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Abstract

The first search for the lepton number violating decay K+ → π0π−µ+e+ and lepton
flavour violating decays K+ → π0π+µ−e+, K+ → π0π+µ+e− has been performed using a
dataset collected by the NA62 experiment at CERN in 2016–2018. Upper limits of 2.9×10−10,
3.1 × 10−10 and 5.0 × 10−10, respectively, are obtained at 90% CL for the branching ratios
of the three decays on the assumption of uniform phase-space distributions.
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Introduction

In the Standard Model (SM), neutrinos are strictly massless due to the absence of right-handed
chiral states. The discovery of neutrino oscillations requires non-zero neutrino masses, making
it possible to discriminate experimentally between the Dirac and Majorana neutrino. Strong
evidence for the Majorana nature of the neutrino would be provided by the observation of
lepton number violating (LNV) processes, including kaon decays [1–4]. Furthermore, lepton
flavour violating (LFV) kaon decays are expected in new physics models involving ALPs and Z ′

particles [5, 6].
The NA62 experiment at CERN collected a large sample of K+ decays to lepton pairs using

dedicated trigger lines in 2016–2018. This dataset has been analysed to establish stringent upper
limits on the LNV decays K+ → π−(π0)e+e+ [7], K+ → π−µ+µ+ [8] and K+ → π−µ+e+ [9],
LFV decays K+ → π+µ−e+ and π0 → µ−e+ [9], and the K+ → µ−νe+e+ decay violating either
LN or LF conservation depending on the flavour of the emitted neutrino [10]. The first search
for the LNV decay K+ → π0π−µ+e+ and LFV decays K+ → π0π+µ±e∓ performed with the
above dataset is reported here.

1 Beam, detector and data sample

The NA62 beamline and detector layout [11] used in 2018 is shown schematically in Fig. 1. An
unseparated secondary beam of π+ (70%), protons (23%) and K+ (6%) is created by directing
400 GeV/c protons extracted from the CERN SPS onto a beryllium target in spills of 4.8 s
duration. The beam central momentum is 75 GeV/c, with a momentum spread of 1% (rms).

Beam kaons are tagged with a time resolution of 70 ps by a differential Cherenkov counter
(KTAG), which uses nitrogen gas at 1.75 bar pressure contained in a 5 m long vessel as radiator.
Beam particle positions, momenta and times (to better than 100 ps resolution) are measured
by a silicon pixel spectrometer consisting of three stations (GTK1,2,3) and four dipole magnets
forming an achromat. A toroidal muon sweeper (scraper, SCR) is installed between GTK1
and GTK2. A 1.2 m thick steel collimator (COL) with a 76 × 40 mm2 central aperture and
1.7×1.8 m2 outer dimensions is placed upstream of GTK3 to absorb hadrons from upstream K+

decays; a variable-aperture collimator of 0.15× 0.15 m2 outer dimensions was used up to early
2018. Inelastic interactions of beam particles in GTK3 are detected by an array of scintillator
hodoscopes (CHANTI). A dipole magnet (TRIM5) providing a 90 MeV/c horizontal momentum
kick is located in front of GTK3. The beam is delivered into a vacuum tank evacuated to
a pressure of 10−6 mbar, which contains a 75 m long fiducial volume (FV) starting 2.6 m
downstream of GTK3. The beam angular spread at the FV entrance is 0.11 mrad (rms) in
both horizontal and vertical planes. The probability of beam kaon decay in the FV is 12.5%.
Downstream of the FV, undecayed beam particles continue their path in vacuum.

Momenta of charged particles produced in K+ decays in the FV are measured by a magnetic
spectrometer (STRAW) located in the vacuum tank downstream of the FV. The spectrometer
consists of four tracking chambers made of straw tubes, and a dipole magnet (M) located between
the second and third chambers that provides a horizontal momentum kick of 270 MeV/c in a
direction opposite to that produced by TRIM5. The momentum resolution is σp/p = (0.30 ⊕
0.005 · p)%, with the momentum p expressed in GeV/c.

A ring-imaging Cherenkov detector (RICH) consisting of a 17.5 m long vessel filled with
neon at atmospheric pressure (with a Cherenkov threshold of 12.5 GeV/c for pions) provides
particle identification, charged particle time measurements with a typical resolution of 70 ps,
and the trigger time. Two scintillator hodoscopes (CHOD), which include a matrix of tiles and
two planes of slabs arranged in four quadrants located downstream of the RICH, provide trigger
signals and time measurements with 200 ps precision.
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Figure 1: Schematic side view of the NA62 beamline and detector used in 2018.

A 27X0 thick quasi-homogeneous liquid-krypton (LKr) electromagnetic calorimeter is used
for particle identification and photon detection. The calorimeter has an active volume of 7 m3,
segmented in the transverse direction into 13248 projective cells of 2× 2 cm2 size, and provides
energy resolution σE/E = (4.8/

√
E ⊕ 11/E ⊕ 0.9)%, with E expressed in GeV. To achieve

hermetic acceptance for photons emitted in K+ decays in the FV at angles up to 50 mrad from
the beam axis, the LKr calorimeter is complemented by annular lead glass detectors (LAV)
installed in 12 positions inside and downstream of the vacuum tank, and two lead/scintillator
sampling calorimeters (IRC, SAC) located close to the beam axis. An iron/scintillator sampling
hadronic calorimeter formed of two modules (MUV1,2) and a muon detector (MUV3) consisting
of 148 scintillator tiles located behind an 80 cm thick iron wall are used for particle identification.

The data sample analysed is obtained from 8.9× 105 SPS spills recorded in 2016–2018. The
typical beam intensity was increased during the data collection time from 1.3× 1012 to 2.2× 1012

protons per spill. The latter value corresponds to a 500 MHz mean instantaneous beam particle
rate at the FV entrance, and a 3.7 MHz mean K+ decay rate in the FV. The main NA62 trigger
line is designed for the collection of the very rare K+ → π+νν̄ decay [12]. The present analysis
is based on the dedicated multi-track (MT), electron multi-track (eMT) and muon multi-track
(µMT) trigger lines operating concurrently with the main trigger line [13, 14], and downscaled
typically by factors DMT = 100, DeMT = 8 and DµMT = 8. The downscaling factors were varied
during data-taking to accommodate the changes in the beam intensity.

The low-level (L0) hardware trigger in all three trigger lines is based on RICH signal mul-
tiplicity and coincidence of signals in two opposite CHOD quadrants. The µMT (eMT) line
additionally requires a minimum energy deposit of 10 (20) GeV in the LKr calorimeter. The
µMT line also requires a signal in an outer MUV3 detector tile (i.e. one of the 140 tiles not
adjacent to the beam pipe). The high-level (L1) software trigger involves beam K+ identifi-
cation by the KTAG, reconstruction of a negatively-charged STRAW track and, only for the
µMT trigger line, fewer than three in-time signals in LAV detectors 2–11. For signal-like sam-
ples characterised by LKr energy deposit well above 20 GeV, the measured inefficiencies of the
CHOD (STRAW) trigger conditions are typically at the 1% (5%) level, while those of the RICH,
MUV3, KTAG and LKr conditions are of O(10−3).

Monte Carlo simulations of particle interactions with the detector and its response are per-
formed using a software package based on the Geant4 toolkit [15]. In addition, accidental
activity is simulated and the response of the trigger lines is emulated.
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2 Event selection

The rates of the possible signal decays K+ → π0πµe (denoted Kππµe below) are measured
with respect to the rate of the normalisation decay K+ → π+e+e− (denoted Kπee below),
providing partial cancellation of detector and trigger inefficiencies. The Kππµe decay candidates
are collected with the MT, eMT and µMT trigger lines, while the Kπee decay candidates are
collected with the MT and eMT lines only. The following principal selection criteria are common
for the Kππµe and Kπee candidates.

• Three-track vertices are reconstructed by extrapolating STRAW tracks into the FV, taking
into account the measured residual magnetic field in the vacuum tank, and selecting triplets
of tracks consistent with originating from the same point. Exactly one vertex should
be present in the event. The total charge of the three tracks should be q = +1. The
longitudinal position of the vertex, zvtx, should be within the FV. The momenta of the
tracks forming the vertex should exceed 6 GeV/c. Track trajectories through the STRAW
chambers and extrapolated positions in the CHOD and LKr calorimeter front planes should
be within the respective geometrical acceptances. Tracks should be separated from each
other by at least 15 mm in each STRAW chamber plane to suppress photon conversions,
and at least 200 mm in the LKr front plane to reduce the effects of shower overlaps.

• Track times are initially defined using the CHOD information. The vertex time is initially
evaluated as the average of the track CHOD times. Signals in the RICH geometrically
compatible with the tracks, and within 3 ns of the vertex time, are used to evaluate track
RICH times. Track and vertex time estimates are then refined using the RICH information.
Each track is required to be within 2.5 ns of the trigger time.

• No signals are allowed in the LAV detectors downstream of the reconstructed vertex posi-
tion within 4 ns of the vertex time. This condition suppresses backgrounds with photons
in the final state. Most importantly, the K+ → π+π0π0D, π0D → γe+e− background to the
Kππµe decays is reduced by one order of magnitude.

• Particle identification is based on the ratio E/p of the energy deposited in the LKr calorime-
ter (within 50 mm of the track impact point and within 10 ns of the vertex time) to the
momentum measured by the spectrometer. Pion (π±), muon (µ±) and electron (e±) can-
didates are required to have E/p < 0.85, E/p < 0.2 and 0.9 < E/p < 1.1, respectively. An
associated MUV3 signal within 5 ns of the vertex time is required for muon candidates,
while no such MUV3 signals are allowed for pion candidates.

The Kπee selection, identical to that of Ref. [10], includes the following additional criteria.

• The tracks forming the vertex should be identified as π+e+e−, according to the above
particle identification criteria.

• The total momentum of the three tracks, pvtx, should satisfy the condition |pvtx−pbeam| <
2 GeV/c, where pbeam is the peak value of the beam momentum. The total transverse
momentum with respect to the beam axis should be below 30 MeV/c. The quantity pbeam
and the beam axis direction, averaged over a few hours, are monitored throughout the
data taking with fully reconstructed K+ → π+π+π− decays.

• The reconstructed π+e+e− mass, mπee, should be in the normalisation region defined as
470–505 MeV/c2, accounting for the mass resolution of 1.7 MeV/c2 and the radiative tail.
The reconstructed e+e− mass should be mee > 140 MeV/c2 to suppress backgrounds from
the K+ → π+π0 decay followed by π0D → e+e−γ, π0DD → e+e−e+e− and π0 → e+e−

decays. This leads to a relative acceptance reduction of 27%.
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The following conditions are used to select the Kππµe candidates.

• The tracks forming the vertex should be identified as πµe, according to the above particle
identification criteria. Track charges should correspond to one of the three signal decays,
denoted unambiguously as the π−, µ− and e− modes below.

• The π0 meson is reconstructed via the π0 → γγ decay. Exactly two photon candidates
are required, defined as reconstructed LKr energy deposit clusters within the geometrical
acceptance, with energy above 2 GeV, within 5 ns of the vertex time, and separated by at
least 150 mm from each other and from each track impact point in the LKr calorimeter
front plane.

• The longitudinal coordinate of the “neutral vertex” is defined assuming a prompt π0 →
γγ decay: zN = zLKr − D12

√
E1E2/mπ0 . Here D12 is the distance between the photon

candidates in the LKr transverse plane at the z coordinate zLKr; E1,2 are the photon
candidate energies; mπ0 is the nominal π0 mass [16].

• Consistency of the three-track and neutral vertices is required: |zvtx − zN| < 8 m. Vertex
position resolutions evaluated with simulations are δzvtx = 0.25 m and δzN = 1.8 m.

• Photon momenta are computed using photon candidate energies and positions in the LKr
calorimeter transverse plane, assuming emission at the three-track vertex. The π0 momen-
tum is computed as the sum of photon momenta, and the π0 energy is computed using
the π0 mass.

• The total final-state momentum, pππµe, should be consistent with the beam momentum:
the difference, ∆p = pππµe−pbeam, should satisfy the condition |∆p| < 3 GeV/c. The total
transverse momentum of the final-state particles with respect to the beam axis should be
pT < 30 MeV/c.

• The reconstructed π0πµe mass, mππµe, should be in the signal region 486–502 MeV/c2,
which accounts for the mass resolution of 1.3 MeV/c2 and non-gaussian tails.

3 Evaluation of the effective number of K+ decays

The reconstructed mπee spectra obtained using the Kπee selection for the data, simulated signal
and background samples are displayed in Fig. 2. Below the mπee normalisation region, the
background is mainly due to K+ → π+π+π− decays with two pions (π±) misidentified as
electrons (e±), and K+ → π+π−e+ν decays with a pion (π−) misidentified as an electron (e−).
In the mπee normalisation region, 10975 decay candidates are observed in the data, with the
background coming mainly from the K+ → π+π0D, π0D → γe+e− decay chain. This background
is suppressed by the selection condition mee > 140 MeV/c2, and contributes via double particle
misidentification (π+ → e+ and e+ → π+).

To account for the fact that the µMT trigger line is used to collect Kππµe candidates only,
while the eMT and MT lines are used to collect both Kππµe and Kπee candidates, a weight
determined by the trigger downscaling factors is applied to each Kπee candidate in the data
sample to evaluate the effective number of Kπee candidates for normalisation:

w =
1−

(
1− 1

DeMT

)(
1− 1

DµMT

)(
1− 1

DMT

)
1−

(
1− 1

DeMT

)(
1− 1

DMT

) .
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Figure 2: Reconstructed mπee spectra for data (with statistical errors) and simulated samples
obtained with the Kπee selection. The normalisation region is shown with vertical arrows. The
data events are not weighted; see Section 3 for details.

Table 1: Sources of background to Kππµe decays, decay branching ratios (or their products),
and misidentification processes leading to each of the three signal final states. In some cases of
misidentification, a π± → µ±ν decay in flight is additionally required. Cases with no misidenti-
fication are classified as “direct” (a signal final state is produced directly), and “π± DIF” (with
a π± → µ±ν decay in flight leading to the signal final state).

Background source B π0π−µ+e+ π0π+µ−e+ π0π+µ+e−

K+ → π+π0π0D 4.1× 10−4 e− → π− e− → µ− e+→π+ or e+→µ+

K+ → π+π0Dγ (E∗γ>10 MeV) 7.8× 10−6 e− → π− e− → µ− e+→π+ or e+→µ+

K+ → π+π0e+e− 4.2× 10−6 e− → π− e− → µ− e+→π+ or e+→µ+

K+ → π0Dµ
+νγ (E∗γ>10 MeV) 7.4× 10−7 e− → π− – e+ → π+

K+ → π0π0Dµ
+ν 7.9× 10−8 e− → π− – e+ → π+

K+ → π+π0π0, π0 → e+e− 2.6× 10−9 e− → π− e− → µ− e+→π+ or e+→µ+

K+ → π+π0 +K+ → π+π+π− 1.1× 10−2 π+ → e+ π+ → e+ π− → e−

K+ → π+π0π0 +K+ → π+π+π− 1.0× 10−3 π+ → e+ π+ → e+ π− → e−

K+ → π0e+ν +K+ → π+π+π− 2.8× 10−3 π+ DIF π− DIF π− → e−

K+ → π0µ+ν +K+ → π+π+π− 1.8× 10−3 π+ → e+ π+ → e+ π− → e−

K+ → π+π0D +K+ → µ+ν 1.5× 10−3 – – e+ → γ
K+ → π+π0D +K+ → π+π0 5.0× 10−4 e− → π− e− → µ− π+ DIF
K+ → π+π0π0D +K+ → µ+ν 2.6× 10−4 e− → π− e− → µ− direct
K+ → π+π0π0D +K+ → π+π0 8.3× 10−5 e− → π− e− → µ− π+ DIF
K+ → π0µ+ν +K+ → π+π0D 8.0× 10−5 e− → π− e− → µ− direct
K+ → π0Dµ

+ν +K+ → π+π0 8.0× 10−5 e− → π− e− → µ− direct
K+ → π+π0π0 +K+ → π+π0D 4.2× 10−5 e− → π− e− → µ− π+ DIF
K+ → π0De

+ν +K+ → π0µ+ν 2.0× 10−5 e− → π− – e+ → π+

K+ → π0e+ν +K+ → π0Dµ
+ν 2.0× 10−5 e− → π− – e+ → π+

K+ → π0µ+ν +K+ → π+π0π0D 1.4× 10−5 e− → π− e− → µ− direct
K+ → π0µ+ν +K+ → π0Dµ

+ν 1.3× 10−5 e− → π− – e+ → π+

K+ → π0Dµ
+ν +K+ → π+π0π0 6.8× 10−6 e− → π− e− → µ− direct

K+ → π+π−e+ν +K+ → π0µ+ν 1.4× 10−6 direct π− DIF π− → e−

K+ → π0π0e+ν +K+ → π+π+π− 1.4× 10−6 π+ DIF π− DIF π− → e−
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The weight quantifies the enhancement of the K+ flux provided by the µMT trigger line
collecting Kππµe candidates, and varies between 1.0 and 2.9 depending on the trigger configu-
ration. Each factor (1−1/D) represents the probability for an event not to be collected by a
trigger line due to the downscaling applied.

The effective number of K+ decays in the FV is computed as

NK =
(1− f) ·Nπee

Bπee ·Aπee
= (1.97± 0.02stat ± 0.02syst ± 0.06ext)× 1012,

where Nπee = 21401 is the number of weighted Kπee candidates in the data sample; Bπee =
(3.00 ± 0.09) × 10−7 is the Kπee branching ratio [16]; Aπee = (3.62 ± 0.03syst) × 10−2 is the
selection acceptance evaluated with simulations; and f = 1.0× 10−3 is the relative background
contamination evaluated with simulations. The uncertainty in Aπee is estimated by varying
the selection criteria. The statistical uncertainty in NK is due to the finite number of Kπee

candidates, the systematic uncertainty is due to Aπee, and the external uncertainty is due to
Bπee. The normalisation sample and the NK value are identical to those of Ref. [10].

4 Evaluation of the background to Kππµe decays

Background to the Kππµe decays is evaluated with simulations. The signal mππµe regions (486–
502 MeV/c2) are kept masked for the data until the background estimates are finalised. Back-
grounds from single K+ decays and from coincidences of pairs of K+ decays are considered.
Simulated samples of pairs of decays occurring simultaneously are used in the latter case. Back-
ground is primarily due to particle misidentification. A dedicated data-driven particle identi-
fication model [7] is employed in the simulations: π± and e± (mis)identification probabilities
measured with K+ → π+π+π− and K+ → π0e+ν decay samples are applied as weights to
simulated events. The misidentification probabilities are found to be O(10−2) for π± → e± and
e± → π± cases, and O(10−6) for the e± → µ± case, and depend on momentum [7, 10]. The
data-driven approach avoids Geant4-based modelling of the quantity E/p sensitive to simula-
tion of hadronic showers, and increases the effective simulated statistics. Background sources,
their branching ratios [16] used for normalisation, and misidentification processes involved in
each case are listed in Table 1.

Estimation of the background from single K+ decays with the above method was validated
to a 20% precision in a dedicated study [7]. To validate the description of the background from
coincidences, a loose selection is used, obtained from the signal selection by removing the ∆p,
pT and LAV veto conditions, and inverting the mππµe condition. Momentum difference (∆p)
spectra for data and simulated samples obtained using the loose selection for each of the three
Kππµe modes are shown in Fig. 3 (left). The regions of large ∆p are populated exclusively
by backgrounds from coincidences. The region ∆p > 10 GeV/c for the µ− mode (with the
simplest background structure among the three modes) is used to normalise the backgrounds
from coincidences, accounting for the mean probability of coincidence of two decays in the
selection time window. The maximum deviation from unity of the ratios of data and simulated
∆p spectra (Fig. 3, left) and pT spectra (not shown) is found to be 40%.

Mass spectra for data and simulated background samples obtained with the full Kππµe se-
lection are shown in Fig. 3 (right). For the π− and e− modes, background in the signal region
is dominated by K+ → π+π0π0D decays with an undetected soft photon from the π0D → γe+e−

decay, a π+ → µ+ν decay in flight, and e− → π− (e+ → π+) misidentification in the π− (e−)
case. The missing photon and neutrino lead to a negative mean ∆p value, as seen for the loose
selection in Fig. 3 (left). For the µ− mode, the K+ → π+π0π0D contribution is suppressed by
the low e− → µ− misidentification probability. The background is smaller than for the other
modes, and is dominated by coincidences of a K+ → π0e+ν and a K+ → π+π+π− decay, with
a π− → µ−ν decay in flight and a π+ not reconstructed in the spectrometer.
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Figure 3: Left: momentum difference (∆p) spectra for data and simulated samples obtained
using a loose Kππµe selection without the ∆p, pT and LAV veto conditions, and with the mππµe

condition inverted. Right: mass (mππµe) spectra for data and simulated samples for the full
selection; the signal mππµe regions, shown with arrows, are not masked. Top row: K+ →
π0π−µ+e+ mode; middle row: K+ → π0π+µ−e+ mode; bottom row: K+ → π0π+µ+e− mode.
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Table 2: Background estimates in the sidebands of the mππµe spectra with their statistical
uncertainties, compared to the numbers of events observed in the data sample.

Full signal selection Selection without the LAV veto
Mode Estimate Data Estimate Data

K+ → π0π−µ+e+ 3.26 ± 0.30 3 23.7 ± 0.8 25
K+ → π0π+µ−e+ 0.46 ± 0.14 1 0.85 ± 0.24 1
K+ → π0π+µ+e− 3.22 ± 0.28 6 31.7 ± 1.0 36

Background estimates in the sidebands of the mππµe spectra, i.e. outside the signal regions in
Fig. 3 (right), are compared to the observed numbers of data events for the full signal selection
in Table 2. A signal selection without the LAV veto condition is considered as a cross-check;
background estimates for this selection are also compared to the data in Table 2. In all cases,
data and background estimates in the mππµe sidebands agree within statistical uncertainties,
which further validates the background evaluation procedure.

The final background estimates in the signal region are

K+ → π0π−µ+e+ : Nbkg = 0.33± 0.07,

K+ → π0π+µ−e+ : Nbkg = 0.004± 0.003,

K+ → π0π+µ+e− : Nbkg = 0.29± 0.07.

The uncertainties quoted above include a statistical component due to the limited size of simu-
lated samples, and systematic components obtained by background studies as discussed above.

5 Results

Signal acceptances with their statistical uncertainties are evaluated with simulations, assuming
uniform phase-space distributions:

A(K+ → π0π−µ+e+) = (4.07± 0.06)× 10−3,

A(K+ → π0π+µ−e+) = (3.76± 0.06)× 10−3,

A(K+ → π0π+µ+e−) = (2.37± 0.05)× 10−3.

The uncertainties quoted above are dominated by the limited size of the simulated samples.
Single-event sensitivities, defined as signal branching ratios corresponding to the observation of
one signal event, are found to be

BSES(K+ → π0π−µ+e+) = 1/
(
NK · Bγγ ·A(K+ → π0π−µ+e+)

)
= (1.26± 0.05)× 10−10,

BSES(K+ → π0π+µ−e+) = 1/
(
NK · Bγγ ·A(K+ → π0π+µ−e+)

)
= (1.37± 0.05)× 10−10,

BSES(K+ → π0π+µ+e−) = 1/
(
NK · Bγγ ·A(K+ → π0π+µ+e−)

)
= (2.17± 0.09)× 10−10.

Here NK = (1.97 ± 0.07) × 1012 is the effective number of kaon decays in the FV (Section 3),
and Bγγ = (98.823± 0.034)% is the π0 → γγ branching ratio [16]. The uncertainties in BSES are
dominated by those in the external parameter Bπee and in the signal acceptances.

After unmasking the signal mass regions, no events are observed in the data for any of the
three signal modes (Fig. 3, right). Upper limits of the signal branching ratios at 90% CL are
evaluated using the CLS method [17]:

B(K+ → π0π−µ+e+) < 2.9× 10−10,

B(K+ → π0π+µ−e+) < 3.1× 10−10,

B(K+ → π0π+µ+e−) < 5.0× 10−10.
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Summary

The first search for the lepton number violating decay K+ → π0π−µ+e+ and lepton flavour
violating decays K+ → π0π+µ−e+, K+ → π0π+µ+e− has been performed using the di-lepton
dataset collected by the NA62 experiment at CERN in 2016–2018. Upper limits of 2.9× 10−10,
3.1 × 10−10 and 5.0 × 10−10, respectively, are obtained at 90% CL for the branching ratios of
the three decays on the assumption of uniform phase-space distributions.
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