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Abstract. An important area of high energy physics studies at the Large Hadron
Collider (LHC) currently concerns the need for more extensive and precise com-
parison data. Important tools in this realm are event reweighing and evaluation
of more precise next-to-leading order (NLO) processes via Monte Carlo event
generators, especially in the context of the upcoming High Luminosity LHC.
Current event generators need to improve throughputs for these studies. Mad-
Graph5_aMC@NLO (MG5aMC) is an event generator being used by LHC ex-
periments which has been accelerated considerably with a port to GPU and
vector CPU architectures, but as of yet only for leading order processes. In this
contribution a prototype for event reweighing using the accelerated MG5aMC
software, as well as plans for an NLO implementation, are presented.

1 Introduction

As Moore’s law’s death throes echo throughout the world of high performance computing,
a need for optimisation in hardware and software alike grows. Within high energy physics
(HEP) this becomes especially apparent as we approach the era of the High Luminosity Large
Hadron Collider (HL-LHC), where experimental precision and consequently both experimen-
tal and simulated measurements are expected to increase by an order of magnitude [1–4].
Many different treatments for these difficulties are being studied, largely organised under
the umbrella of the HEP Software Foundation [5, 6], but here we consider exclusively event
generation, and particularly event reweighting.

Event generation is the first step in HEP simulation, where process cross sections are
evaluated and relevant instances of that process are stochasticly generated to be used for later
stages of simulation. In total, event generation currently makes up ∼ 5 − 15% of CPU hours
at experiments [7, 8]. Due to the embarrassingly parallel and non-divergent nature of event
generation, it is a prime candidate for exploring parallel architectures such as vectorised CPUs
and GPUs, and over the last few years we have been working on porting leading order (LO)
event generation within the MadGraph5_aMC@NLO (MG5aMC) [9] framework to such
systems. Here, we consider what developments to pursue in the future as the accelerated
MG5aMC port (aMGaMC) [10–12] approaches an alpha release.
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2 Leading order event reweighing

Particle collision simulations factorise [13] into stages, and it is often unnecessary to res-
imulate samples for distinct physics models. Instead, it suffices to regenerate events under
the new physics model, and simulations can be recycled to accommodate these new physics.
Such reuse allows for more extensive work in fitting physics model parameters to experi-
mental observations. Furthermore, scattering amplitudes factorise from MC event weights.
Rather than regenerating events, amplitudes can be reevaluated under the assumption of the
new model, and event weights reweighted by this factor.

2.1 Event generation and weights

Given the inherently stochastic nature of particle physics, Monte Carlo (MC) methods are a
natural fit for event generation. Normalising weights such that the total cross section is the
sum of all event weights1, the weights W of LO events are given by [13]

W = |M|2
∏

i

fi(xi, k2)

 ΩPS , (1)

with |M|2 the scattering amplitude2 of the event, fi(xi, k2) the parton distribution function of
parton i with momentum fraction xi at renormalisation scale k2, and ΩPS the phase space
measure. Defined as such, the total cross section σ is

σ =

∫
|M|2

∏
i

fi(xi, k2)

 dΩ ≊
∑

k

Wk, (2)

with dΩ the full angle differential, or equivalently the phase space measure. However, as
mentioned, HEP events are stochastic; it is impossible to directly observe a total cross sec-
tion, making the use of MC methods obvious: As only singular events can be observed in ex-
periments, measurements naturally come about in a manner equivalent to a MC phase space
distribution. For simulation purposes, MC methods are equivalent to real-world observations.

2.2 Event reweighting

Looking at (1), the scattering amplitude is the sole factor dependant on internal physics of
the interaction3. Consequently, if the physics model is modified,

|M|2 → |M′|2 =⇒ W → W ′ =
|M′|2

|M|2
W, (3)

i.e. so long as the relevant phase space for the new physics is a subset of the original one
(ensuring |M|2 , 0), the new event weight can be determined by refactoring the original
weight with the new amplitude. This process is known as event reweighting, and although
we treat reweighting an LO process to a modified LO process there are other use cases, e.g.
reweighting LO events to NLO to increase precision without full NLO event generation [8].

3 Parallel event generation with MG5aMC

Due to the embarrassingly parallel and non-divergent nature of event generation, it makes a
good candidate for heterogeneous computing in HEP. Over the last few years there has been

1As long as the normalisation is kept in mind, this choice is arbitrary.
2Commonly referred to as matrix element, matrix element squared, amplitude, or differential cross section.
3The parton distribution functions depend only on the external partons, and the phase space measure is a volume.
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Figure 1. Flowchart
detailing the general
structure of a scattering
element generator.
Red rectangles with
right-angled corners
correspond to numer-
ical operations, while
turquoise rounded nodes
indicate their returned
structures. Arrow
abundance between
nodes roughly hints at
the amount of data in
arguments and return
values, save for all
weighted events returned
from the scattering am-
plitude evaluation being
used for integration or
unweighting. Returned
observables and un-
weighted events can
then be used by further
simulation software.

work in porting MG5aMC event generation to the CUDA and SYCL standards [10–12], cur-
rently nearing release for LO event generation. Although we here primarily consider further
development, a quick overview of the current framework is given below to contextualise work
on parallel event reweighting and parallel NLO event generation.

3.1 LO parallelisation

The MG5aMC framework evaluates scattering amplitudes in terms of helicity amplitudes,
using ALOHA-generated HELAS-based code [14, 15]. Event-level parallelism is an “ap-
propriate approach” for acceleration [8], and exactly what has been implemented: The code
structure is inherited from the MadEvent event generator, but amplitudes4 are evaluated with
vectorised C++ code on CPUs, and using the CUDA API on GPUs.

An overview of the MC event generator structure is provided in Fig. 1, where the green
bubble specifies the part event-level parallelism applies to. Note that MG5aMC is a meta-
program, a code generator, rather than a singular implementation. MG5aMC generates,
exports, and runs a program for considered physics processes. Particularly, scattering am-
plitude evaluations are called as external subroutines distinct from phase space integration.
Consequently, it is simple (although not easy) to replace these with e.g. vectorised routines.
Scattering amplitudes being the primary bottleneck in event generation, this is the considera-
tion for acceleration in aMGaMC.

4Note that only scattering amplitude evaluations are parallelised here. Other event-specific parts, such as random
number generation, are kept on the host. Further points of acceleration are being investigated, but are not a priority.
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Process e+e− → 5γ (SM)
CPU Intel Core i5-1145G7
GPU NVIDIA A100 PCIe 40GB

Table 1: Details for the time measurements displayed in Figures 2 and 3, showing the process
considered and hardware used for the two implementations. Note that all reweighting is done
on within the standard model, setting the electroweak coupling constant to be a randomly
determined non-zero value for each reweight iteration.

3.2 Parallel LO scattering amplitudes and reweighting

As detailed in Sec. 3.1, not only are scattering amplitude routines distinct from other event
generation steps, but MG5aMC and aMGaMC generate them independently. In light of Sec.
2, where event reweighting was shown to only use amplitude evaluation, these routines can
be repurposed for reweighting. This is considered here: The usage of HELAS-like CUDA
code, in line with the native MG5aMC reweighting module [16].

Although aMGaMC does not yet support out-of-the-box event generation — generated
code takes a posteriori modifications — standalone processes (i.e. amplitude generation, the
green bubble in Fig. 1) do work. Using this standalone output, a minimal program calling an
in-house generic reweighting library5 can perform event reweighting on a provided event set.

This comes with a caveat: There exists no interface between these parts yet. With
aMGaMC, the necessary amplitude subroutines can largely6 be created; our reweighting li-
brary reads and runs events through generated subroutines; and a separate program calls these
libraries to perform the reweighting.

Once set up and compiled, reweighting goes roughly as follows: 1) Input reweight pa-
rameters; 2) Parse events; 3) Evaluate original scattering amplitudes; 4) Overwrite physics
parameters with new values; 5) Evaluate new amplitudes; 6) Evaluate new weight with eq.
(3); 7) Repeat steps 4 − 6 for all parameter sets, and; 8) Return new weights. We note that
this procedure only holds for parameters that can be modified at runtime, making reweighting
between structurally different amplitude routines tedious (albeit possible).

3.3 Results

To evaluate the reweight acceleration of aMGaMC, two independent degrees of complexity
need be considered: For statistics, it is necessary to increase the amount of events; for physics
studies, it becomes important to consider more parameter sets. Practically, these are close
to identical, as reweighting over multiple parameter sets means performing more amplitude
evaluations for the same event. Runtimes are thus expected to rise linearly with both, at least
beyond some minimum number of events (per parameter set) such that amplitudes dominate
runtime. In Table 1, the measurement details are shown7, and time measurements are plotted
against number of events and of parameter sets in Figs. 2 and 3, respectively.

As can be seen in Figs. 2 and 3, runtimes increase linearly8 with reweight process com-
plexity for both MG5aMC and aMGaMC. The left-hand graphs show total CPU times, while
for the right-hand graphs the runtimes have been independently normalised to the time to
reweight a single event for one parameter set. For small event sets, both implementation run-
times are dominated by (initialisation, I/O, etc.), making this choice unfit for aMGaMC due

5This library is expected to see an official release before the end of the year. We forego further details here.
6aMGaMC does not yet support fully generic beyond-the-Standard Model process generation.
7Note that the CPU used is consumer grade, making one-to-one runtime comparisons less relevant.
8Note that Fig. 2 has log-log graphs, whereas Fig. 3 has log-linear graphs.
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Figure 2: Comparison of real (left) and relative (right) host (CPU) time to reweight n events
for one set of parameters for MG5aMC and aMGaMC. Average time over five measurements
is shown, with min- and maximum value for each n denoted by coloured regions. In the right
plot, times have been independently normalised to the time t1 it takes to reweight one event
once. The green solids show the ratio between the two dashed lines. See Table 1 for details
on the reweight procedure.

to the overhead occurring on the host rather than on the device, resulting in a bias against the
GPU.

In Fig. 2, similar runtime complexities are observed between the two implementations;
initial domination by statistical effects, but a trend towards linear growth in the large-n limit.
The main difference is an initial constant runtime for aMGaMC, explained by two factors:
Predominant overhead in the small-n limit is transfer rate between host and device, which
for small n is roughly constant; and amplitude evaluation runtime will not increase until the
device is saturated, which will happen at ∼ 104 events. Acceleration from the GPU is depicted
here by green lines, which show the ratio between the two implementation runtimes. Fig. 3,
which details the runtimes as functions of the number of parameter sets, shows a clear linear
growth for both implementations. As mentioned, reweighting over several parameter sets is
equivalent to reweighting more events when amplitude evaluation is the dominant runtime
contribution, and for Fig. 3 sufficiently many events per iteration have been taken for both
implementations to land in the linear large-n limit shown in Fig. 2. Note that the green lines
depicting the runtime ratio in Fig. 3 have been multiplied by the runtime quotient ∼ 8.66
between 105 and 104 events for MG5aMC, to account for these measurements being made
for 104 events rather than the 105 events of aMGaMC. This is a logistical limitation in the
runtime for such large event sets, but the factor used is biased towards MG5aMC9, and this
factor is nevertheless not much smaller than the naive maximum factor 10.

9Most overhead (particularly I/O) depends only on the number of events, not on the number of parameter sets:
Each event needs to be parsed only once, overcounting this overhead for each parameter set past the first one.
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Figure 3: Comparison of real (left) and relative (right) host (CPU) time to reweight 104

(MG5aMC) or 105 (aMGaMC) events for n parameter sets. Average time over five measure-
ments is shown, with min- and maximum value for each n denoted by coloured regions. In the
right plot, the normalisation shown in Fig. 2 (right plot) is used. The green solid lines show
the ratio between the dashed lines, multiplied by a factor ∼ 8.66 longer it takes MG5aMC to
reweight 105 events than 104. See Table 1 for details on the reweight procedure.

4 Expectations for NLO parallelism

While we approach an official LO aMGaMC release, we turn to the next major goal: NLO
event generation. Work is just commencing to this end, but considerations of aMGaMC
alongside the structure of NLO event generation in native MG5aMC can be presented.

In MG5aMC, NLO event generation uses the FKS subtraction scheme [17–19]. We
forego theoretical details here, but note that this splits NLO amplitudes into three distinct
subsets:

LO amplitudes. In perturbation theory, higher order contributions are corrections to LO am-
plitudes. Thus, LO amplitudes need to be evaluated also for NLO calculations.

Real emission amplitudes. Here, additional unobserved particles are added to the interac-
tion. These are tree-level, and can be evaluated using the same machinery as LO amplitudes.

One-loop amplitudes. These loop amplitudes in NLO corrections require integration over
undetermined momenta for singular amplitudes. While many clever techniques for such eval-
uations exist, it requires different machinery to that at tree-level.

In porting LO event generation to parallel architectures the structures used for tree-level
amplitudes have already been developed; we already have the tools to evaluate real emissions.
The first two points for NLO event generation can be treated as LO multiprocesses, and
although their NLO use has not been implemented, we expect few problems in doing so.

Loops, though, present an issue. Native MG5aMC calls external libraries to evaluate
loop integrals [9]; development of such GPU-compatible libraries is largely unaddressed as
of yet10. Additionally, depending on the numerical stability, it is at times necessary to evaluate

10GPU-focused loop developments [20–23] largely focus on speeding up the loop integrals themselves, whereas
we consider event-level parallelism.

EPJ Web of Conferences 295, 10001 (2024) https://doi.org/10.1051/epjconf/202429510001
CHEP 2023

 
6



loop integrals at quadruple precision, which no GPU or TPU manufacturer currently supports.
Nevertheless, it appears that loops could be evaluated on GPUs for at least a large fraction of
events.

5 Outlook

Over the course of this paper, we have detailed expected difficulties in development of
aMGaMC past LO event generation, as well as presented a simple comparison in how al-
ready supported development can be extended for purposes other than pure scattering am-
plitude generation, here using aMGaMC to parallelise scattering amplitudes for LO event
reweighting. Although resulting runtimes are difficult to compare one-to-one, parallelism
evidently makes the encroaching need for larger event sets in HEP less problematic.

Nevertheless, LO event generation parallelism will be insufficient to tackle computational
needs in the coming decade. The difficulties in porting also NLO scattering amplitude gener-
ation are being investigated, and while the computation of one-loop amplitudes is predicted
to pose a problem, we are optimistic. The architecture for parallel evaluation of tree-level dia-
gram amplitudes already exists, and a first partial port of NLO event generation to aMGaMC
could be done by performing these tree-level evaluations on vectorised architecture, keeping
loop evaluations on the host.

Somewhat orthogonal to this development, we are working on running also LO event
reweighting on heterogeneous architectures. A C++ library for parsing the LHE file format
and interfacing with generic structures for performing event reweighting has been developed,
and we hope to have it released publicly by the end of the year. Interfacing this library with
the current pre-alpha release of aMGaMC, a test bed for LO event reweighting on GPUs
has been established, demonstrating the sizeable acceleration attained with vectorisation and
GPU parallelism. In Figs. 2 and 3, we display that in the high complexity limit, the aMGaMC
reweighting implementation will be a sizeable factor faster than MG5aMC. The specific fac-
tor is, of course, hardware-dependent.

Although some complications must be dealt with prior to an official release of the
aMGaMC plugin, deliberation on future development plans is becoming increasingly im-
portant. A favoured candidate is immediately moving onto NLO event generation, and here
we have discussed some of the foreseen obstacles. However, other paths to success have
revealed themselves as well: Here we have treated event reweighting, which allows for re-
cycling generated event sets to probe physics parameters without the need to regenerate or
resimulate events. Continued effort in exploring attainable benefits in heterogeneous archi-
tectures and in how to apply these efforts in multiple synergistic directions appears to be not
only effective, but necessary, for the future of particle physics.
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