LKr conditions are of (10−3).

Monte Carlo simulations of particle interactions with the detector 
and its response are performed using a software package based on 
the Geant4 toolkit [15]. In addition, accidental activity is simulated 
and the response of the trigger lines is emulated.

2. Event selection

The rates of the possible signal decays 𝐾+ → 𝜋0𝜋𝜇𝑒 (denoted 𝐾𝜋𝜋𝜇𝑒

below) are measured with respect to the rate of the normalisation decay 
𝐾+ → 𝜋+𝑒+𝑒− (denoted 𝐾𝜋𝑒𝑒 below), providing partial cancellation of 
detector and trigger inefficiencies. The 𝐾𝜋𝜋𝜇𝑒 decay candidates are col-

lected with the MT, 𝑒MT and 𝜇MT trigger lines, while the 𝐾𝜋𝑒𝑒 decay 
candidates are collected with the MT and 𝑒MT lines only. The following 
principal selection criteria are common for the 𝐾𝜋𝜋𝜇𝑒 and 𝐾𝜋𝑒𝑒 candi-

dates.

• Three-track vertices are reconstructed by extrapolating STRAW 
tracks into the FV, taking into account the measured residual mag-

netic field in the vacuum tank, and selecting triplets of tracks consis-

tent with originating from the same point. Exactly one vertex should 
be present in the event. The total charge of the three tracks should 
be 𝑞 = +1. The longitudinal position of the vertex, 𝑧vtx, should be 
within the FV. The momenta of the tracks forming the vertex should 
exceed 6 GeV/𝑐. Track trajectories through the STRAW chambers 
and extrapolated positions in the CHOD and LKr calorimeter front 
planes should be within the respective geometrical acceptances. 
Tracks should be separated from each other by at least 15 mm in 
each STRAW chamber plane to suppress photon conversions, and at 
least 200 mm in the LKr front plane to reduce the effects of shower 
overlaps.

• Track times are initially defined using the CHOD information. The 
vertex time is initially evaluated as the average of the track CHOD 
times. Signals in the RICH geometrically compatible with the tracks, 
and within 3 ns of the vertex time, are used to evaluate track RICH 
times. Track and vertex time estimates are then refined using the 
RICH information. Each track is required to be within 2.5 ns of the 
trigger time.

• No signals are allowed in the LAV detectors downstream of the 
reconstructed vertex position within 4 ns of the vertex time. This 
condition suppresses backgrounds with photons in the final state. 
Most importantly, the 𝐾+ → 𝜋+𝜋0𝜋0

D
, 𝜋0

D
→ 𝛾𝑒+𝑒− background to 

the 𝐾𝜋𝜋𝜇𝑒 decays is reduced by one order of magnitude.

• Particle identification is based on the ratio 𝐸∕𝑝 of the energy de-

posited in the LKr calorimeter (within 50 mm of the track impact 
point and within 10 ns of the vertex time) to the momentum mea-

sured by the spectrometer. Pion (𝜋±), muon (𝜇±) and electron 
(𝑒±) candidates are required to have 𝐸∕𝑝 < 0.85, 𝐸∕𝑝 < 0.2 and 
0.9 < 𝐸∕𝑝 < 1.1, respectively. An associated MUV3 signal within 
5 ns of the vertex time is required for muon candidates, while no 
such MUV3 signals are allowed for pion candidates.

The 𝐾𝜋𝑒𝑒 selection, identical to that of Ref. [10], includes the following 
additional criteria.

• The tracks forming the vertex should be identified as 𝜋+𝑒+𝑒−, ac-

cording to the above particle identification criteria.

• The total momentum of the three tracks, 𝑝vtx, should satisfy the 
condition |𝑝vtx −𝑝beam| < 2 GeV∕𝑐, where 𝑝beam is the peak value of 
the beam momentum. The total transverse momentum with respect 
to the beam axis should be below 30 MeV/𝑐. The quantity 𝑝beam and 
the beam axis direction, averaged over a few hours, are monitored 
throughout the data taking with fully reconstructed 𝐾+ → 𝜋+𝜋+𝜋−

decays.
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Fig. 2. Reconstructed 𝑚𝜋𝑒𝑒 spectra for data (with statistical errors) and simulated 
samples obtained with the 𝐾𝜋𝑒𝑒 selection. The normalisation region is shown 
with vertical arrows. The data events are not weighted; see Section 3 for details.

• The reconstructed 𝜋+𝑒+𝑒− mass, 𝑚𝜋𝑒𝑒, should be in the normal-

isation region defined as 470–505 MeV/𝑐2, accounting for the 
mass resolution of 1.7 MeV/𝑐2 and the radiative tail. The recon-

structed 𝑒+𝑒− mass should be 𝑚𝑒𝑒 > 140 MeV∕𝑐2 to suppress back-

grounds from the 𝐾+ → 𝜋+𝜋0 decay followed by 𝜋0
D
→ 𝑒+𝑒−𝛾 , 

𝜋0
DD

→ 𝑒+𝑒−𝑒+𝑒− and 𝜋0 → 𝑒+𝑒− decays. This leads to a relative 
acceptance reduction of 27%.

The following conditions are used to select the 𝐾𝜋𝜋𝜇𝑒 candidates.

• The tracks forming the vertex should be identified as 𝜋𝜇𝑒, according 
to the above particle identification criteria. Track charges should 
correspond to one of the three signal decays, denoted unambigu-

ously as the 𝜋−, 𝜇− and 𝑒− modes below.

• The 𝜋0 meson is reconstructed via the 𝜋0 → 𝛾𝛾 decay. Exactly two 
photon candidates are required, defined as reconstructed LKr en-

ergy deposit clusters within the geometrical acceptance, with en-

ergy above 2 GeV, within 5 ns of the vertex time, and separated by 
at least 150 mm from each other and from each track impact point 
in the LKr calorimeter front plane.

• The longitudinal coordinate of the “neutral vertex” is defined as-

suming a prompt 𝜋0 → 𝛾𝛾 decay: 𝑧N = 𝑧LKr−𝐷12
√
𝐸1𝐸2∕𝑚𝜋0 . Here 

𝐷12 is the distance between the photon candidates in the LKr trans-

verse plane at the 𝑧 coordinate 𝑧LKr; 𝐸1,2 are the photon candidate 
energies; 𝑚𝜋0 is the nominal 𝜋0 mass [16].

• Consistency of the three-track and neutral vertices is required: |𝑧vtx − 𝑧N| < 8 m. Vertex position resolutions evaluated with simu-

lations are 𝛿𝑧vtx = 0.25 m and 𝛿𝑧N = 1.8 m.

• Photon momenta are computed using photon candidate energies 
and positions in the LKr calorimeter transverse plane, assuming 
emission at the three-track vertex. The 𝜋0 momentum is computed 
as the sum of photon momenta, and the 𝜋0 energy is computed us-

ing the 𝜋0 mass.

• The total final-state momentum, 𝑝𝜋𝜋𝜇𝑒, should be consistent with 
the beam momentum: the difference, Δ𝑝 = 𝑝𝜋𝜋𝜇𝑒 − 𝑝beam, should 
satisfy the condition |Δ𝑝| < 3 GeV∕𝑐. The total transverse momen-

tum of the final-state particles with respect to the beam axis should 
be 𝑝𝑇 < 30 MeV∕𝑐.

• The reconstructed 𝜋0𝜋𝜇𝑒 mass, 𝑚𝜋𝜋𝜇𝑒, should be in the signal re-

gion 486–502 MeV/𝑐2, which accounts for the mass resolution of 
1.3 MeV/𝑐2 and non-gaussian tails.

3. Evaluation of the effective number of 𝑲+ decays

The reconstructed 𝑚𝜋𝑒𝑒 spectra obtained using the 𝐾𝜋𝑒𝑒 selection 
for the data, simulated signal and background samples are displayed in 
Fig. 2. Below the 𝑚𝜋𝑒𝑒 normalisation region, the background is mainly 
due to 𝐾+ → 𝜋+𝜋+𝜋− decays with two pions (𝜋±) misidentified as elec-

trons (𝑒±), and 𝐾+ → 𝜋+𝜋−𝑒+𝜈 decays with a pion (𝜋−) misidentified 
as an electron (𝑒−). In the 𝑚𝜋𝑒𝑒 normalisation region, 10975 decay can-

didates are observed in the data, with the background coming mainly 
from the 𝐾+ → 𝜋+𝜋0

D
, 𝜋0

D
→ 𝛾𝑒+𝑒− decay chain. This background is sup-

pressed by the selection condition 𝑚𝑒𝑒 > 140 MeV∕𝑐2, and contributes 
via double particle misidentification (𝜋+ → 𝑒+ and 𝑒+ → 𝜋+).

To account for the fact that the 𝜇MT trigger line is used to collect 
𝐾𝜋𝜋𝜇𝑒 candidates only, while the 𝑒MT and MT lines are used to collect 
both 𝐾𝜋𝜋𝜇𝑒 and 𝐾𝜋𝑒𝑒 candidates, a weight determined by the trigger 
downscaling factors is applied to each 𝐾𝜋𝑒𝑒 candidate in the data sample 
to evaluate the effective number of 𝐾𝜋𝑒𝑒 candidates for normalisation:

𝑤 =
1 −

(
1 − 1

𝐷𝑒MT

)(
1 − 1

𝐷𝜇MT

)(
1 − 1

𝐷MT

)
1 −

(
1 − 1

𝐷𝑒MT

)(
1 − 1

𝐷MT

) .

The weight quantifies the enhancement of the 𝐾+ flux provided by 
the 𝜇MT trigger line collecting 𝐾𝜋𝜋𝜇𝑒 candidates, and varies between 1.0 
and 2.9 depending on the trigger configuration. Each factor (1 − 1∕𝐷)
represents the probability for an event not to be collected by a trigger 
line due to the downscaling applied.

The effective number of 𝐾+ decays in the FV is computed as

𝑁𝐾 =
(1 − 𝑓 ) ⋅𝑁𝜋𝑒𝑒

𝜋𝑒𝑒 ⋅𝐴𝜋𝑒𝑒

= (1.97 ± 0.02stat ± 0.02syst ± 0.06ext) × 1012,

where 𝑁𝜋𝑒𝑒 = 21401 is the number of weighted 𝐾𝜋𝑒𝑒 candidates in the 
data sample; 𝜋𝑒𝑒 = (3.00 ±0.09) ×10−7 is the 𝐾𝜋𝑒𝑒 branching ratio [16]; 
𝐴𝜋𝑒𝑒 = (3.62 ±0.03syst) ×10−2 is the selection acceptance evaluated with 
simulations; and 𝑓 = 1.0 × 10−3 is the relative background contamina-

tion evaluated with simulations. The uncertainty in 𝐴𝜋𝑒𝑒 is estimated by 
varying the selection criteria. The statistical uncertainty in 𝑁𝐾 is due to 
the finite number of 𝐾𝜋𝑒𝑒 candidates, the systematic uncertainty is due 
to 𝐴𝜋𝑒𝑒, and the external uncertainty is due to 𝜋𝑒𝑒. The normalisation 
sample and the 𝑁𝐾 value are identical to those of Ref. [10].

4. Evaluation of the background to 𝑲𝝅𝝅𝝁𝒆 decays

Background to the 𝐾𝜋𝜋𝜇𝑒 decays is evaluated with simulations. The 
signal 𝑚𝜋𝜋𝜇𝑒 regions (486–502 MeV/𝑐2) are kept masked for the data 
until the background estimates are finalised. Backgrounds from single 
𝐾+ decays and from coincidences of pairs of 𝐾+ decays are consid-

ered. Simulated samples of pairs of decays occurring simultaneously are 
used in the latter case. Background is primarily due to particle misiden-

tification. A dedicated data-driven particle identification model [7] is 
employed in the simulations: 𝜋± and 𝑒± (mis)identification probabilities 
measured with 𝐾+ → 𝜋+𝜋+𝜋− and 𝐾+ → 𝜋0𝑒+𝜈 decay samples are ap-

plied as weights to simulated events. The misidentification probabilities 
are found to be (10−2) for 𝜋± → 𝑒± and 𝑒± → 𝜋± cases, and (10−6) for 
the 𝑒± → 𝜇± case, and depend on momentum [7,10]. The data-driven 
approach avoids Geant4-based modelling of the quantity 𝐸∕𝑝 sensitive 
to simulation of hadronic showers, and increases the effective simulated 
statistics. Background sources, their branching ratios [16] used for nor-

malisation, and misidentification processes involved in each case are 
listed in Table 1.

Estimation of the background from single 𝐾+ decays with the above 
method was validated to a 20% precision in a dedicated study [7]. To 
validate the description of the background from coincidences, a loose se-

lection is used, obtained from the signal selection by removing the Δ𝑝, 
𝑝𝑇 and LAV veto conditions, and inverting the 𝑚𝜋𝜋𝜇𝑒 condition. Momen-

tum difference (Δ𝑝) spectra for data and simulated samples obtained 
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Table 1

Sources of background to 𝐾𝜋𝜋𝜇𝑒 decays, decay branching ratios (or their products), and 
misidentification processes leading to each of the three signal final states. In some cases of 
misidentification, a 𝜋± → 𝜇±𝜈 decay in flight is additionally required. Cases with no misiden-

tification are classified as “direct” (a signal final state is produced directly), and “𝜋± DIF” 
(with a 𝜋± → 𝜇±𝜈 decay in flight leading to the signal final state).

Background source  𝜋0𝜋−𝜇+𝑒+ 𝜋0𝜋+𝜇−𝑒+ 𝜋0𝜋+𝜇+𝑒−

𝐾+ → 𝜋+𝜋0𝜋0
D

4.1 × 10−4 𝑒− → 𝜋− 𝑒− → 𝜇− 𝑒+ → 𝜋+ or 𝑒+ → 𝜇+

𝐾+ → 𝜋+𝜋0
D
𝛾 (𝐸∗

𝛾
> 10 MeV) 7.8 × 10−6 𝑒− → 𝜋− 𝑒− → 𝜇− 𝑒+ → 𝜋+ or 𝑒+ → 𝜇+

𝐾+ → 𝜋+𝜋0𝑒+𝑒− 4.2 × 10−6 𝑒− → 𝜋− 𝑒− → 𝜇− 𝑒+ → 𝜋+ or 𝑒+ → 𝜇+

𝐾+ → 𝜋0
D
𝜇+𝜈𝛾 (𝐸∗

𝛾
> 10 MeV) 7.4 × 10−7 𝑒− → 𝜋− – 𝑒+ → 𝜋+

𝐾+ → 𝜋0𝜋0
D
𝜇+𝜈 7.9 × 10−8 𝑒− → 𝜋− – 𝑒+ → 𝜋+

𝐾+ → 𝜋+𝜋0𝜋0, 𝜋0 → 𝑒+𝑒− 2.6 × 10−9 𝑒− → 𝜋− 𝑒− → 𝜇− 𝑒+ → 𝜋+ or 𝑒+ → 𝜇+

𝐾+ → 𝜋+𝜋0 +𝐾+ → 𝜋+𝜋+𝜋− 1.1 × 10−2 𝜋+ → 𝑒+ 𝜋+ → 𝑒+ 𝜋− → 𝑒−

𝐾+ → 𝜋+𝜋0𝜋0 +𝐾+ → 𝜋+𝜋+𝜋− 1.0 × 10−3 𝜋+ → 𝑒+ 𝜋+ → 𝑒+ 𝜋− → 𝑒−

𝐾+ → 𝜋0𝑒+𝜈 +𝐾+ → 𝜋+𝜋+𝜋− 2.8 × 10−3 𝜋+ DIF 𝜋− DIF 𝜋− → 𝑒−

𝐾+ → 𝜋0𝜇+𝜈 +𝐾+ → 𝜋+𝜋+𝜋− 1.8 × 10−3 𝜋+ → 𝑒+ 𝜋+ → 𝑒+ 𝜋− → 𝑒−

𝐾+ → 𝜋+𝜋0
D
+𝐾+ → 𝜇+𝜈 1.5 × 10−3 – – 𝑒+ → 𝛾

𝐾+ → 𝜋+𝜋0
D
+𝐾+ → 𝜋+𝜋0 5.0 × 10−4 𝑒− → 𝜋− 𝑒− → 𝜇− 𝜋+ DIF

𝐾+ → 𝜋+𝜋0𝜋0
D
+𝐾+ → 𝜇+𝜈 2.6 × 10−4 𝑒− → 𝜋− 𝑒− → 𝜇− direct

𝐾+ → 𝜋+𝜋0𝜋0
D
+𝐾+ → 𝜋+𝜋0 8.3 × 10−5 𝑒− → 𝜋− 𝑒− → 𝜇− 𝜋+ DIF

𝐾+ → 𝜋0𝜇+𝜈 +𝐾+ → 𝜋+𝜋0
D

8.0 × 10−5 𝑒− → 𝜋− 𝑒− → 𝜇− direct

𝐾+ → 𝜋0
D
𝜇+𝜈 +𝐾+ → 𝜋+𝜋0 8.0 × 10−5 𝑒− → 𝜋− 𝑒− → 𝜇− direct

𝐾+ → 𝜋+𝜋0𝜋0 +𝐾+ → 𝜋+𝜋0
D

4.2 × 10−5 𝑒− → 𝜋− 𝑒− → 𝜇− 𝜋+ DIF

𝐾+ → 𝜋0
D
𝑒+𝜈 +𝐾+ → 𝜋0𝜇+𝜈 2.0 × 10−5 𝑒− → 𝜋− – 𝑒+ → 𝜋+

𝐾+ → 𝜋0𝑒+𝜈 +𝐾+ → 𝜋0
D
𝜇+𝜈 2.0 × 10−5 𝑒− → 𝜋− – 𝑒+ → 𝜋+

𝐾+ → 𝜋0𝜇+𝜈 +𝐾+ → 𝜋+𝜋0𝜋0
D

1.4 × 10−5 𝑒− → 𝜋− 𝑒− → 𝜇− direct

𝐾+ → 𝜋0𝜇+𝜈 +𝐾+ → 𝜋0
D
𝜇+𝜈 1.3 × 10−5 𝑒− → 𝜋− – 𝑒+ → 𝜋+

𝐾+ → 𝜋0
D
𝜇+𝜈 +𝐾+ → 𝜋+𝜋0𝜋0 6.8 × 10−6 𝑒− → 𝜋− 𝑒− → 𝜇− direct

𝐾+ → 𝜋+𝜋−𝑒+𝜈 +𝐾+ → 𝜋0𝜇+𝜈 1.4 × 10−6 direct 𝜋− DIF 𝜋− → 𝑒−

𝐾+ → 𝜋0𝜋0𝑒+𝜈 +𝐾+ → 𝜋+𝜋+𝜋− 1.4 × 10−6 𝜋+ DIF 𝜋− DIF 𝜋− → 𝑒−

using the loose selection for each of the three 𝐾𝜋𝜋𝜇𝑒 modes are shown 
in Fig. 3 (left). The regions of large Δ𝑝 are populated exclusively by 
backgrounds from coincidences. The region Δ𝑝 > 10 GeV/𝑐 for the 𝜇−

mode (with the simplest background structure among the three modes) 
is used to normalise the backgrounds from coincidences, accounting for 
the mean probability of coincidence of two decays in the selection time 
window. The maximum deviation from unity of the ratios of data and 
simulated Δ𝑝 spectra (Fig. 3, left) and 𝑝𝑇 spectra (not shown) is found 
to be 40%.

Mass spectra for data and simulated background samples obtained 
with the full 𝐾𝜋𝜋𝜇𝑒 selection are shown in Fig. 3 (right). For the 𝜋−

and 𝑒− modes, background in the signal region is dominated by 𝐾+ →
𝜋+𝜋0𝜋0

D
decays with an undetected soft photon from the 𝜋0

D
→ 𝛾𝑒+𝑒− de-

cay, a 𝜋+ → 𝜇+𝜈 decay in flight, and 𝑒− → 𝜋− (𝑒+ → 𝜋+) misidentifica-

tion in the 𝜋− (𝑒−) case. The missing photon and neutrino lead to a neg-

ative mean Δ𝑝 value, as seen for the loose selection in Fig. 3 (left). For 
the 𝜇− mode, the 𝐾+ → 𝜋+𝜋0𝜋0

D
contribution is suppressed by the low 

𝑒− → 𝜇− misidentification probability. The background is smaller than 
for the other modes, and is dominated by coincidences of a 𝐾+ → 𝜋0𝑒+𝜈

and a 𝐾+ → 𝜋+𝜋+𝜋− decay, with a 𝜋− → 𝜇−𝜈 decay in flight and a 𝜋+

not reconstructed in the spectrometer.

Background estimates in the sidebands of the 𝑚𝜋𝜋𝜇𝑒 spectra, i.e. out-

side the signal regions in Fig. 3 (right), are compared to the observed 
numbers of data events for the full signal selection in Table 2. A signal 
selection without the LAV veto condition is considered as a cross-check; 
background estimates for this selection are also compared to the data in 
Table 2. In all cases, data and background estimates in the 𝑚𝜋𝜋𝜇𝑒 side-

bands agree within statistical uncertainties, which further validates the 
background evaluation procedure.

The final background estimates in the signal region are

𝐾+ → 𝜋0𝜋−𝜇+𝑒+ ∶𝑁bkg = 0.33 ± 0.07,

𝐾+ → 𝜋0𝜋+𝜇−𝑒+ ∶𝑁bkg = 0.004 ± 0.003,

𝐾+ → 𝜋0𝜋+𝜇+𝑒− ∶𝑁bkg = 0.29 ± 0.07.

Table 2

Background estimates in the sidebands of the 𝑚𝜋𝜋𝜇𝑒 spectra with their statistical 
uncertainties, compared to the numbers of events observed in the data sample.

Full signal selection Selection without the LAV veto

Mode Estimate Data Estimate Data

𝐾+ → 𝜋0𝜋−𝜇+𝑒+ 3.26 ± 0.30 3 23.7 ± 0.8 25

𝐾+ → 𝜋0𝜋+𝜇−𝑒+ 0.46 ± 0.14 1 0.85 ± 0.24 1

𝐾+ → 𝜋0𝜋+𝜇+𝑒− 3.22 ± 0.28 6 31.7 ± 1.0 36

The uncertainties quoted above include a statistical component due to 
the limited size of simulated samples, and systematic components ob-

tained by background studies as discussed above.

5. Results

Signal acceptances with their statistical uncertainties are evaluated 
with simulations, assuming uniform phase-space distributions:

𝐴(𝐾+ → 𝜋0𝜋−𝜇+𝑒+) = (4.07 ± 0.06) × 10−3,

𝐴(𝐾+ → 𝜋0𝜋+𝜇−𝑒+) = (3.76 ± 0.06) × 10−3,

𝐴(𝐾+ → 𝜋0𝜋+𝜇+𝑒−) = (2.37 ± 0.05) × 10−3.

The uncertainties quoted above are dominated by the limited size of the 
simulated samples. Single-event sensitivities, defined as signal branch-

ing ratios corresponding to the observation of one signal event, are 
found to be

SES(𝐾+ → 𝜋0𝜋−𝜇+𝑒+) = 1∕
(
𝑁𝐾 ⋅𝛾𝛾 ⋅𝐴(𝐾+ → 𝜋0𝜋−𝜇+𝑒+)

)
= (1.26 ± 0.05) × 10−10,

SES(𝐾+ → 𝜋0𝜋+𝜇−𝑒+) = 1∕
(
𝑁𝐾 ⋅𝛾𝛾 ⋅𝐴(𝐾+ → 𝜋0𝜋+𝜇−𝑒+)

)
= (1.37 ± 0.05) × 10−10,

SES(𝐾+ → 𝜋0𝜋+𝜇+𝑒−) = 1∕
(
𝑁𝐾 ⋅𝛾𝛾 ⋅𝐴(𝐾+ → 𝜋0𝜋+𝜇+𝑒−)

)
= (2.17 ± 0.09) × 10−10.
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Fig. 3. Left: momentum difference (Δ𝑝) spectra for data and simulated samples obtained using a loose 𝐾𝜋𝜋𝜇𝑒 selection without the Δ𝑝, 𝑝𝑇 and LAV veto conditions, 
and with the 𝑚𝜋𝜋𝜇𝑒 condition inverted. Right: mass (𝑚𝜋𝜋𝜇𝑒) spectra for data and simulated samples for the full selection; the signal 𝑚𝜋𝜋𝜇𝑒 regions, shown with arrows, 
5

are not masked. Top row: 𝐾+ → 𝜋0𝜋−𝜇+𝑒+ mode; middle row: 𝐾+ → 𝜋0𝜋+𝜇−𝑒+ mode; bottom row: 𝐾+ → 𝜋0𝜋+𝜇+𝑒− mode.
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Here 𝑁𝐾 = (1.97 ±0.07) ×1012 is the effective number of kaon decays in 
the FV (Section 3), and 𝛾𝛾 = (98.823 ± 0.034)% is the 𝜋0 → 𝛾𝛾 branch-

ing ratio [16]. The uncertainties in SES are dominated by those in the 
external parameter 𝜋𝑒𝑒 and in the signal acceptances.

After unmasking the signal mass regions, no events are observed in 
the data for any of the three signal modes (Fig. 3, right). Upper limits 
of the signal branching ratios at 90% CL are evaluated using the CLS

method [17]:

(𝐾+ → 𝜋0𝜋−𝜇+𝑒+) < 2.9 × 10−10,

(𝐾+ → 𝜋0𝜋+𝜇−𝑒+) < 3.1 × 10−10,

(𝐾+ → 𝜋0𝜋+𝜇+𝑒−) < 5.0 × 10−10.

6. Summary

The first search for the lepton number violating decay 𝐾+ →
𝜋0𝜋−𝜇+𝑒+ and lepton flavour violating decays 𝐾+ → 𝜋0𝜋+𝜇−𝑒+, 𝐾+ →
𝜋0𝜋+𝜇+𝑒− has been performed using the di-lepton dataset collected by 
the NA62 experiment at CERN in 2016–2018. Upper limits of 2.9 ×10−10 , 
3.1 × 10−10 and 5.0 × 10−10, respectively, are obtained at 90% CL for 
the branching ratios of the three decays on the assumption of uniform 
phase-space distributions.
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