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collisions at
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Measurements of (anti)deuteron and (anti)3He production in the rapidity range |y| < 0.5 as a function of
the transverse momentum and event multiplicity in Xe-Xe collisions at a center-of-mass energy per nucleon-
nucleon pair of

√
sNN = 5.44 TeV are presented. The coalescence parameters B2 and B3 are measured as a

function of the transverse momentum per nucleon. The ratios between (anti)deuteron and (anti)3He yields and
those of (anti)protons and pions are reported as a function of the mean charged-particle multiplicity density and
compared with two implementations of the statistical hadronization model and with coalescence predictions.
The elliptic flow of (anti)deuterons is measured for the first time in Xe-Xe collisions and shows features similar
to those already observed in Pb-Pb collisions, i.e., the mass ordering at low transverse momentum and the
meson-baryon grouping at intermediate transverse momentum. The production of nuclei is particularly sensitive
to the chemical freeze-out temperature of the system created in the collision, which is extracted from a grand-
canonical-ensemble-based thermal fit, performed for the first time including light nuclei along with light-flavor
hadrons in Xe-Xe collisions. The extracted chemical freeze-out temperature Tchem = (154.2 ± 1.1) MeV in Xe-
Xe collisions is similar to that observed in Pb-Pb collisions and close to the crossover temperature predicted by
lattice quantum chromodynamics calculations.
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I. INTRODUCTION

The investigation of the production mechanism of light
(anti)nuclei in high-energy hadronic collisions is one of the
main topics in modern nuclear physics. The ALICE Col-
laboration has significantly contributed to this field with
systematic measurements of (anti)nucleus production in dif-
ferent collision systems and center-of-mass energies provided
by the Large Hadron Collider (LHC) [1–19]. These re-
sults extend previous experimental measurements at lower
collision energies, from the BNL Alternating Gradient Syn-
chrotron (AGS) [20–23], the CERN Super Proton Synchrotron
(SPS) [24], and the BNL Relativistic Heavy Ion Collider
(RHIC) [25–30], to the TeV energy scale. In addition to
transverse-momentum pT and event-multiplicity differential
measurements of (anti)nucleus production yields, the AL-
ICE Collaboration has also measured the anisotropic flow of
(anti)deuterons [3,11] and (anti)3He [8], and (anti)deuteron
number fluctuations [31] in Pb-Pb collisions.

Such a large wealth of experimental data is typically
described using three categories of theoretical models:
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the statistical hadronization model (SHM) [32–38], models
that combine relativistic hydrodynamics with a subsequent
hadronic afterburner [39,40], and baryon coalescence [39,41–
47]. In the former, light (anti)nuclei are assumed to be
produced by a source in local thermal and hadrochemical
equilibrium at the chemical freeze-out with a temperature of
about 155 MeV [36]. Light (anti)nuclei are bound states with
binding energies of about 2.2 MeV for deuterons, 8.48 MeV
for tritons, and 7.72 MeV for 3He nuclei, orders of magnitude
smaller than the temperature of the environment created in the
high-energy nuclear collisions. In the context of the SHM, two
solutions have been proposed to explain the survival of such
loosely bound states in the hot and dense hadron gas phase
produced in ultrarelativistic heavy-ion collisions. The first
assumes that light (anti)nuclei are created at the hadronization
phase boundary as compact colorless multiquark systems with
negligible interaction cross sections with hadrons [36]. The
timescale for the evolution of their wave function is estimated
to be longer than the lifetime of the hadron gas, which is
about 10 fm/c. The second assumes that while the abundance
of elementary hadrons, including nucleons, is determined at
chemical freeze-out, the yield of light nuclei (i.e., composite
objects with a binding energy much smaller than the tem-
perature) continues to evolve in thermal equilibrium between
nuclei and nucleons until the kinetic freeze-out is reached
[48].

Recent model developments have tackled the unresolved
question of the survival of weakly bound multibaryon states
within the hadron gas phase with intense rescattering, combin-
ing relativistic hydrodynamics with a subsequent afterburner
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of hadrons [39,40]. Within these models, nucleons and light
nuclei are generated at the phase transition using the Cooper-
Frye formula [49], which characterizes hadron generation
based on the local energy density of the fireball. The hadron
yields are set according to the values predicted by the thermal
model at the chemical freeze-out temperature. The propa-
gation of these particles through the hadronic medium is
simulated using various transport codes (such as UrQMD

[50,51] or SMASH [40]), considering the well-established in-
teraction cross sections and resonant states.

Finally, in the coalescence model, light (anti)nuclei are
formed by the coalescence of nucleons that are close in-
phase space and with matching spin-isospin configurations,
at kinetic freeze-out (occurring when the elastic interactions
stop and the momentum of the particles is fixed). In the
state-of-the-art implementation of the coalescence model, the
formation probability is calculated by folding the phase-space
distributions of (point-like) nucleons with the Wigner den-
sity distribution of the bound state. Significant progress has
been made over the last decade in these phenomenological
approaches driven by the growing amount of available data.

Although both SHM and coalescence models are success-
ful in describing different aspects of nuclear production, they
are also different in some key aspects. For instance, the coales-
cence model is sensitive to the size of the nucleus and its wave
function, and in particular to the relation between nuclear size
and emission source size [43,45]. On the contrary, the SHM
predictions depend only on the mass and on the spin degener-
acy factor of the nucleus. This aspect is particularly relevant
in small collision systems (e.g., pp and p-Pb collisions),
since the size of the nucleus (rdeuteron = 1.96 fm and r3He =
1.76 fm [52]) and that of the baryon-emitting source (r ≈ 1
fm in pp collisions [53] and r ≈ 1.5 fm in p-Pb collisions
[54]) are comparable. In turn, in the SHM the evolution of the
particle yields with the event multiplicity is driven solely by
the baryon number conservation, assuming that the hadroniza-
tion temperature is constant. For this reason, an interesting
observable to test the consistency of models describing the
hadron chemistry in high-energy hadronic collisions is the
ratio of the integrated yields of nuclei relative to those of
protons (and of pions, to test the SHM only). Such ratios
increase smoothly with multiplicity and such behavior is qual-
itatively reproduced by both SHM and coalescence models.
In the former, the plateau of the ratios at high multiplicity is
described by the grand-canonical ensemble of the statistical
model [36,45,55], where all the charges are only conserved on
average, but fluctuate from one microscopic state to another.
Such ensemble holds true to describe the particle yield in the
case of sufficiently large reaction volumes, as in heavy-ion
collisions. In the low-multiplicity region, corresponding to
small collision systems, the exact conservation of charges
from one microscopic state to another plays an important
role in determining the final-state particle yield. Therefore,
the canonical ensemble of the SHM is used. This results in
the so-called canonical suppression of the yields of particles
carrying conserved charges, relative to their grand-canonical
values. In the coalescence models, instead, the trend of the
particle ratios with multiplicity is related to the interplay of the
increasing source size and the decreasing coalescence proba-

bility with increasing multiplicity. Finally, in the SHM nuclei
are produced at the chemical freeze-out, when the hadron
species are fixed, while in the coalescence model nucleons
coalesce to form nuclei between the chemical and the kinetic
freeze-out. Many efforts have been put forward recently, in
the latest developments of the SHM, to explain the survival
of nuclei in a system with Tchem ≈ 155 MeV, postulating the
possibility of their formation at the kinetic freeze-out (which
occurs later, at Tkin ≈ (100–120) MeV [56,57]), see, for in-
stance, Refs. [40,58–61].

The current models present contrasting scenarios when
describing the posthadronization phase of loosely bound
states. Hence, it becomes important to examine the measure-
ments of the elliptic flow of light (anti)nuclei, namely, the
second-harmonic component v2 obtained from the Fourier
decomposition of the azimuthal distribution of their momen-
tum with respect to the reaction plane. These measurements
offer valuable insights into the propagation of these parti-
cles through the hadron gas phase and the dynamics of their
interactions with other particles. Specifically, according to
relativistic hydrodynamics, a clear mass ordering is expected
at low pT (i.e., at fixed pT lighter particles have larger v2

compared with heavier particles), when comparing the elliptic
flow of nuclei and that of other hadron species, as observed in
Refs. [11,62,63]. Such mass ordering arises from the interplay
between the radial flow (quantifying the isotropic expansion
of the system of particles created in the collision) and the
anisotropic flow, and therefore provides constraints on the
transport coefficients of the medium. The mass ordering of
v2 can also help to shed light on the coalescence mechanism,
as a scaling relation is expected to follow from a naive quark
coalescence model [64] that only allows quarks with equal
momentum to form a hadron [65].

In this article, the first measurements of (anti)deuteron and
(anti)3He production in Xe-Xe collisions at

√
sNN = 5.44 TeV

and of the (anti)deuteron elliptic flow are presented. These
results contribute to the global picture that emerged from pre-
vious measurements, which is characterized by a continuous
evolution of the ratios of the yield of (anti)nuclei to those
of pions and protons and of the coalescence parameters with
the charged-particle multiplicity. The results presented in this
paper cover multiplicity intervals bridging between p-Pb and
Pb-Pb collisions and fill the gaps between some measurements
in heavy-ion collisions. The results are discussed in the con-
text of the statistical hadronization and baryon coalescence
models.

II. EXPERIMENTAL APPARATUS

The exceptional capabilities of ALICE in tracking and par-
ticle identification (PID) make it well suited for the study of
light nuclei and antinuclei in various collision systems at the
LHC. A detailed description of the ALICE subdetectors and
their performance can be found in Refs. [66,67] and related
references.

The analysis described in this work employs four detectors:
the inner tracking system (ITS), the time projection chamber
(TPC), the time-of-flight (TOF), and the V0 detector [68].
These detectors (except for the V0, which is installed in the
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forward region) are positioned in the central barrel inside a
solenoidal magnet generating a magnetic field with an inten-
sity of up to B = 0.5 T.

The ITS [66,69], which covers the entire azimuthal angle
and the pseudorapidity range |η| < 0.9, serves primarily as a
tracking detector, allowing for the reconstruction of charged-
particle tracks in the vicinity of the collision point. This allows
for the precise reconstruction of the position of the primary
and secondary vertices from weak decays, starting from the
reconstructed tracks. It comprises three subsystems of silicon
detectors arranged cylindrically around the beam axis: the two
innermost layers are silicon pixel detectors (SPDs), the cen-
tral two layers are silicon drift detectors (SDDs), and finally
the two outermost layers are made of silicon strip detectors
(SSDs). The ITS plays a role in discriminating primary and
secondary nuclei produced in spallation processes with the
detector material and the beam vacuum tube, via the determi-
nation of the distance-of-closest approach (DCA) of the track
to the primary vertex.

The primary tracking detector, namely, the TPC [70],
allows for charged-particle reconstruction with up to 159
three-dimensional space points and for particle identification,
by measuring the specific ionization energy loss (dE/dx) in
the gas. The TPC is a cylindrical drift chamber, coaxial with
the beam vacuum tube and filled with a gas mixture containing
90% Ne and 10% CO2 at atmospheric pressure during the
Xe-Xe data acquisition. With a radius ranging from 85 to
250 cm and a length of 500 cm in the beam direction, the TPC
volume covers the same pseudorapidity interval as the ITS.
The TPC provides a measurement of the specific energy loss
with a resolution ranging from about 5.2% in pp collisions to
about 6.5% in central Pb-Pb collisions [67], when traversed
by minimum ionizing particles throughout the entire detector.
Charged-particle transverse momentum is measured with a
resolution ranging from about 1% at 1 GeV/c to approxi-
mately 3% at 10 GeV/c using the TPC.

The TOF detector [71] covers the full azimuthal angle and
the pseudorapidity interval |η| < 0.9. It consists of multigap
resistive plate chambers (MRPCs) positioned at an average
distance of 3.8 m from the nominal interaction point. The TOF
time resolution is 56 ps [72], while the event time resolution
varies depending on the collision system and the track multi-
plicity [73]. The start time for the time-of-flight is provided by
the T0 detector [68] and by the TOF detector itself. The TOF-
based determination of the start time is particularly useful for
measurements at large multiplicities, as is the case of Xe-Xe
collisions for which a resolution better than 20 ps is achieved
if more than 50 tracks are used for its determination. The T0
consists of two arrays of Cherenkov counters, T0A and T0C,
located on opposite sides of the interaction point, covering the
pseudorapidity regions 4.6 < η < 4.9 and −3.3 < η < −3.0.
A weighted average is performed when both T0 and TOF
detectors have measured the start time [73]. For the particle
identification, the measured time-of-flight is compared with
the expected time calculated from the track momentum and
length for each possible mass hypothesis.

Finally, the V0 detector [68] is used to define the
minimum-bias (MB) trigger (requiring coincident signals in
the V0 detectors to be synchronous with the bunch crossing

time defined by the LHC clock) and to select events based
on their multiplicity, which is related to the centrality of the
Xe-Xe collision. It comprises two arrays of plastic scintillators
(V0A and V0C) located at asymmetric positions, one on each
side of the interaction point. They cover the pseudorapidity
regions 2.8 < η < 5.1 and −3.7 < η < −1.7, respectively.
The analysis of (anti)deuterons is conducted in several central-
ity classes defined as percentiles of the measured amplitude
distribution in the V0A and V0C counters [74]: 0%–10%,
10%–20%, 20%–40%, 40%–60%, and 60%–90%, where 0%
corresponds to the most central collisions and 90% to the most
peripheral ones. Instead, (anti)3He nuclei, due to their lower
abundance, are analyzed in a single wide centrality class,
0%–90%.

III. DATA ANALYSIS

A. Event selection

The data used for this analysis were collected in 2017 when
Xenon nuclei (129

54 Xe) collided at a center-of-mass energy
per nucleon-nucleon collision of

√
sNN = 5.44 TeV for the

first time at the LHC. The recorded instantaneous luminosity
was 2 × 10−25 cm−2 s−1, and the detected hadronic interac-
tion rate was around 80–150 Hz. The integrated luminosity
delivered to ALICE was fractions of µb−1 [75]. The solenoidal
magnet of the ALICE apparatus was operated in a low-field
configuration of 0.2 T. The minimum-bias event trigger was
fully efficient in the centrality interval 0%–90% as demon-
strated by the flat centrality distribution [76]. The analysis
is performed in different centrality classes, selected offline,
with varying widths depending on the analysis and the nucleus
species. To keep the conditions of the detectors as uniform as
possible and reject background collisions, the z coordinate of
the primary vertex along the beam axis is required to be within
10 cm from the nominal interaction point. Given the low
interaction rate during data taking, the pile-up of collisions
in the same bunch crossing is found to be negligible. Events
with pile-up occurring during the drift time of the TPC are
rejected based on the correlation between the total number
of the space points (clusters) in the TPC and the number
of SDD and SSD clusters, as described in Ref. [77]. The
residual pile-up contribution, estimated using Monte Carlo
(MC) simulations anchored to the same data-taking period,
is found to be less than 1%. The relative contribution of tracks
produced in out-of-bunch collisions is further reduced for
(anti)deuterons because their reconstructed tracks are required
to have an associated hit in the TOF detector, which is used for
the (anti)deuteron identification. In the case of (anti)3He, due
to their low production rate, the probability for simultaneous
productions in pile-up events is less than 6 × 10−9. Any bias
in the multiplicity of the event containing an (anti)3He does
not affect the analysis, which is performed in the full cen-
trality interval 0%–90%. In total, about 1.3 million events are
selected for further analysis.

B. Track selection and identification of (anti)nuclei

(Anti)deuteron and (anti)3He candidates are selected from
a sample of charged-particle tracks reconstructed in the ITS
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FIG. 1. Distribution of the (dE/dx − 〈dE/dx〉3He )/σ
3He
dE/dx method used to extract the signal of

3
He (left), and the distribution of (�t −

�t exp
d )/σTOF used to extract the signal of d (right). The regions highlighted in green represent the regions of the signal integration, different for

the two signal extraction methods.

and TPC in the pseudorapidity range |η| < 0.8. Several track
quality criteria are applied, such as having a number of TPC
crossed rows larger than 70, a number of TPC clusters (NTPC

cls )
used for the dE/dx calculation larger than 50 to ensure a good
dE/dx resolution, a fraction of TPC crossed rows to findable
clusters larger than 80%, a minimum of two reconstructed
hits in the ITS with at least one located in any of the two
innermost layers, and a good track fit in the TPC by requir-
ing χ2/NTPC

cls < 4. The contribution from secondary tracks is
reduced by requiring a maximal DCA to the primary vertex in
the transverse plane (DCAxy) and in the longitudinal direction
(DCAz) lower than 0.1 cm.

The (anti)3He identification is based on the energy
loss per unit of track length measured by the TPC
[1,2,4,7,9,13,14,16,17]. The (anti)3He candidates are selected
by requiring that their measured dE/dx is within 3σ

3He
dE/dx from

the expected average value, calculated using the Bethe-Bloch
parametrization [78], where σ

3He
dE/dx is the dE/dx resolution

for (anti)3He. The contamination from other particle species
is found to be negligible over the full transverse-momentum
range covered by this measurement, which is 1 < pT <

7 GeV/c. In the case of (anti)deuterons, both TPC and TOF
information are used to extract signal candidates. A sample
of deuteron candidates is selected by applying a 3σ selec-
tion on the difference between the measured dE/dx in the
TPC and the expected average value for deuterons. Then the
(anti)deuteron signal is extracted using the TOF information
of preselected deuteron candidates [1,3,4,6,7,10,12–14,16–
18], from a fit to the (�t − �texp)/σTOF distribution, where
�t is the time-of-flight measured by the TOF detector, �texp is
its expected value for deuterons, and σTOF is the time-of-flight
resolution of TOF. To model the signal the fit is executed using
a Gaussian function with an exponential tail, in the range
−7 < (�t − �texp)/σTOF < 15. To model the background the
fit uses an exponential for pT < 4 GeV/c or the sum of an
exponential and a linear function for pT > 4 GeV/c. The
(anti)deuteron yield is calculated by integrating the signal
counts (counting the entries in the histogram after subtracting
the background fit function) in the range [−3σ fit

TOF, +3.5σ fit
TOF],

with σ fit
TOF being the TOF resolution extracted from the fit.

The reason for an asymmetric interval is the presence of an
exponential tail towards higher values of (�t − �texp)/σTOF,
which reflects the TOF detector time response [71]. As an
example, the signal extraction procedure for both (anti)3He
and (anti)deuterons is shown in Fig. 1.

C. Corrections based on simulations

The product of the geometrical acceptance and the recon-
struction and selection efficiency (acceptance × efficiency)
of (anti)nuclei and the contamination from secondary nuclei
from spallation are calculated using Monte Carlo (MC) sim-
ulations. The HIJING [79] event generator is used to simulate
Xe-Xe collision events. Nuclei and antinuclei are embedded
into the simulated events with a uniform distribution in trans-
verse momentum and rapidity, within 0 < pT < 10 GeV/c
and −1 < y < 1, respectively. The interactions of (anti)nuclei
with the detector materials are simulated using GEANT4 [80]
as transport code. Considering that the pT distributions of
nuclei and their relative abundances in the simulation are
different from data, centrality- and pT-dependent corrections
are applied in the MC simulations using weights. These are
defined as the ratio of measured and generated pT spectra
in the simulation. A blast-wave (BW) parametrization [81]
is used to describe the pT shape in real data in the full
range of transverse momentum. The parameters of the BW
functions are obtained in the first iteration using the effi-
ciency calculated based on the generated pT distributions.
The obtained BW parametrizations in different centrality in-
tervals are then used to reweight the input shape in the MC
and these updated efficiencies are used to correct the raw
spectra. This iterative procedure converges already after two
iterations.

The acceptance × efficiency is calculated in each centrality
and pT interval as the ratio of reconstructed and gener-
ated primary (anti)nuclei in the simulations. The generated
(anti)nuclei are counted in |y| < 0.5 in order to normalize
the corrected yield to one unit of rapidity. The same track
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selection and particle identification criteria as in data are
applied to the reconstructed sample in the MC. Particles
from pile-up events are removed from the generated sample
and kept in the reconstructed sample to properly incorporate
the pile-up correction into the efficiency. The (anti)deuteron
efficiency varies from about 20% and 30% for antimatter
and matter, respectively, for pT < 1.2 GeV/c to about 45%
for antideuterons and 50% deuterons, for pT > 1.2 GeV/c,
with a small centrality dependence, while that of (anti)3He
ranges between about 60% for pT < 2 GeV/c to about 80%

at larger pT. The
3
He efficiency is a few percent smaller than

that of 3He because of antimatter annihilation in the detector
material, but still the difference between the 3He and

3
He

efficiencies is smaller compared with the statistical precision
of data.

The fraction of primary deuterons is extracted in different
centrality and pT intervals from fits to the DCAxy distributions
with templates. Antideuterons from data are used as templates
for primary deuterons, since measured antideuterons are all
primary as there are no secondary antideuterons produced
in the interactions in the material. The DCAxy templates for
secondary deuterons from spallation are taken from MC sim-
ulations. The DCAxy distributions in data are filled using a
high-purity sample of deuterons selected by requiring that the
measured dE/dx and time of flight are within three standard
deviations of their expected values. The fraction of primary
deuterons is calculated by integrating the primary-deuteron
template from the fit in the interval DCAxy < 0.1 cm and
dividing it by the number of deuterons in the same DCAxy

range. The fractions of primary deuterons extracted from the
DCAxy fits depend on centrality, with values ranging from
50% in central to almost 90% in peripheral collisions at low
pT. These fractions converge to 100% for pT > 1.6 GeV/c.
The fraction of secondary 3He from spallation could not be
extracted due to the very limited number of counts. For this
reason, the 3He spectrum is measured only for pT > 2 GeV/c
where the contribution from spallation is negligible.

D. Elliptic-flow measurement

The azimuthal distribution of (anti)deuterons produced in
the Xe-Xe collisions with respect to the nth order flow sym-
metry plane �n [82–85] can be expressed as a Fourier series

E
d3N

dp3
= 1

2π

d2N

pTdpTdy

(
1 +

∞∑
n=1

2vn cos [n(ϕ − �n)]

)
, (1)

where E is the energy of the particle, p the momentum, ϕ the
azimuthal angle, y the rapidity, and

vn = 〈cos [n(ϕ − �n)]〉. (2)

The second coefficient v2 of the Fourier series is called elliptic
flow and is related to the initial geometrical spatial asymmetry
of the matter created in heavy-ion collisions. The elliptic-
flow coefficients are measured using the scalar product (SP)
method [82,86], as done in Refs. [3,11]. This is a two-particle
correlation technique based on the scalar product of the unit
flow vector of the particle of interest, k, and the Q vector. The

unit flow vector is denoted by un,k = exp(inϕk ), where ϕk is
the azimuthal angle of the particle k. The Q vector is computed
from the azimuthal distribution of a set of charged particles
(so-called reference flow particles) as

Qn =
∑

wie
inϕi , (3)

where wi is a weight applied to correct for nonuniform
acceptance and efficiency of the detector (as done in
Refs. [11,62,87]), n is the order of the harmonic, and ϕi is
the azimuthal angle for the ith reference flow particle. The vn

flow coefficients are calculated as

vn{SP} = 〈〈un,kQ∗
n〉〉√

〈QnQA∗
n 〉〈QnQB∗

n 〉
〈QA

n QB∗
n 〉

. (4)

Single brackets 〈. . .〉 denote an average over all events, while
double brackets 〈〈. . .〉〉 indicate an average over all particles
in all events, and ∗ denotes the complex conjugate. The de-
nominator is a correction factor that is introduced to take into
account the resolution of the Qn vector. In this analysis, the
Qn vector is calculated from the azimuthal distribution of the
energy deposition measured in the V0A, while the QA

n and QB
n

vectors (used to estimate the resolution of Qn) are determined
from the azimuthal distribution of the energy deposited in
the V0C and that of tracks reconstructed in the TPC, respec-
tively. Using these detectors, a pseudorapidity gap |�η| > 2
between the particle of interest and the reference flow particles
is introduced. Such a pseudorapidity gap reduces nonflow
effects, which are correlations not arising from the collective
expansion of the system (e.g., resonance decays and jets).

The v2 coefficients of (anti)deuterons are calculated in
three different ranges of �M = M − Md , where M is the
particle mass obtained from the measured momentum and
time of flight of each deuteron candidate track, and Md is
the deuteron mass taken from CODATA [88]. The vTot

2 (�M)
contains contributions from the signal (vsig

2 ) and from the
background (vbkg

2 )

vTot
2 (�M ) = v

sig
2

N sig

N tot
(�M ) + v

bkg
2

Nbkg

N tot
(�M ), (5)

where N sig is the number of deuterons, Nbkg is the number of
background particles, and N tot is their sum. v

sig
2 is extracted

from the value of vTot
2 measured in the central interval of the

�M distribution, in which v
bkg
2 is evaluated using the average

between the left and right �M intervals and propagating the
statistical uncertainties accordingly. The N sig and Nbkg are
obtained from the fit to the �M distribution using a Gaussian
with an exponential tail for the signal and an exponential for
the background. The signal extraction procedure is illustrated
in Fig. 2 for 0.8 < pT < 1.6 GeV/c in the centrality interval
0%–20%. To avoid contamination from secondary deuterons
produced by spallation in the detector material, for the flow
measurement only antideuterons are used for pT < 1 GeV/c.

IV. SYSTEMATIC UNCERTAINTIES

The dominant sources of systematic uncertainties on the
(anti)nucleus pT spectra and elliptic flow are related to the
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FIG. 2. The �M distribution (left) and the extracted v2 (right) of deuteron candidates as a function of �M for 0.8 < pT <

1.6 GeV/c in the centrality interval 0%–20% in Xe-Xe collisions. The statistical uncertainties on the data points are represented by bars.
The measurement is carried out at midrapidity, i.e., |y| < 0.5.

event and track selections, ITS-TPC matching, particle iden-
tification, signal extraction, absorption of (anti)nuclei in the
detector material, and material budget. These are summarized
in Table I, reporting the uncertainties in the lowermost and
uppermost pT intervals, as the systematic uncertainties evolve
monotonically with pT. The final systematic uncertainty as-
signed to the data points is obtained by summing in quadrature
all individual contributions. The methods used to estimate the
systematic uncertainties from these sources are illustrated in
the following.

A. Event-selection uncertainty

The systematic uncertainty from the event selection is
estimated by varying the event selection criteria, i.e., the re-
quirement on the z coordinate of the primary vertex and the
pile-up rejection. This contribution is found to be about 1%
for both pT spectra and elliptic-flow analyses.

B. Track selection, PID, and ITS-TPC
matching-efficiency uncertainty

The systematic uncertainties related to track selection and
particle identification are estimated by repeating the full anal-

ysis chain using 50 different settings with different selection
criteria. These are chosen by sampling the analysis parameters
randomly from uniform probability distributions. The stan-
dard deviation of the distribution of fully corrected yields is
taken as systematic uncertainty in each pT and centrality inter-
val. This method, based on the frequentist approach to explore
the probability density function of measurements, takes into
account possible correlations between the different analysis
parameters. The contribution from ITS-TPC matching effi-
ciency is estimated from charged-particle tracks by comparing
the probabilities of prolonging a track from the TPC to the
ITS in data and MC [10]. This uncertainty is approximately
2% and is added in quadrature to the previous contributions.

C. Signal-extraction uncertainty

The signal-extraction uncertainty is assigned only to
(anti)deuteron pT spectra and elliptic flow, while for 3He it
is found to be negligible. Such contribution is estimated by
repeating the fit to the TOF signal using different intervals.
The default fit range is −7 < (�t − �texp)/σTOF < 15, while
for systematic uncertainties the limits are varied with a uni-
form random sampling in [−10,−7] for the lower limit and
in [10,15] for the upper limit. The standard deviation of the

TABLE I. Summary of the different contributions to the systematic uncertainties on the (anti)nucleus pT-differential yields and
(anti)deuteron elliptic flow, in the lowermost and uppermost pT intervals. All values are in percentage.

d (d) yield d + d elliptic flow 3He (
3
He) yield

pT range (GeV/c) 0.8–1.2 4.0–5.0 0.8–1.6 4.0–5.0 1.0–2.0 5.0–7.0
Source of uncertainty
Event selection 1 (1) 1 (1) 1 1 1 (1) 1 (1)
Tracking and PID 1 (2) 1 (2) 2 2 1 (4) 5 (6)
ITS-TPC matching 2 (2) 2 (2) 2 2 2 (2) 2 (2)
Signal extraction 1 (1) 5 (5) 2 7
Absorption 1 (6) 0.6 (3) 6 3 0.3 (2) 0.3 (1)
Material budget 1 (1) 1 (1) 1 1 1 (1) 1 (1)
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FIG. 3. Transverse-momentum differential yields of the average of deuterons and antideuterons in different centrality classes (left panel),

and of the average of 3He and
3
He (right panel) in the centrality class (0%–90%). Dotted lines show the blast-wave individual fit to the pT

spectra. Statistical and systematic uncertainties are shown as vertical bars and boxes, respectively.

extracted yields is taken as a systematic uncertainty in each
pT and centrality interval. Additionally, only for flow mea-
surement, vbkg

2 was evaluated by using only the left or the right
�M interval for v

bkg
2 in Eq. (5).

D. Absorption and material budget uncertainties

The contribution due to the uncertainty on the measured
inelastic cross section of (anti)nuclei with the detector ma-
terial is estimated using MC productions with increased and
decreased cross section according to the measured uncertain-
ties [89–94], as done in Ref. [2]. The ALICE detector material
is known with a precision of 4.5% [67]. The systematic
uncertainty on the (anti)nucleus yield related to the uncer-
tainty in the material budget is taken from the measurement
of (anti)nucleus production in Pb-Pb collisions at

√
sNN =

5.02 TeV [16].

V. RESULTS

A. Transverse-momentum spectra

The transverse-momentum spectra of d and d , as well as

those of 3He and
3
He are found to be consistent within the

uncertainties in all centrality classes, as expected in the case
of vanishing baryochemical potential at midrapidity at LHC
energies. Hence, the average pT-differential yields of
deuterons and antideuterons, and of 3He and

3
He, are

calculated, as presented in Fig. 3. The slope of the transverse-
momentum distributions flattens when moving from pe-
ripheral to central collisions, i.e., with increasing event
multiplicity, as it was already observed in p-Pb collisions
at

√
sNN = 5.02 TeV [7] and at

√
sNN = 8.16 TeV [17],

and in Pb-Pb collisions at
√

sNN = 2.76 TeV [2,3] and at√
sNN = 5.02 TeV [16].
To extrapolate the yields in the unmeasured pT intervals,

a blast-wave function [81] is fitted to the pT distributions of
(anti)d and (anti)3He. For the case of the 3He, the parameters
of the blast-wave fit function except for the normalization

are constrained to those of the deuteron [95]. The resulting
pT-integrated yields (dN/dy) of (anti)deuterons and (anti) 3He
are calculated summing the two contributions obtained by
integrating the data points in the measured pT region and
by integrating the fit function in the unmeasured one. The
difference between the integral of the fit function and the
integral of the data points is accounted for in the systematic
uncertainty of the final yields. The resulting dN/dy are sum-
marized in Table II. The fraction of yield obtained from the
extrapolation of the fit function varies between 8% and 35%
from central to peripheral collisions for (anti)d , and ≈9% for
(anti)3He.

The systematic uncertainties on the integrated yields
were obtained extrapolating the uncertainties associated with
the pT spectra, treating differently the pT-correlated and -
uncorrelated systematic uncertainties. The uncertainties on
material budget, event selection, signal extraction, ITS-TPC
matching efficiency, and absorption are found to be highly
correlated in pT and are considered as fully pT correlated,
whereas the uncertainties due to track selection and PID
are found to be mostly uncorrelated with transverse momen-
tum. For the computation of the systematic uncertainties on
the integrated yields three contributions have been consid-
ered, as done in previous similar analyses [7,17]: (i) the
pT-uncorrelated contribution was evaluated with the Gaussian
sampling method; (ii) the correlated part of the systematic
uncertainties of the pT spectra was used to shift accordingly
the data points up and down with respect to the mean value,
allowing the refit of the pT spectra; (iii) the uncertainty on the
extrapolation was evaluated fitting the spectra with several al-
ternative functions (i.e., Boltzmann [96], mT exponential [97],
and Lévy-Tsallis [98]) and taking into account the spread with
respect to the blast-wave results. In case (i), the systematic
uncertainty was taken as the rms of the distribution of the
varied integrated yield values, whereas in cases (ii) and (iii)
half of the difference between the maximum and the minimum
yields was considered as uncertainty. The final uncertainty
was obtained as the sum in quadrature of the different con-
tributions.
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TABLE II. Integrated yields (dN/dy) of the average of deuterons and antideuterons and of the average of 3He and
3
He, for each centrality

class measured at midrapidity (|y| < 0.5). The values of the average charged-particle multiplicity density (〈dNch/dη〉||η|<0.5) are taken from
Ref. [99]. The first uncertainty on dN/dy is statistical and the second is systematic.

Centrality class 〈dNch/dη〉||η|<0.5 dN/dy[(d + d )/2] dN/dy[(3He + 3
He)/2]

0%–10% 1053 ± 25 (8.72 ± 0.17 ± 0.52) × 10−2

10%–20% 706 ± 17 (6.19 ± 0.12 ± 0.37) × 10−2

20%–40% 397 ± 9 (3.86 ± 0.08 ± 0.23) × 10−2

40%–60% 158 ± 4 (1.64 ± 0.03 ± 0.10) × 10−2

60%–90% 40 ± 1 (3.25 ± 0.06 ± 0.19) × 10−3

0%–90% 333 ± 5 (2.99 ± 0.06 ± 0.19) × 10−2 (7.45 ± 0.94 ± 0.67) × 10−5

B. Ratio to proton and pion yields

The consistency of models describing the hadron chemistry
in high-energy hadronic collisions can be tested by com-
paring the model predictions with the measured yields for
different hadron species or, alternatively, with yield ratios
of different hadrons. The ratios of the measured yields of
nuclei and those of protons are sensitive to the production
mechanism as they remove the dependence on the volume
of the system while keeping the dependence on the freeze-
out temperature. In Fig. 4 the deuteron-to-proton (top panel)
and 3He-to-proton (bottom panel) yield ratios measured
in all available collision systems at the LHC as a func-
tion of the average charged-particle pseudorapidity density
〈dNch/dη〉 [2,4,6,7,13,17] are compared with the predictions
from the statistical hadronization model with canonical en-
semble (CSM) and the coalescence one. The results from
all available collision systems at

√
sNN = 5.02 and 5.44 TeV

are highlighted in color and show a common and smooth
increasing trend with increasing 〈dNch/dη〉, in both d/p and
3He /p yield ratio cases. The results at

√
sNN = 5.02 and

5.44 TeV follow the same trend as the results at different
collision energies (shown in gray in Fig. 4).

For the coalescence predictions, the probability of forming
an (anti)nucleus is given by the overlap of the phase-space
distributions of the constituent nucleons in the emission
source with the Wigner density of the bound state. The latter
is calculated approximating the (anti)nucleus internal wave
function with a Gaussian function [100]. From the studies
shown in Ref. [47], up to a factor 50% difference in the
coalescence predictions for the momentum distribution of
deuterons can be expected using a Gaussian wave function
instead of a more realistic one, such as Argonne v18. For
3He, the coalescence process can happen in two ways,
either as a two-step process in which the 3He is formed
by the coalescence of a deuteron and a proton (two-body
coalescence), or as a three-body coalescence process in which
three nucleons combine to form an 3He nucleus [100]. In
the case of 3He /p, the measured ratio in Xe-Xe collisions
is higher than the prediction of the coalescence models by
about 2σ . Notably, the calculations with two- and three-body
coalescence yield similar results for the 3He /p ratios at the
multiplicity of Xe-Xe collisions. The difference between the
two predictions is larger at lower multiplicity, i.e., in the range
covered by pp and p-Pb collisions. In this multiplicity region,
the two-body coalescence overshoots the data by ≈3σ , with
the exception of the 20%–40% centrality class of p-Pb

collisions at
√

sNN = 5.02 TeV (corresponding to
〈dNch/dη〉 ≈ 23), which is 5σ away from the model. The

FIG. 4. Deuteron-to-proton (top panel) and 3He-to-proton (bot-
tom panel) yield ratios as a function of the average charged-particle
multiplicity density. All yields are measured at midrapidity, i.e.,
|y| < 0.5 for pp, Xe-Xe, and Pb-Pb collisions, and −1 < |y| < 0
for p-Pb collisions. Statistical uncertainties are shown as vertical
lines, whereas systematic ones are shown as boxes. The coalescence
predictions are shown as bands, whose width represents the model
uncertainty. The black and green lines correspond to the expectations
of two different hypotheses of the CSM.
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three-body coalescence curve is systematically overshooting
the data in the low- and intermediate-multiplicity region,
and the agreement with the measurements worsens up to
7σ for the 20%–40% centrality class of p-Pb collisions
at

√
sNN = 5.02 TeV. None of the coalescence curves

predicts the decreasing trend of data at very high multiplicity
(〈dNch/dη〉 > 300), for neither the deuteron-to-proton nor the
3He-to-proton yield ratios.

In the CSM, exact conservation of baryon number (B),
electric charge (Q), and strangeness (S) are required in a spec-
ified volume known as correlation volume Vc. Two versions
of the CSM, both using Vc = 1.6dV/dy, are shown in com-
parison with data: (i) the first one assumes the system to be
in full chemical equilibrium and the chemical freeze-out tem-
perature to be independent of multiplicity (Tchem = 155 MeV)
[101], (ii) the second uses the Saha equation approach [48]
to compute light-nucleus abundances in the hadronic phase
and considers the annihilation freeze-out temperature to be
dependent on 〈dNch/dη〉, evolving from 160 MeV for multi-
plicities of about 20 to 132 MeV for multiplicity of about 2000
[102]. For these models, the extension of the correlation vol-
ume was investigated through the event-by-event antideuteron
number fluctuation measurement [31]. In such study it was
found that the correlation volume needed to describe the net-
deuteron number fluctuations in central Pb-Pb collisions is
Vc = (1.6 ± 0.3) dV/dy, well smaller than the one needed to
describe the net-proton number fluctuations in the same colli-
sion system, Vc = (3–5) dV/dy [103–106]. In the case of the
deuteron-to-proton yield ratios, the expectations of CSM (i)
show good agreement with data in the full multiplicity range,
with some tension in the intermediate multiplicity, where the
most peripheral Xe-Xe data point is lower than the model
by ≈3.5σ . In the multiplicity region covered by heavy-ion
collisions (〈dNch/dη〉 > 102), the predictions from CSM (i)
show a plateau that matches the predictions of the grand-
canonical statistical model [36,45,55], while data hint towards
a decreasing trend for the highest multiplicities, as observed
in the case of the p/π ratio [107]. Such a trend is qualitatively
reproduced by CSM (ii), which assumes that such suppression
is entirely due to baryon annihilation in the hadronic phase
[102]. In summary, both the coalescence and the CSM (i)
predictions describe the absolute values of the yield ratios
within ≈25%, and both reproduce the overall smoothly in-
creasing trend of the d/p ratio with increasing multiplicities,
up to 〈dNch/dη〉 ≈ 300. The CSM (ii) model reproduces the
decreasing trend of data at large 〈dNch/dη〉 values (>300) but
is further from data as compared with the other two models in
the remaining multiplicity range (〈dNch/dη〉 < 300).

In the case of the 3He /p yield ratios, at high multiplicities
(102 < 〈dNch/dη〉 < 103), the result from Xe-Xe collisions is
in agreement within 1σ with both the CSM predictions. In
the low-multiplicity range (〈dNch/dη〉 < 10), the CSM (i) hy-
pothesis is in agreement with the data within ≈1.5σ , while in
the intermediate multiplicity range it is excluded by up to 13σ .
The CSM (ii) captures the decreasing trend of the data at high
multiplicity, with an agreement within 1σ for 〈dNch/dη〉 >

100, although it is further from the data as compared with
CSM (i) and coalescence for 〈dNch/dη〉 < 100. Overall, the
coalescence models reproduce the yield ratios within ≈60%

FIG. 5. Deuteron-to-pion (top panel), and 3He-to-pion (bottom
panel) yield ratios as a function of the charged-particle multiplicity
density. All yields are measured at midrapidity, i.e., |y| < 0.5 for
pp, Xe-Xe and Pb-Pb collisions, and −1 < |y| < 0 for p-Pb colli-
sions. Lines represent statistical uncertainties, whereas boxes show
systematic ones. The solid lines correspond to the expectations of
two implementations of the CSM, see text for details.

and the general increasing trend of the data points, although
significant discrepancies remain.

The decreasing trend of the particle ratios, for increasing
multiplicity and 〈dNch/dη〉 > 100, is even more pronounced
when looking at the nucleus-to-pion yield ratios, as shown in
Fig. 5. Also in this case, the colored markers show the re-
sults from all available collision systems at

√
sNN = 5.02 and

5.44 TeV, while the results at different energies are shown
in gray. All results follow a common trend with increasing
〈dNch/dη〉. The data are compared with the predictions from
the CSM models (i) and (ii). For deuterons, the measured
ratios are described only qualitatively by the CSM (i) at low
multiplicities (〈dNch/dη〉 < 10), while the model (i) predic-
tions are consistent with the data at intermediate and high
multiplicities, within ≈1σ and 3σ , respectively, being the
most different for the most central Pb-Pb collisions at

√
sNN =

5.02 TeV. The predictions from CSM (ii) capture the trend of
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the data at high multiplicity and agree with the Pb-Pb experi-
mental data within 1σ and with the Xe-Xe results within 1.6σ ,
for 〈dNch/dη〉 > 100, while overshooting the data points for
〈dNch/dη〉 < 100. For nuclei with A = 3, the ratio to pion
yields shows discrepancies with CSM (i) of up to ≈17σ in the
intermediate-multiplicity range and up to ≈8σ with the most
central Pb-Pb data at

√
sNN = 5.02 TeV. The CSM (ii) predic-

tions agree within 2σ with the data for 〈dNch/dη〉 > 100, but
fail in reproducing the data at 〈dNch/dη〉 < 100.

The decrease of the yield ratio at high average charged-
particle multiplicity values is larger in Fig. 5 with respect to
the corresponding ratios in Fig. 4. This is due to the decreasing
trend of both the deuteron-to-pion and proton-to-pion yield
ratios, leading to the partial cancellation of this trend in the
deuteron-to-proton yield ratio. Among all presented models
only the CSM (ii) captures the decreasing trend of the nucleus-
to-proton and nucleus-to-pion yield ratios as well as their
absolute magnitude.

Finally, combining the integrated yields of 3He and
deuterons with the yield of protons measured in Ref. [107],
one can obtain the ratio (N3He × Np)/N2

d = 0.589 ± 0.134
for the multiplicity integrated class 0%–90% (corresponding
to 〈dNch/dη〉 = 333 ± 5), where the uncertainty is obtained
by propagating the sum in quadrature of the statistical and
systematic uncertainties on the single yields. This ratio in
Xe-Xe collisions is consistent within 1σ with the ratio of
(Nt × Np)/N2

d measured by ALICE in Pb-Pb collisions at√
sNN = 5.02 TeV and 2.76 TeV, corresponding to a mul-

tiplicity range spanning from about 85 to about 1800. This
ratio is also compatible within 1σ with the ratio measured by
STAR in Au-Au collisions at similar multiplicity (of about
300), and within 2σ with the rest of the ratios measured at
lower energies (

√
sNN = 7.7–200 GeV) shown in Ref. [108].

Notably, the ratio in Xe-Xe collisions makes use of the yield of
3He instead of that of triton, as triton was not measured in such
a collision system. However, the yields of triton and 3He have
been measured in Pb-Pb collisions at

√
sNN = 5.02 TeV and

found to be consistent within uncertainties [16]. Hence, such
a ratio is assumed to be qualitatively valid for comparing the
results from different energies and collision systems. Such a
ratio is a powerful tool to test the production models, as argued
in Ref. [108], since its trend as a function of multiplicity and
its overall value are expected to be different in SHM and
coalescence predictions.

C. Coalescence parameters

In the coalescence models the key observable is the coa-
lescence parameter BA, which quantifies the probability for A
nucleons to bind together forming a nucleus of mass number
A. This parameter can be obtained experimentally through the
ratio of the invariant yield of the nucleus with mass number A
and that of protons. The former is expressed as a function of
the pT of the nucleus, denoted pA

T, while the latter is evaluated
at the transverse momentum denoted pp

T, with pp
T = pA

T/A.
The coalescence parameter is obtained as follows:

BA =
[

1

2π pA
T

(
d2N

dydpT

)
A

]/[
1

2π pp
T

(
d2N

dydpT

)
p

]A

, (6)

assuming that protons and neutrons have the same pT distri-
butions because they belong to the same isospin doublet. The
coalescence parameter is related to the production probabil-
ity of the nucleus via this process and can be theoretically
evaluated from the overlap of the nucleus wave function
and the phase-space distribution of the constituents via the
Wigner function formalism [45]. This formalism allows one
to account for the source size and the quantum-mechanical
properties of the nucleons in the calculation of BA, using a
realistic wave function for the nucleus.

In Fig. 6 the coalescence parameters B2 and B3 are shown
as a function of the transverse momentum per nucleon (pT/A),
also for different centrality classes in the case of B2. The
transverse-momentum spectra of protons used for the cal-
culation of BA are taken from Ref. [107]. The coalescence
parameters increase with increasing pT/A in all centrality
classes. This trend was already observed in previous mea-
surements from ALICE, in both heavy-ion and pp collisions
[2,6,7,9,10,13,14,16,17]. Such behavior is not expected by
simple coalescence models that neglect the spatial extension
of the baryon-emitting source. However, it is well reproduced
by state-of-the-art coalescence models that use the Wigner
function formalism and properly take into account the source
size [47]. Hence, the rising trend of the coalescence parame-
ters with pT/A reflects the decreasing trend of the source size
with pT [109]: smaller source sizes (at higher pT) correspond
to larger coalescence parameters.

D. Elliptic flow of deuterons

The deuteron elliptic-flow coefficients measured in the cen-
trality classes 0%–20% and 20%–40% are shown in Fig. 7 as
a function of pT in comparison with the v2 of pions, kaons,
and protons taken from Ref. [63]. These are measured in
narrower centrality intervals as compared with the measure-
ments presented in this paper. The values corresponding to
the same centrality classes are obtained as weighted aver-
ages using the pT spectra taken from Ref. [107] as weights.
A clear mass ordering is observed at low pT, as expected
from relativistic hydrodynamics [110], with a slower rise
with pT of the (anti)deuteron v2 as compared with that of
lighter hadrons. The mass ordering of v2 at low pT develops
mostly by final-state rescattering in the hadronic phase [111],
reflecting the redistribution of the momentum anisotropy gen-
erated in the early QGP states among the different hadron
species, driven by the radial acceleration and cooling of mat-
ter during the hadronic rescattering phase. Assuming that
(anti)nuclei are produced as compact multiquark systems with
negligible final-state interactions with hadrons, their flow
would be fully developed in the partonic phase. On the other
hand, if (anti)nuclei are produced by coalescence, their flow
could also have a contribution from the hadronic rescattering
phase, which is inherited from that of the coalescing nucleons.

In Fig. 7, the deuteron v2 measurements are compared
with the expectations from the blast wave and simple co-
alescence models using the same procedure described in
Refs. [3,8,11]. The blast-wave predictions are obtained from
a simultaneous fit of the v2 and the pT spectra of pions,
kaons, and protons measured in Xe-Xe collisions at

√
sNN =

064901-10



MEASUREMENT OF THE PRODUCTION AND ELLIPTIC … PHYSICAL REVIEW C 110, 064901 (2024)

0.5 1 1.5 2 2.5
)c (GeV/A/

T
p

0.002

0.004

0.006

0.008
)3 c/2

 (
G

eV
2

B
)/2d (d+

90%−60
60%−40
40%−20
20%−10

10%−0

ALICE
| < 0.5y = 5.44 TeV, |NNsXe,−Xe

0.5 1 1.5 2 2.5
)c (GeV/A/

T
p

6−10

5−10

4−10)6 c/4
 (

G
eV

3
B

)/2He3He+3(

ALICE

90%−| < 0.5, 0y = 5.44 TeV, |NNsXe,−Xe

FIG. 6. Coalescence parameters B2 (left panel) and B3 (right panel) as a function of pT/A, measured for deuterons and 3He, respectively.
Statistical uncertainties are represented as vertical lines whereas boxes represent the systematic ones.

5.44 TeV [63,107] in the transverse-momentum ranges (0.5 <

pπ
T < 1) GeV/c, (0.7 < pK

T < 2) GeV/c, and (0.7 < pp
T <

2.5) GeV/c, respectively, and in the same centrality classes.
The four parameters of the blast-wave fits represent the kinetic
freeze-out temperature (Tkin), the mean transverse expansion
rapidity (ρ0), the amplitude of its azimuthal variation (ρa), and
the variation in the azimuthal density of the source (s2), as
described in Ref. [112].

The values of the blast-wave parameters extracted from the
fits are reported in Table III for each centrality interval. The
elliptic flow of (anti)deuterons is calculated using the parame-
ters obtained from the simultaneous fit and the deuteron mass,
i.e., assuming the same kinetic freeze-out conditions.

The simple coalescence model used in this context is based
on the assumption that the invariant yield of (anti)deuterons
with transverse momentum pT is proportional to the prod-

FIG. 7. (Anti)deuteron v2 measured at |y| < 0.5 in the centrality classes 0%–20% (left) and 20%–40% (right) in comparison with the
blast-wave predictions obtained from simultaneous fits of the pT spectra and v2 of pions, kaons, and protons [63]. Statistical and systematic
uncertainties are represented by bars and boxes, respectively.
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TABLE III. Blast-wave parameters extracted from the simultane-
ous fits of the pT spectra and v2 of pions, kaons, and protons. See text
for details.

Fit parameters Centrality 0%–20% Centrality 20%–40%

Tkin (MeV) 112 ± 2 111 ± 2
ρ0 1.29 ± 0.05 1.31 ± 0.05
ρa × 10−2 5.87 ± 0.02 8.85 ± 0.02
s2 × 10−2 4.94 ± 0.02 8.86 ± 0.02

uct of the invariant yields of its constituent nucleons with
transverse momentum pT/2 and on isospin symmetry, due to
which the proton and neutron v2 are identical. Considering
only elliptical anisotropies of the constituent nucleons, i.e.,
neglecting higher-order harmonics, the (anti)deuteron v2 from
coalescence is obtained from that of (anti)protons using the
scaling law [64]

v2,d(pT) = 2v2,p(pT/2)

1 + 2v2
2,p(pT/2)

. (7)

The comparison between the (anti)deuteron v2 measure-
ments and the simple coalescence predictions is shown in
Fig. 8. As observed already in elliptic-flow measurements in
Pb-Pb collisions for both (anti)deuterons and (anti)3He, the
data are closer to the blast-wave predictions in more central

collisions and to the coalescence model in more peripheral
collisions. These two simple models represent approximate
limits for (anti)nucleus flow which describe the measurements
in complementary centrality intervals.

As noted in Ref. [63], the flow coefficients at low pT are
expected to be smaller in Pb-Pb collisions than in Xe-Xe
collisions, due to the larger radial flow in the Pb-Pb case. Such
an effect is expected to be larger in central collisions and for
heavier particles, such as light nuclei. The results of the v2 of
deuteron in Xe-Xe collisions, however, seem to be above the
corresponding measurements in Pb-Pb collisions, as already
observed in the case of the flow of lighter identified particles
[63]. However, the present results have large statistical uncer-
tainties, which do not allow for quantitative comparisons with
the Pb-Pb results. In Ref. [63], more quantitative comparisons
between the flow coefficients of light-flavor hadrons in Pb-Pb
collisions and those in Xe-Xe collisions are discussed and
interpreted as due to the interplay of the nuclear deformation
of the Xe nucleus with respect to the Pb one, and of initial-
state fluctuations proportional to the square root of the mass
number of the colliding nucleus.

E. Thermal fit

The pT-integrated yields of d and 3He for central (0%–
10%) Xe-Xe collisions are shown in Fig. 9 together with
those of π , K , p, and φ. At the LHC, the production of most
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FIG. 9. Thermal fit to the measured hadron yields in Xe-
Xe collisions at

√
sNN = 5.44 TeV, performed with two different

implementations of the statistical hadronization model, namely,
the Thermal-FIST [113] and the GSI-Heidelberg model [115]. The
yields shown for each given species are the average of the particle
and antiparticle yields. In the bottom panel, the ratios of data to the
model calculations are shown.

light-flavor hadrons and light (anti)(hyper)nuclei in nucleus-
nucleus collisions can be described in the framework of the
statistical hadronization approach via thermal models based
on the grand canonical ensemble with a single chemical
freeze-out temperature Tchem, and a given volume V of the fire-
ball. Thermal model fits to the ALICE data for the yields of π ,
K , φ, p [107], d , and 3He measured in central (0%–10%) Xe-
Xe collisions at

√
sNN = 5.44 TeV are performed using the

open source Thermal-FIST package [113]. The fit converges
at Tchem = (154.2 ± 1.1) MeV, V = (3626 ± 298) fm3, and
χ2/NDF = 0.83. All other parameters are fixed using the
parametrizations reported in Ref. [106]. The calculations are
carried out using the energy-dependent Breit-Wigner treat-
ment of resonance widths with constant branching ratios
[114]. Enabling the partial chemical equilibrium [102], with-
out baryon annihilation, does not significantly change the
results of the calculated yields of light nuclei, once the Tchem

and Tkin are fixed to 155 MeV and 100 MeV, respectively.
The results for the yields obtained from the thermal fit are
shown as solid lines in Fig. 9. Similar fits to the measured
yields have been carried out using the GSI-Heidelberg thermal
model [115]. For such fit, the temperature of the system and
the baryochemical potential are fixed to the results obtained
in the most central Pb-Pb collisions at

√
sNN = 2.76 TeV with

the S-matrix correction for the protons (Tchem = 156.6 MeV,
μB = 0.7 MeV), while the volume V is a free parameter [116].

The fit to the Xe-Xe data converges at V = (2996 ± 102) fm3

(|y| < 0.5), and χ2/NDF = 0.55.
The main difference between the two models is in the

treatment of the interactions: while the GSI-Heidelberg ap-
proach implements the S-matrix formalism [117–121] to
include nonresonant pion-nucleon interactions at LHC ener-
gies, Thermal-FIST uses the energy-dependent Breit-Wigner
resonance widths [122]. Since the pion is the most abundant
particle at freeze-out and the corresponding cross sections for
hadronic interactions are large, the handling of πN interac-
tions is a key aspect when analyzing observables involving
nucleons in ultrarelativistic nucleus-nucleus collisions. The
different treatment of interactions is reflected in the different
results of both the volume of the system, which is driven
by the abundance of pions, and its temperature. The inter-
play between these two parameters is anticorrelated. Indeed,
fixing in the Thermal-FIST model the Tchem to a higher
value, e.g., the value used for the GSI-Heidelberg fit (Tchem =
156.6 MeV), the resulting volume becomes smaller [V =
(3095 ± 101) fm3], and comparable with that obtained with
the GSI-Heidelberg approach.

The resulting yields for the GSI-Heidelberg model are
shown as dotted lines in Fig. 9, being well compatible with
the Thermal-FIST results. Light hadron yields are taken from
Ref. [107]. The yields of all given species are the average of
the particle and antiparticle yields. The yield of 3He in the
0%–10% centrality class is obtained using the same scaling
used for alpha nuclei in Ref. [5]. The results of the models
prove that the production of light nuclei in Xe-Xe collisions
is sensitive to the temperature of the system at chemical
freeze-out. Similar fits to the most central Pb-Pb collisions
at

√
sNN = 2.76 TeV in one unit of rapidity at midrapidity,

including the S matrix, gave as results Tchem = 156.6 MeV,
μB = 0.7 MeV, and V = 4175 fm3 [116]. The Tchem obtained
from the fit of the Thermal-FIST model to the measured
light-flavor hadron yields in central Xe-Xe collisions is similar
to the Tchem obtained in central Pb-Pb collisions using the
S-matrix-based thermal model and consistent with the pseudo-
critical temperature of the chiral crossover transition predicted
by lattice QCD calculations, T = (156.5 ± 1.5) MeV [123].
Moreover, the final state light nuclei yields can also be mod-
ified by the baryon annihilation [102], which is not included
in this model comparison. However, the effect of baryon an-
nihilation is expected to be more sensitive in central Pb-Pb
collisions compared with central Xe-Xe collisions, due to the
higher charged-particle multiplicity in Pb-Pb events compared
with Xe-Xe [102]. This can be seen in Figs. 4 and 5, in which
the two model calculations agree with the measurements,
considering the current precision of the data, within 2σ for
the ratio of deuteron yields and 1σ for those of 3He.

VI. SUMMARY

Measurements of (anti)deuteron and (anti)3He production
and of the elliptic-flow of (anti)deuteron in Xe-Xe collisions
at

√
sNN = 5.44 TeV are presented. These results contribute

to the understanding of the light (anti)nucleus production
mechanism by complementing the existing picture, which
includes measurements in different collision systems and at
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different center-of-mass energies per nucleon-nucleon pair.
The hadrochemistry of light nuclei, i.e., the relative abundance
of particles, in small collision systems (pp and p-Pb) was
found to be independent of collision energies and systems
and mostly driven by 〈dNch/dη〉. This is further investigated
for the first time in heavy-ion collisions at LHC energies
by comparing the measurements in Xe-Xe collisions, and
the measurements are found to be consistent across the two
different collision systems at similar charged particle mul-
tiplicity densities. The canonical statistical model and the
coalescence predictions are tested by comparing the mul-
tiplicity dependence of (anti)deuteron and (anti)3He yields,
relative to proton and pion yields. The Xe-Xe results fit the
behavior of the previous ALICE measurements, which are
qualitatively described by the CSM and, in the case of the
ratio of deuterons to protons, also by coalescence, across all
multiplicities. A version of the CSM with Vc = 1.6 dV/dy,
a multiplicity-dependent annihilation freeze-out temperature
and the Saha equation approach [48] to compute light-nucleus
abundances in the hadronic phase, captures the decreasing
trend of data at high multiplicity, corresponding to central Pb-
Pb and Xe-Xe collisions, in all reported particle ratios. This
suggests that such suppression is due to baryon annihilations
in the hadronic phase. However, the same implementation of
the CSM model fails to simultaneously reproduce the trend
of the particle ratios at intermediate multiplicities. This shows
that at the moment there is no common implementation and
available parametrization of the CSM able to reproduce all
particle ratios from small collision systems to central heavy-
ion collisions. The yields of light-flavor hadrons produced in
Xe-Xe collisions are described, in the framework of the sta-
tistical hadronization model, with different implementations
of the thermal fit, namely, the Thermal-FIST package [113]
and the GSI-Heidelberg model [115]. In the former case, the
fit converged at Tchem = (154.2 ± 1.1) MeV, V = (3626 ±
298) fm3, while in the latter case the temperature and bary-
ochemical potential are fixed to Tchem = 156.6 MeV, μB =
0.7 MeV and the fit converges at a volume V = (2996 ±
102) fm3. The results from the two models are consistent
with each other within 2σ , with the results obtained in Pb-Pb
collisions (Tchem = 156.6 MeV) [116], and with the pseud-
ocritical temperature for the transition from QGP to hadron
gas predicted by lattice QCD calculations [T = (156.5 ±
1.5) MeV] [123]. Finally, the results of the elliptic flow of
(anti)deuterons are compared with the predictions of a simple
coalescence model and to the expectations of a blast-wave fit
of v2 and pT of light-flavor hadrons measured in the same
collision system and at the same energy. Such comparison
shows that the data are closer to the blast-wave predictions
in more central collisions and to the coalescence model in
more peripheral collisions, as already observed in the re-
sults of (anti)deuterons and (anti)3He flow measured in Pb-Pb
collisions.
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K. Mikhaylov ,142,141 N. Minafra ,118 D. Miśkowiec ,97 A. Modak ,134,4 B. Mohanty,80 M. Mohisin Khan ,15,g

M. A. Molander ,43 S. Monira ,136 C. Mordasini ,117 D. A. Moreira De Godoy ,126 I. Morozov ,141 A. Morsch ,32

T. Mrnjavac ,32 V. Muccifora ,49 S. Muhuri ,135 J. D. Mulligan ,74 A. Mulliri ,22 M. G. Munhoz ,110 R. H. Munzer ,64

H. Murakami ,124 S. Murray ,114 L. Musa ,32 J. Musinsky ,60 J. W. Myrcha ,136 B. Naik ,123 A. I. Nambrath ,18

B. K. Nandi ,47 R. Nania ,51 E. Nappi ,50 A. F. Nassirpour ,17 A. Nath ,94 C. Nattrass ,122 M. N. Naydenov ,36

A. Neagu,19 A. Negru,113 E. Nekrasova,141 L. Nellen ,65 R. Nepeivoda ,75 S. Nese ,19 G. Neskovic ,38 N. Nicassio ,50

B. S. Nielsen ,83 E. G. Nielsen ,83 S. Nikolaev ,141 S. Nikulin ,141 V. Nikulin ,141 F. Noferini ,51 S. Noh ,12

P. Nomokonov ,142 J. Norman ,119 N. Novitzky ,87 P. Nowakowski ,136 A. Nyanin ,141 J. Nystrand ,20 S. Oh ,17

A. Ohlson ,75 V. A. Okorokov ,141 J. Oleniacz ,136 A. Onnerstad ,117 C. Oppedisano ,56 A. Ortiz Velasquez ,65

J. Otwinowski ,107 M. Oya,92 K. Oyama ,76 Y. Pachmayer ,94 S. Padhan ,47 D. Pagano ,134,55 G. Paić ,65
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