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Abstract

Measurements of (anti)deuteron and (anti)3He production in the rapidity range |y| < 0.5 as a func-
tion of the transverse momentum and event multiplicity in Xe–Xe collisions at a center-of-mass
energy per nucleon–nucleon pair of

√
sNN = 5.44 TeV are presented. The coalescence parameters

B2 and B3 are measured as a function of the transverse momentum per nucleon. The ratios between
(anti)deuteron and (anti)3He yields and those of (anti)protons and pions are reported as a function of
the mean charged-particle multiplicity density, and compared with two implementations of the sta-
tistical hadronization model and with coalescence predictions. The elliptic flow of (anti)deuterons is
measured for the first time in Xe–Xe collisions and shows features similar to those already observed
in Pb–Pb collisions, i.e., the mass ordering at low transverse momentum and the meson–baryon
grouping at intermediate transverse momentum. The production of nuclei is particularly sensitive to
the chemical freeze-out temperature of the system created in the collision, which is extracted from
a grand-canonical-ensemble-based thermal fit, performed for the first time including light nuclei
along with light-flavor hadrons in Xe–Xe collisions. The extracted chemical freeze-out temperature
Tchem = (154.2 ± 1.1) MeV in Xe–Xe collisions is similar to that observed in Pb–Pb collisions and
close to the crossover temperature predicted by lattice quantum chromodynamics calculations.

*See Appendix A for the list of collaboration members
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1 Introduction

The investigation of the production mechanism of light (anti)nuclei in high-energy hadronic collisions is
one of the main topics in modern nuclear physics. The ALICE Collaboration has significantly contributed
to this field with systematic measurements of (anti)nucleus production in different collision systems and
center-of-mass energies provided by the Large Hadron Collider (LHC) [1–19]. These results extend
previous experimental measurements at lower collision energies, from the BNL Alternating Gradient
Synchrotron (AGS) [20–23], the CERN Super Proton Synchrotron (SPS) [24], and the BNL Relativistic
Heavy Ion Collider (RHIC) [25–30], to the TeV energy scale. In addition to transverse-momentum
(pT) and event-multiplicity differential measurements of (anti)nucleus production yields, the ALICE
Collaboration has also measured the anisotropic flow of (anti)deuterons [3, 11] and (anti)3He [8], and
(anti)deuteron number fluctuations [31] in Pb–Pb collisions.

Such a large wealth of experimental data is typically described using three categories of theoretical mod-
els: the statistical hadronization model (SHM) [32–38], models that combine relativistic hydrodynamics
with a subsequent hadronic afterburner [39, 40], and baryon coalescence [39, 41–47]. In the former, light
(anti)nuclei are assumed to be produced by a source in local thermal and hadrochemical equilibrium at
the chemical freeze-out with a temperature of about 155 MeV [36]. Light (anti)nuclei are bound states
with binding energies of about 2.2 MeV for deuterons, 8.48 MeV for tritons, and 7.72 MeV for 3He
nuclei, orders of magnitude smaller than the temperature of the environment created in the high-energy
nuclear collisions. In the context of the SHM, two solutions have been proposed to explain the survival
of such loosely bound states in the hot and dense hadron gas phase produced in ultrarelativistic heavy-ion
collisions. The first assumes that light (anti)nuclei are created at the hadronization phase boundary as
compact colorless multi-quark systems with negligible interaction cross sections with hadrons [36]. The
time scale for the evolution of their wave function is estimated to be longer than the lifetime of the hadron
gas, which is about 10 fm/c. The second assumes that while the abundance of elementary hadrons, in-
cluding nucleons, is determined at chemical freeze-out, the yield of light nuclei (i.e., composite objects
with a binding energy much smaller than the temperature) continues to evolve in thermal equilibrium
between nuclei and nucleons until the kinetic freeze-out is reached [48].

Recent model developments have tackled the unresolved question of the survival of weakly bound multi-
baryon states within the hadron gas phase with intense rescattering, combining relativistic hydrodynam-
ics with a subsequent afterburner of hadrons [39, 40]. Within these models, nucleons and light nuclei are
generated at the phase transition using the Cooper-Frye formula [49], which characterizes hadron gener-
ation based on the local energy density of the fireball. The hadron yields are set according to the values
predicted by the thermal model at the chemical freeze-out temperature. The propagation of these parti-
cles through the hadronic medium is simulated using various transport codes (such as UrQMD [50, 51]
or SMASH [40]), considering the well-established interaction cross sections and resonant states.

Finally, in the coalescence model, light (anti)nuclei are formed by the coalescence of nucleons that are
close in phase space and with matching spin-isospin configurations, at kinetic freeze-out (occurring when
the elastic interactions stop and the momentum of the particles is fixed). In the state-of-the-art imple-
mentation of the coalescence model, the formation probability is calculated by folding the phase-space
distributions of (point-like) nucleons with the Wigner density distribution of the bound state. Signifi-
cant progress has been made over the last decade in these phenomenological approaches driven by the
growing amount of available data.

Although both SHM and coalescence models are successful in describing different aspects of nuclear
production, they are also different in some key aspects. For instance, the coalescence model is sensitive
to the size of the nucleus and its wave function, and in particular to the relation between nuclear size and
emission source size [43, 45]. On the contrary, the SHM predictions depend only on the mass and on the
spin degeneracy factor of the nucleus. This aspect is particularly relevant in small collision systems (e.g.,
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pp and p–Pb collisions), since the size of the nucleus (rdeuteron = 1.96 fm and r3He = 1.76 fm [52]) and that
of the baryon-emitting source (r ≈ 1 fm in pp collisions [53] and r ∼ 1.5 fm in p–Pb collisions [54]) are
comparable. In turn, in the SHM the evolution of the particle yields with the event multiplicity is driven
solely by the baryon number conservation, assuming that the hadronization temperature is constant. For
this reason, an interesting observable to test the consistency of models describing the hadron chemistry in
high-energy hadronic collisions is the ratio of the integrated yields of nuclei relative to those of protons
(and of pions, to test the SHM only). Such ratios increase smoothly with multiplicity, and such behavior
is qualitatively reproduced by both SHM and coalescence models. In the former, the plateau of the
ratios at high multiplicity is described by the grand-canonical ensemble of the statistical model [36,
45, 55], where all the charges are only conserved on average, but fluctuate from one microscopic state
to another. Such ensemble holds true to describe the particle yield in the case of sufficiently large
reaction volumes, as in heavy-ion collisions. In the low-multiplicity region, corresponding to small
collision systems, the exact conservation of charges from one microscopic state to another plays an
important role in determining the final state particle yield. Therefore, the canonical ensemble of the
SHM is used. This results in the so-called canonical suppression of the yields of particles carrying
conserved charges, relative to their grand-canonical values. In the coalescence models, instead, the trend
of the particle ratios with multiplicity is related to the interplay of the increasing source size and the
decreasing coalescence probability with increasing multiplicity. Finally, in the SHM nuclei are produced
at the chemical freeze-out, when the hadron species are fixed, while in the coalescence model nucleons
coalesce to form nuclei between the chemical and the kinetic freeze-out. Many efforts have been put
forward recently, in the latest developments of the SHM, to explain the survival of nuclei in a system
with Tchem ∼ 155 MeV, postulating the possibility of their formation at the kinetic freeze-out (which
occurs later, at Tkin ∼ (100–120) MeV [56, 57]), see for instance Refs. [40, 58–61].

The current models present contrasting scenarios when describing the post-hadronization phase of loosely
bound states. Hence, it becomes important to examine the measurements of the elliptic flow of light
(anti)nuclei, namely the second harmonic component (v2) obtained from the Fourier decomposition of
the azimuthal distribution of their momentum with respect to the reaction plane. These measurements
offer valuable insights into the propagation of these particles through the hadron gas phase and the dy-
namics of their interactions with other particles. Specifically, according to relativistic hydrodynamics,
a clear mass ordering is expected at low pT (i.e., at fixed pT lighter particles have larger v2 compared
with heavier particles), when comparing the elliptic flow of nuclei and that of other hadron species,
as observed in Refs. [11, 62, 63]. Such mass ordering arises from the interplay between the radial flow
(quantifying the isotropic expansion of the system of particles created in the collision) and the anisotropic
flow, and therefore provides constraints on the transport coefficients of the medium. The mass ordering
of the v2 can also help to shed light on the coalescence mechanism, as a scaling relation is expected to
follow from a naive quark coalescence model [64] that only allows quarks with equal momentum to form
a hadron [65].

In this article, the first measurements of (anti)deuteron and (anti)3He production in Xe–Xe collisions
at

√
sNN = 5.44 TeV and of the (anti)deuteron elliptic flow are presented. These results contribute to

the global picture that emerged from previous measurements, which is characterized by a continuous
evolution of the ratios of the yield of (anti)nuclei to those of pions and protons and of the coalescence
parameters with the charged-particle multiplicity. The results presented in this paper cover multiplicity
intervals bridging between p–Pb and Pb–Pb collisions and fill the gaps between some measurements in
heavy-ion collisions. The results are discussed in the context of the statistical hadronization and baryon
coalescence models.
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2 Experimental apparatus

The exceptional capabilities of ALICE in tracking and particle identification (PID), make it well-suited
for the study of light nuclei and antinuclei in various collision systems at the LHC. A detailed description
of the ALICE subdetectors and their performance can be found in Refs. [66, 67] and related references.

The analysis described in this work employs four detectors: the Inner Tracking System (ITS), the Time
Projection Chamber (TPC), the Time-Of-Flight (TOF), and the V0 detector [68]. These detectors (except
for the V0, which is installed in the forward region) are positioned in the central barrel inside a solenoidal
magnet generating a magnetic field with an intensity of up to B = 0.5 T.

The ITS [66, 69], which covers the entire azimuthal angle and the pseudorapidity range |η | < 0.9, serves
primarily as a tracking detector, allowing for the reconstruction of charged-particle tracks in the vicinity
of the collision point. This allows for the precise reconstruction of the position of the primary and sec-
ondary vertices from weak decays, starting from the reconstructed tracks. It comprises three subsystems
of silicon detectors arranged cylindrically around the beam axis: the two innermost layers are Silicon
Pixel Detectors (SPD), the central two layers are Silicon Drift Detectors (SDD), and finally the two out-
ermost layers are made of Silicon Strip Detectors (SSD). The ITS plays a role in discriminating primary
and secondary nuclei produced in spallation processes with the detector material and the beam vacuum
tube, via the determination of the distance-of-closest approach (DCA) of the track to the primary vertex.

The primary tracking detector, namely the TPC [70], allows for charged-particle reconstruction with up
to 159 three-dimensional space points and for particle identification, by measuring the specific ionization
energy loss (dE/dx) in the gas. The TPC is a cylindrical drift chamber, coaxial with the beam vacuum
tube and filled with a gas mixture containing 90% Ne and 10% CO2 at atmospheric pressure during
the Xe–Xe data taking. With a radius ranging from 85 to 250 cm and a length of 500 cm in the beam
direction, the TPC volume covers the same pseudorapidity interval as the ITS. The TPC provides a
measurement of the specific energy loss with a resolution ranging from about 5.2% in pp collisions to
about 6.5% in central Pb–Pb collisions [67], when traversed by minimum ionizing particles throughout
the entire detector. Charged-particle transverse momentum is measured with a resolution ranging from
about 1% at 1 GeV/c to approximately 3% at 10 GeV/c using the TPC.

The TOF detector [71] covers the full azimuthal angle and the pseudorapidity interval |η | < 0.9. It
consists of Multi-gap Resistive Plate Chambers (MRPCs) positioned at an average distance of 3.8 m
from the nominal interaction point. The TOF time resolution is 56 ps [72], while the event time resolution
varies depending on the collision system and the track multiplicity [73]. The start time for the time-of-
flight is provided by the T0 detector [68] and by the TOF detector itself. The TOF-based determination
of the start time is particularly useful for measurements at large multiplicities, as it is the case of Xe–Xe
collisions for which a resolution better than 20 ps is achieved if more than 50 tracks are used for its
determination. The T0 consists of two arrays of Cherenkov counters, T0A and T0C, located on opposite
sides of the interaction point, covering the pseudorapidity regions 4.6 < η < 4.9 and −3.3 < η <−3.0.
A weighted average is performed when both T0 and TOF detectors have measured the start time [73].
For the particle identification, the measured time-of-flight is compared with the expected time calculated
from the track momentum and length for each possible mass hypothesis.

Finally, the V0 detector [68] is used to define the minimum-bias (MB) trigger (requiring coincident
signals in the V0 detectors to be synchronous with the bunch crossing time defined by the LHC clock)
and to select events based on their multiplicity, which is related to the centrality of the Xe–Xe collision.
It comprises two arrays of plastic scintillators (V0A and V0C) located at asymmetric positions, one on
each side of the interaction point. They cover the pseudorapidity regions 2.8 < η < 5.1 and −3.7 < η <
−1.7, respectively. The analysis of (anti)deuterons is conducted in several centrality classes defined as
percentiles of the measured amplitude distribution in the V0A and V0C counters [74]: 0–10%, 10–20%,
20–40%, 40–60%, and 60–90%, where 0% corresponds to the most central collisions and 90% to the
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most peripheral ones. Instead, (anti)3He nuclei, due to their lower abundance, are analyzed in a single
wide centrality class 0–90%.

3 Data analysis

3.1 Event selection

The data used for this analysis were collected in 2017 when Xenon nuclei (129
54 Xe) collided at a center-

of-mass energy per nucleon–nucleon collision of
√

sNN = 5.44 TeV for the first time at the LHC. The
recorded instantaneous luminosity was 2×10−25 cm−2s−1, and the detected hadronic interaction rate
was around 80–150 Hz. The integrated luminosity delivered to ALICE was fractions of 1 µb−1 [75].
The solenoidal magnet of the ALICE apparatus was operated in a low-field configuration of 0.2 T. The
minimum bias event trigger was fully efficient in the centrality interval 0–90% as demonstrated by the flat
centrality distribution [76]. The analysis is performed in different centrality classes, selected offline, with
varying widths depending on the analysis and the nucleus species. To keep the conditions of the detectors
as uniform as possible and reject background collisions, the z-coordinate of the primary vertex along the
beam axis is required to be within 10 cm from the nominal interaction point. Given the low interaction
rate during data taking, the pile-up of collisions in the same bunch crossing is found to be negligible.
Events with pile-up occurring during the drift time of the TPC are rejected based on the correlation
between the total number of the space points (clusters) in the TPC and the number of SDD and SSD
clusters, as described in Ref. [77]. The residual pile-up contribution, estimated using MC simulations
anchored to the same data-taking period, is found to be less than 1%. The relative contribution of tracks
produced in out-of-bunch collisions is further reduced for (anti)deuterons because their reconstructed
tracks are required to have an associated hit in the TOF detector, which is used for the (anti)deuteron
identification. In the case of (anti)3He, due to their low production rate, the probability for simultaneous
productions in pile-up events is less than 6×10−9. Any bias in the multiplicity of the event containing an
(anti)3He does not affect the analysis, which is performed in the full centrality interval 0–90%. In total,
about 1.3 million events are selected for further analysis.

3.2 Track selection and identification of (anti)nuclei

(Anti)deuteron and (anti)3He candidates are selected from a sample of charged-particle tracks recon-
structed in the ITS and TPC in the pseudorapidity range |η | < 0.8. Several track quality criteria are
applied, such as having a number of TPC crossed rows larger than 70, a number of TPC clusters (NTPC

cls )
used for the dE/dx calculation larger than 50 to ensure a good dE/dx resolution, a fraction of TPC
crossed rows to findable clusters larger than 80%, a minimum of two reconstructed hits in the ITS with
at least one located in any of the two innermost layers, and a good track fit in the TPC by requiring
χ2/NTPC

cls < 4. The contribution from secondary tracks is reduced by requiring a maximal DCA to the
primary vertex in the transverse plane (DCAxy) and in the longitudinal direction (DCAz) lower than 0.1
cm.

The (anti)3He identification is based on the energy loss per unit of track length measured by the TPC [1,
2, 4, 7, 9, 13, 14, 16, 17]. The (anti)3He candidates are selected by requiring that their measured dE/dx is
within 3σ

3He
dE/dx from the expected average value, calculated using the Bethe–Bloch parametrization [78],

where σ
3He
dE/dx is the dE/dx resolution for (anti)3He. The contamination from other particle species is

found to be negligible over the full transverse-momentum range covered by this measurement, which
is 1 < pT < 7 GeV/c. In the case of (anti)deuterons, both TPC and TOF information are used to ex-
tract signal candidates. A sample of deuteron candidates is selected applying a 3σ selection on the
difference between the measured dE/dx in the TPC and the expected average value for deuterons.
Then the (anti)deuteron signal is extracted using the TOF information of preselected deuteron candi-
dates [1, 3, 4, 6, 7, 10, 12–14, 16–18], from a fit to the (∆t −∆texp)/σTOF distribution, where ∆t is the
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time-of-flight measured by the TOF detector, ∆texp is its expected value for deuterons, and σTOF is the
time-of-flight resolution of TOF. To model the signal the fit is executed using a Gaussian function with
an exponential tail, in the range −7 < (∆t −∆texp)/σTOF < 15. To model the background the fit uses an
exponential, for pT < 4 GeV/c, or the sum of an exponential and a linear function, for pT > 4 GeV/c. The
(anti)deuteron yield is calculated by integrating the signal counts (counting the entries in the histogram
after subtracting the background fit function) in the range [−3σfit

TOF, +3.5σfit
TOF], being σfit

TOF the TOF
resolution extracted from the fit. The reason for an asymmetric interval is the presence of an exponential
tail towards higher values of (∆t −∆texp)/σTOF, that reflects the TOF detector time response [71]. As an
example, the signal extraction procedure, for both (anti)3He and (anti)deuterons, is shown in Fig. 1.
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Figure 1: Distribution of the (dE/dx−⟨dE/dx⟩3He)/σ
3He
dE/dx method used to extract the signal of 3He (left), and

distribution of (∆t −∆texp
d )/σTOF used to extract the signal of d (right). The regions highlighted in green represent

the regions of the signal integration, different for the two signal extraction methods.

3.3 Corrections based on simulations

The product of the geometrical acceptance and the reconstruction and selection efficiency (Acceptance
× Efficiency) of (anti)nuclei and the contamination from secondary nuclei from spallation are calculated
using Monte Carlo (MC) simulations. The HIJING [79] event generator is used to simulate Xe–Xe col-
lision events. Nuclei and antinuclei are embedded into the simulated events with a uniform distribution
in transverse momentum and rapidity, within 0 < pT < 10 GeV/c and –1 < y < 1, respectively. The inter-
actions of (anti)nuclei with the detector materials are simulated using GEANT4 [80] as transport code.
Considering that the pT distributions of nuclei and their relative abundances in the simulation are differ-
ent from data, centrality and pT-dependent corrections are applied in the MC simulations using weights.
These are defined as the ratio of measured and generated pT spectra in the simulation. A Blast-Wave
(BW) parametrization [81] is used to describe the pT shape in real data in the full range of transverse
momentum. The parameters of the Blast-Wave functions are obtained in the first iteration using the effi-
ciency calculated based on the generated pT distributions. The obtained BW parametrizations in different
centrality intervals are then used to reweight the input shape in the MC and these updated efficiencies are
used to correct the raw spectra. This iterative procedure converges already after two iterations.

The Acceptance × Efficiency is calculated, in each centrality and pT interval, as the ratio of reconstructed
and generated primary (anti)nuclei in the simulations. The generated (anti)nuclei are counted in |y|< 0.5,
in order to normalize the corrected yield to one unit of rapidity. The same track selection and particle
identification criteria as in data are applied to the reconstructed sample in the MC. Particles from pile-
up events are removed from the generated sample and kept in the reconstructed sample to properly
incorporate the pile-up correction into the efficiency. The (anti)deuteron efficiency varies from about
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20% and 30% for antimatter and matter, respectively for pT < 1.2 GeV/c to about 45% for antideuterons
and 50% deuterons, for pT > 1.2 GeV/c, with a small centrality dependence, while that of (anti)3He
ranges between about 60% for pT < 2 GeV/c to about 80% at larger pT. The 3He efficiency is a few
percent smaller than that of 3He because of antimatter annihilation in the detector material, but still the
difference between the 3He and 3He efficiencies is smaller compared with the statistical precision of data.

The fraction of primary deuterons is extracted in different centrality and pT intervals from fits to the
DCAxy distributions with templates. Antideuterons from data are used as templates for primary deuterons,
since measured antideuterons are all primary as there are no secondary antideuterons produced in the in-
teractions in the material. The DCAxy templates for secondary deuterons from spallation are taken from
MC simulations. The DCAxy distributions in data are filled using a high-purity sample of deuterons
selected by requiring that the measured dE/dx and time-of-flight are within 3 standard deviations from
their expected values. The fraction of primary deuterons is calculated by integrating the primary-deuteron
template from the fit in the interval DCAxy < 0.1 cm and dividing it by the number of deuterons in the
same DCAxy range. The fractions of primary deuterons extracted from the DCAxy fits depend on cen-
trality, with values ranging from 50% in central to almost 90% in peripheral collisions at low pT. These
fractions converge to 100% for pT > 1.6 GeV/c. The fraction of secondary 3He from spallation could
not be extracted due to the very limited number of counts. For this reason, the 3He spectrum is measured
only for pT > 2 GeV/c where the contribution from spallation is negligible.

3.4 Elliptic-flow measurement

The azimuthal distribution of (anti)deuterons produced in the Xe–Xe collisions with respect to the n-th
order flow symmetry plane Ψn [82–85] can be expressed as a Fourier series

E
d3N
dp3 =

1
2π

d2N
pTdpTdy

(
1+

∞

∑
n=1

2vn cos(n(ϕ −Ψn))

)
, (1)

where E is the energy of the particle, p the momentum, ϕ the azimuthal angle, y the rapidity, and

vn = ⟨cos(n(ϕ −Ψn))⟩. (2)

The second coefficient of the Fourier series (v2) is called elliptic flow and is related to the initial geomet-
rical spatial asymmetry of the matter created in heavy-ion collisions. The elliptic-flow coefficients are
measured using the Scalar Product (SP) method [82, 86], as done in Refs. [3, 11]. This is a two-particle
correlation technique based on the scalar product of the unit flow vector of the particle of interest, k, and
the Q-vector. The unit flow vector is denoted by un,k = exp(inϕk), where ϕk is the azimuthal angle of
the particle k. The Q-vector is computed from the azimuthal distribution of a set of charged particles (so
called reference flow particles) as

Qn = ∑wieinϕi , (3)

where wi is a weight applied to correct for non-uniform acceptance and efficiency of the detector (as done
in Refs. [11, 62, 87]), n is the order of the harmonic, and ϕi is the azimuthal angle for the ith reference
flow particle. The vn flow coefficients are calculated as

vn{SP}=
⟨⟨un,kQ∗

n⟩⟩√
⟨QnQA∗

n ⟩⟨QnQB∗
n ⟩

⟨QA
n QB∗

n ⟩

. (4)

Single brackets ⟨...⟩ denote an average over all events, while double brackets ⟨⟨...⟩⟩ indicate an average
over all particles in all events, and ∗ denotes the complex conjugate. The denominator is a correction
factor that is introduced to take into account the resolution of the Qn vector. In this analysis, the Qn vector
is calculated from the azimuthal distribution of the energy deposition measured in the V0A, while the QA

n
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and QB
n vectors (used to estimate the resolution of Qn) are determined from the azimuthal distribution of

the energy deposited in the V0C and that of tracks reconstructed in the TPC, respectively. Using these
detectors, a pseudorapidity gap |∆η |> 2 between the particle of interest and the reference flow particles
is introduced. Such a pseudorapidity gap reduces non-flow effects, which are correlations not arising
from the collective expansion of the system (e.g., resonance decays and jets).

The v2 coefficients of (anti)deuterons are calculated in three different ranges of ∆M = M−Md, where M
is the particle mass obtained from the measured momentum and time-of-flight of each deuteron candidate
track, and Md is the deuteron mass taken from CODATA [88]. The vTot

2 (∆M) contains contributions from
the signal (vsig

2 ) and from the background (vbkg
2 )

vTot
2 (∆M) = vsig

2
Nsig

Ntot (∆M)+ vbkg
2

Nbkg

Ntot (∆M), (5)

where Nsig is the number of deuterons, Nbkg the number of background particles and Ntot is their sum.
The vsig

2 is extracted from the value of vTot
2 measured in the central interval of the ∆M distribution, in

which vbkg
2 is evaluated using the average between the left and right ∆M intervals and propagating the

statistical uncertainties accordingly. The Nsig and Nbkg are obtained from the fit to the ∆M distribution
using a Gaussian with an exponential tail for the signal and an exponential for the background. The signal
extraction procedure is illustrated in Fig. 2 for 0.8 < pT < 1.6 GeV/c in the centrality interval 0–20%. To
avoid contamination from secondary deuterons produced by spallation in the detector material, for the
flow measurement only antideuterons are used for pT < 1 GeV/c.

0.4− 0.2− 0 0.2 0.4
)2c (GeV/M∆

0

200

400

600

800

)2 c
C

ou
nt

s/
(2

0 
M

eV
/

c < 1.6 GeV/
T

p0.8 < 
 = 5.44 TeVNNsXe −ALICE Xe

20%−0
|<0.5y|dd + 

Signal + Background
Background

0.4− 0.2− 0 0.2 0.4
)2c (GeV/M∆

0

0.1

0.2

0.3| >
 2

}
η∆

{S
P

, |
T

ot
2

v

c < 1.6 GeV/
T

p0.8 < 

 = 5.44 TeVNNsXe −ALICE Xe

20%−0 |<0.5y|

dd + 

Figure 2: The ∆M distribution (left) and the extracted v2 (right) of deuteron candidates as a function of ∆M for
0.8 < pT < 1.6 GeV/c in the centrality interval 0–20% in Xe–Xe collisions. The statistical uncertainties on the
data points are represented by bars. The measurement is carried out at midrapidity, i.e., |y|< 0.5.

4 Systematic uncertainties

The dominant sources of systematic uncertainties on the (anti)nucleus pT spectra and elliptic flow are
related to the event and track selections, ITS–TPC matching, particle identification, signal extraction,
absorption of (anti)nuclei in the detector material, and material budget. These are summarized in Table 1,
reporting the uncertainties in the lowermost and uppermost pT intervals, as the systematic uncertainties
evolve monotonically with pT. The final systematic uncertainty assigned to the data points is obtained
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Table 1: Summary of the different contributions to the systematic uncertainties on the (anti)nucleus pT-differential
yields and (anti)deuteron elliptic flow, in the lowermost and uppermost pT intervals. All values are in percentage.

d (d) yield d + d elliptic flow 3He (3He) yield

pT range (GeV/c) 0.8 – 1.2 4.0 – 5.0 0.8 – 1.6 4.0 – 5.0 1.0 – 2.0 5.0 – 7.0

Source of uncertainty

Event selection 1 (1) 1 (1) 1 1 1 (1) 1 (1)
Tracking and PID 1 (2) 1 (2) 2 2 1 (4) 5 (6)

ITS–TPC matching 2 (2) 2 (2) 2 2 2 (2) 2 (2)
Signal extraction 1 (1) 5 (5) 2 7 – –

Absorption 1 (6) 0.6 (3) 6 3 0.3 (2) 0.3 (1)
Material Budget 1 (1) 1 (1) 1 1 1 (1) 1 (1)

by summing in quadrature all individual contributions. The methods used to estimate the systematic
uncertainties from these sources are illustrated in the following.

4.1 Event selection uncertainty

The systematic uncertainty from the event selection is estimated by varying the event selection criteria,
i.e., the requirement on the z-coordinate of the primary vertex and the pile-up rejection. This contribution
is found to be about 1% for both pT spectra and elliptic-flow analyses.

4.2 Track selection, PID and ITS–TPC matching efficiency uncertainty

The systematic uncertainties related to track selection and particle identification are estimated by repeat-
ing the full analysis chain using 50 different settings with different selection criteria. These are chosen
by sampling the analysis parameters randomly from uniform probability distributions. The standard de-
viation of the distribution of fully-corrected yields is taken as systematic uncertainty in each pT and
centrality interval. This method, based on the frequentist approach to explore the probability density
function of measurements, takes into account possible correlations between the different analysis param-
eters. The contribution from ITS–TPC matching efficiency is estimated from charged-particle tracks by
comparing the probabilities of prolonging a track from the TPC to the ITS in data and MC [10]. This
uncertainty is approximately 2% and is added in quadrature to the previous contributions.

4.3 Signal extraction uncertainty

The signal extraction uncertainty is assigned only to (anti)deuteron pT spectra and elliptic flow, while
for 3He it is found to be negligible. Such contribution is estimated by repeating the fit to the TOF signal
using different intervals. The default fit range is −7 < (∆t −∆texp)/σTOF < 15, while for systematic
uncertainties the limits are varied with a uniform random sampling in [−10,−7] for the lower limit and
in [10,15] for the upper limit. The standard deviation of the extracted yields is taken as a systematic
uncertainty in each pT and centrality interval. Additionally, only for flow measurement, the vbkg

2 was
evaluated by using only the left or the right ∆M interval for vbkg

2 in Eq. 5.

4.4 Absorption and material budget uncertainties

The contribution due to the uncertainty on the measured inelastic cross section of (anti)nuclei with the de-
tector material is estimated using MC productions with increased and decreased cross section according
to the measured uncertainties [89–94], as done in Ref. [2]. The ALICE detector material is known with
a precision of 4.5% [67]. The systematic uncertainty on the (anti)nucleus yield related to the uncertainty
in the material budget is taken from the measurement of (anti)nucleus production in Pb–Pb collisions at√

sNN = 5.02 TeV [16].
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5 Results

5.1 Transverse-momentum spectra

The transverse-momentum spectra of d and d, as well as those of 3He and 3He are found to be consistent
within the uncertainties in all centrality classes, as expected in the case of vanishing baryochemical
potential at midrapidity at LHC energies. Hence, the average pT-differential yields of deuterons and
antideuterons, and of 3He and 3He, are calculated, as presented in Fig. 3. The slope of the transverse-
momentum distributions flattens when moving from peripheral to central collisions, i.e., with increasing
event multiplicity, as it was already observed in p–Pb collisions at

√
sNN = 5.02 TeV [7] and at

√
sNN =

8.16 TeV [17], and in Pb–Pb collisions at
√

sNN = 2.76 TeV [2, 3] and at
√

sNN = 5.02 TeV [16].
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Figure 3: Transverse-momentum differential yields of the average of deuterons and antideuterons in different
centrality classes (left panel), and of the average of 3He and 3He (right panel) in the centrality class (0–90%).
Dotted lines show the Blast-Wave individual fit to the pT spectra. Statistical and systematic uncertainties are
shown as vertical bars and boxes, respectively.

To extrapolate the yields in the unmeasured pT intervals, a Blast-Wave function [81] is fitted to the
pT distributions of (anti)d and (anti)3He. For the case of the 3He, the parameters of the Blast-wave fit
function except for the normalization are constrained to those of the deuteron [95]. The resulting pT-
integrated yields (dN/dy) of (anti)deuterons and (anti)3He are calculated summing the two contributions
obtained by integrating the data points in the measured pT region and by integrating the fit function in the
unmeasured one. The difference between the integral of the fit function and the integral of the data points
is accounted for in the systematic uncertainty of the final yields. The resulting dN/dy are summarized in
Table 2. The fraction of yield obtained from the extrapolation of the fit function varies between 8% and
35% from central to peripheral collisions for (anti)d, and ≈ 9% for (anti)3He.

The systematic uncertainties on the integrated yields were obtained extrapolating the uncertainties as-
sociated with the pT spectra, treating differently the pT-correlated and -uncorrelated systematic uncer-
tainties. The uncertainties on material budget, event selection, signal extraction, ITS–TPC matching
efficiency, and absorption are found to be highly correlated in pT and are considered as fully pT corre-
lated, whereas the uncertainties due to track selection and PID are found to be mostly uncorrelated with
transverse momentum. For the computation of the systematic uncertainties on the integrated yields three
contributions have been considered, as done in previous similar analyses [7, 17]: (i) the pT-uncorrelated
contribution was evaluated with the Gaussian sampling method; (ii) the correlated part of the systematic
uncertainties of the pT spectra was used to shift accordingly the data points up and down with respect to
the mean value, allowing the refit of the pT spectra; (iii) the uncertainty on the extrapolation was evalu-
ated fitting the spectra with several alternative functions (i.e., Boltzmann [96], mT-exponential [97], and
Lévy-Tsallis [98]) and taking into account the spread with respect to the Blast-Wave results. In case (i),
the systematic uncertainty was taken as the RMS of the distribution of the varied integrated yield values,
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whereas in cases (ii) and (iii) half of the difference between the maximum and the minimum yields was
considered as uncertainty. The final uncertainty was obtained as the sum in quadrature of the different
contributions.

Table 2: Integrated yields (dN/dy) of the average of deuterons and antideuterons and of the average of 3He and
3He, for each centrality class measured at midrapidity (|y| < 0.5). The values of the average charged-particle
multiplicity density (⟨dNch/dη⟩

∣∣
|η |<0.5) are taken from Ref. [99]. The first uncertainty on dN/dy is statistical and

the second is systematic.

Centrality class ⟨dNch/dη⟩
∣∣
|η |<0.5 dN/dy [(d+d)/2] dN/dy [(3He+3He)/2]

0–10% 1053 ± 25 (8.72 ± 0.17 ± 0.52) × 10−2

10–20% 706 ± 17 (6.19 ± 0.12 ± 0.37) × 10−2

20–40% 397 ± 9 (3.86 ± 0.08 ± 0.23) × 10−2

40–60% 158 ± 4 (1.64 ± 0.03 ± 0.10) × 10−2

60–90% 40 ± 1 (3.25 ± 0.06 ± 0.19) × 10−3

0–90% 333 ± 5 (2.99 ± 0.06 ± 0.19) × 10−2 (7.45 ± 0.94 ± 0.67 )×10−5

5.2 Ratio to proton and pion yields

The consistency of models describing the hadron chemistry in high-energy hadronic collisions can be
tested by comparing the model predictions with the measured yields for different hadron species or,
alternatively, with yield ratios of different hadrons. The ratios of the measured yields of nuclei and those
of protons are sensitive to the production mechanism as they remove the dependence on the volume of the
system while keeping the dependence on the freeze-out temperature. In Fig. 4 the deuteron-to-proton (top
panel) and 3He-to-proton (bottom panel) yield ratios measured in all available collision systems at the
LHC as a function of the average charged-particle pseudorapidity density ⟨dNch/dη⟩ [2, 4, 6, 7, 13, 17]
are compared with the predictions from the statistical hadronization model with canonical ensemble
(CSM) and the coalescence one. The results from all available collision systems at

√
sNN = 5.02 and

5.44 TeV are highlighted in color and show a common and smooth increasing trend with increasing
⟨dNch/dη⟩, in both d/p and 3He/p yield ratio cases. The results at

√
sNN = 5.02 and 5.44 TeV follow the

same trend as the results at different collision energies (shown in gray in Fig. 4).

For the coalescence predictions, the probability of forming an (anti)nucleus is given by the overlap of
the phase-space distributions of the constituent nucleons in the emission source with the Wigner density
of the bound state. The latter is calculated approximating the (anti)nucleus internal wave function with
a Gaussian function [100]. From the studies shown in Ref. [47], up to a factor 50% difference in the
coalescence predictions for the momentum distribution of deuterons can be expected using a Gaussian
wave function instead of a more realistic one, such as Argonne v18. For 3He, the coalescence process
can happen in two ways, either as a two-step process in which the 3He is formed by the coalescence of
a deuteron and a proton (two-body coalescence), or as a three-body coalescence process in which three
nucleons combine to form an 3He nucleus [100]. In the case of the 3He/p, the measured ratio in Xe–Xe
collisions is higher than the prediction of the coalescence models by about 2σ . Notably, the calculations
with two- and three-body coalescence yield similar results for the 3He/p ratios at the multiplicity of Xe–
Xe collisions. The difference between the two predictions is larger at lower multiplicity, i.e., in the range
covered by pp and p–Pb collisions. In this multiplicity region, the two-body coalescence overshoots
the data by ≈ 3σ , with the exception of the 20–40% centrality class of p–Pb collisions at

√
sNN = 5.02

TeV (corresponding to ⟨dNch/dη⟩ ≈ 23), that is 5σ away from the model. The three-body coalescence
curve is systematically overshooting the data in the low and intermediate multiplicity region, and the
agreement with the measurements worsens up to 7σ for the 20–40% centrality class of p–Pb collisions
at

√
sNN = 5.02 TeV. None of the coalescence curves predicts the decreasing trend of data at very high

multiplicity (⟨dNch/dη⟩> 300), for neither the deuteron-to-proton nor the 3He-to-proton yield ratios.
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Figure 4: Deuteron-to-proton (top panel) and 3He-to-proton (bottom panel) yield ratios as a function of the average
charged-particle multiplicity density. All yields are measured at midrapidity, i.e., |y|< 0.5 for pp, Xe–Xe and Pb–
Pb collisions, and −1 < |y| < 0 for p–Pb collisions. Statistical uncertainties are shown as vertical lines, whereas
systematic ones are shown as boxes. The coalescence predictions are shown as bands, whose width represents the
model uncertainty. The black and green lines correspond to the expectations of two different hypotheses of the
CSM.
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In the CSM, exact conservation of baryon number (B), electric charge (Q), and strangeness (S) are re-
quired in a specified volume known as correlation volume Vc. Two versions of the CSM, both using
Vc = 1.6 dV /dy, are shown in comparison with data: (i) the first one assumes the system to be in
full chemical equilibrium and the chemical freeze-out temperature to be independent of multiplicity
(Tchem = 155 MeV) [101], (ii) the second uses the Saha equation approach [48] to compute light-nucleus
abundances in the hadronic phase, and considers the annihilation freeze-out temperature to be depen-
dent on ⟨dNch/dη⟩, evolving from 160 MeV for multiplicities of about 20 to 132 MeV for multiplicity of
about 2000 [102]. For these models, the extension of the correlation volume was investigated through the
event-by-event antideuteron number fluctuation measurement [31]. In such study it was found out that the
correlation volume needed to describe the net-deuteron number fluctuations in central Pb–Pb collisions is
Vc = (1.6 ± 0.3) dV /dy, well smaller than the one needed to describe the net-proton number fluctuations
in the same collision system, Vc = (3–5) dV /dy [103–106]. In the case of the deuteron-to-proton yield
ratios, the expectations of CSM (i) show good agreement with data in the full multiplicity range, with
some tension in the intermediate multiplicity, where the most peripheral Xe–Xe data point is lower than
the model by ≈ 3.5σ . In the multiplicity region covered by heavy-ion collisions (⟨dNch/dη⟩ > 102),
the predictions from CSM (i) show a plateau that matches the predictions of the grand-canonical sta-
tistical model [36, 45, 55], while data hint towards a decreasing trend for the highest multiplicities, as
observed in the case of the p/π ratio [107]. Such a trend is qualitatively reproduced by CSM (ii), which
assumes that such suppression is entirely due to baryon annihilation in the hadronic phase [102]. In sum-
mary, both the coalescence and the CSM (i) predictions describe the absolute values of the yield ratios
within ≈ 25%, and both reproduce the overall smoothly increasing trend of the d/p ratio with increasing
multiplicities, up to ⟨dNch/dη⟩ ≈ 300. The CSM (ii) model reproduces the decreasing trend of data at
large ⟨dNch/dη⟩ values (>300), but is further from data as compared with the other two models in the
remaining multiplicity range (⟨dNch/dη⟩<300).

In the case of the 3He/p yield ratios, at high multiplicities (102 < ⟨dNch/dη⟩ < 103), the result from
Xe–Xe collisions is in agreement within 1σ with both the CSM predictions. In the low multiplicity
range (⟨dNch/dη⟩ < 10), the CSM (i) hypothesis is in agreement with the data within ≈ 1.5σ , while in
the intermediate multiplicity range it is excluded by up to 13σ . The CSM (ii) captures the decreasing
trend of the data at high multiplicity, with an agreement within 1σ for ⟨dNch/dη⟩ > 100, although it
is further from the data as compared to CSM (i) and coalescence for ⟨dNch/dη⟩ < 100. Overall, the
coalescence models reproduce the yield ratios within ≈ 60% and the general increasing trend of the data
points, although significant discrepancies remain.

The decreasing trend of the particle ratios, for increasing multiplicity and ⟨dNch/dη⟩ > 100, is even
more pronounced when looking at the nucleus-to-pion yield ratios, as shown in Fig. 5. Also in this
case, the colored markers show the results from all available collision systems at

√
sNN = 5.02 and 5.44

TeV, while the results at different energies are shown in gray. All results follow a common trend with
increasing ⟨dNch/dη⟩. The data are compared with the predictions from the CSM models (i) and (ii).
For deuterons, the measured ratios are described only qualitatively by the CSM (i) at low multiplicities
(⟨dNch/dη⟩ < 10), while the model (i) predictions are consistent with the data at intermediate and high
multiplicities, within ≈ 1σ and 3σ , respectively, being the most different for the most central Pb–Pb
collisions at

√
sNN = 5.02 TeV. The predictions from CSM (ii) capture the trend of the data at high

multiplicity and agree with the Pb–Pb experimental data within 1σ and with the Xe–Xe results within
1.6σ , for ⟨dNch/dη⟩ > 100, while overshooting the data points for ⟨dNch/dη⟩ < 100. For nuclei with
A = 3, the ratio to pion yields shows discrepancies with CSM (i) of up to ≈ 17σ in the intermediate
multiplicity range and up to ≈ 8σ with the most central Pb–Pb data at

√
sNN = 5.02 TeV. The CSM

(ii) predictions agree within 2σ with the data for ⟨dNch/dη⟩ > 100, but fail in reproducing the data at
⟨dNch/dη⟩< 100.

The decrease of the yield ratio at high average charged-particle multiplicity values is larger in Fig. 5 with
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respect to the corresponding ratios in Fig. 4. This is due to the decreasing trend of both the deuteron-to-
pion and proton-to-pion yield ratios, leading to the partial cancellation of this trend in the deuteron-to-
proton yield ratio. Among all presented models only the CSM (ii) captures the decreasing trend of the
nucleus-to-proton and nucleus-to-pion yield ratios as well as their absolute magnitude.

Finally, combining the integrated yields of 3He and deuterons with the yield of protons measured in
Ref. [107], one can obtain the ratio (N3He × Np)/N2

d = 0.589 ± 0.134 for the multiplicity integrated
class 0–90% (corresponding to ⟨dNch/dη⟩= 333±5), where the uncertainty is obtained by propagating
the sum in quadrature of the statistical and systematic uncertainties on the single yields. This ratio in
Xe–Xe collisions is consistent within 1σ with the ratio of (Nt ×Np)/N2

d measured by ALICE in Pb–
Pb collisions at

√
sNN = 5.02 TeV and 2.76 TeV, corresponding to a multiplicity range spanning from

about 85 to about 1800. This ratio is also compatible within 1σ with the ratio measured by STAR in Au–
Au collisions at similar multiplicity (of about 300), and within 2σ with the rest of the ratios measured at
lower energies (

√
sNN = 7.7–200 GeV) shown in Ref. [108]. Notably, the ratio in Xe–Xe collisions makes

use of the yield of 3He instead of that of triton, as triton was not measured in such a collision system.
However, the yields of triton and 3He have been measured in Pb–Pb collisions at

√
sNN = 5.02 TeV and

found to be consistent within uncertainties [16]. Hence, such a ratio is assumed to be qualitatively valid
for comparing the results from different energies and collision systems. Such a ratio is a powerful tool
to test the production models, as argued in Ref. [108], since its trend as a function of multiplicity and its
overall value are expected to be different in SHM and coalescence predictions.

5.3 Coalescence parameters

In the coalescence models the key observable is the coalescence parameter BA, that quantifies the prob-
ability for A nucleons to bind together forming a nucleus of mass number A. This parameter can be
obtained experimentally through the ratio of the invariant yield of the nucleus with mass number A and
that of protons. The former is expressed as a function of the pT of the nucleus, denoted as pA

T, while
the latter is evaluated at the transverse momentum denoted as pp

T, with pp
T = pA

T/A. The coalescence
parameter is obtained as follows

BA =

(
1

2π pA
T

(
d2N

dydpT

)
A

)/(
1

2π pp
T

(
d2N

dydpT

)
p

)A

, (6)

assuming that protons and neutrons have the same pT distributions, as they belong to the same isospin
doublet. The coalescence parameter is related to the production probability of the nucleus via this process
and can be theoretically evaluated from the overlap of the nucleus wave function and the phase space
distribution of the constituents via the Wigner function formalism [45]. This formalism allows one to
account for the source size and the quantum-mechanical properties of the nucleons in the calculation of
BA, using a realistic wave function for the nucleus.

In Fig. 6 the coalescence parameters B2 and B3 are shown as a function of the transverse momentum
per nucleon (pT/A), also for different centrality classes in the case of B2. The transverse-momentum
spectra of protons used for the calculation of BA are taken from Ref. [107]. The coalescence parameters
increase with increasing pT/A in all centrality classes. This trend was already observed in previous
measurements from ALICE, in both heavy-ion and pp collisions [2, 6, 7, 9, 10, 13, 14, 16, 17]. Such
behavior is not expected by simple coalescence models that neglect the spatial extension of the baryon-
emitting source. However, it is well reproduced by state-of-the-art coalescence models that use the
Wigner function formalism and properly take into account the source size [47]. Hence, the rising trend
of the coalescence parameters with pT/A reflects the decreasing trend of the source size with pT [109]:
smaller source sizes (at higher pT) correspond to larger coalescence parameters.
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Figure 5: Deuteron-to-pion (top panel), and 3He-to-pion (bottom panel) yield ratios as a function of the charged-
particle multiplicity density. All yields are measured at midrapidity, i.e., |y| < 0.5 for pp, Xe–Xe and Pb–Pb
collisions, and −1 < |y| < 0 for p–Pb collisions. Lines represent statistical uncertainties, whereas boxes show
systematic ones. The solid lines correspond to the expectations of two implementations of the CSM, see text for
details.
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Figure 6: Coalescence parameters B2 (left panel) and B3 (right panel) as a function of pT/A, measured for deuterons
and 3He, respectively. Statistical uncertainties are represented as vertical lines whereas boxes represent the sys-
tematic ones.

5.4 Elliptic flow of deuterons

The deuteron elliptic-flow coefficients measured in the centrality classes 0–20% and 20–40% are shown
in Fig. 7 as a function of pT in comparison with the v2 of pions, kaons, and protons taken from Ref. [63].
These are measured in narrower centrality intervals as compared with the measurements presented in
this paper. The values corresponding to the same centrality classes are obtained as weighted averages
using the pT spectra taken from Ref. [107] as weights. A clear mass ordering is observed at low pT,
as expected from relativistic hydrodynamics [110], with a slower rise with pT of the (anti)deuteron v2
as compared with that of lighter hadrons. The mass ordering of v2 at low pT develops mostly by final-
state rescattering in the hadronic phase [111], reflecting the redistribution of the momentum anisotropy
generated in the early QGP states among the different hadron species, driven by the radial acceleration
and cooling of matter during the hadronic rescattering phase. Assuming that (anti)nuclei are produced
as compact multi-quark systems with negligible final-state interactions with hadrons, their flow would
be fully developed in the partonic phase. On the other hand, if (anti)nuclei are produced by coalescence,
their flow could also have a contribution from the hadronic rescattering phase, which is inherited from
that of the coalescing nucleons.

In Fig. 7, the deuteron v2 measurements are compared with the expectations from the Blast-Wave and
simple coalescence models using the same procedure described in Refs. [3, 8, 11]. The Blast-Wave
predictions are obtained from a simultaneous fit of the v2 and the pT spectra of pions, kaons, and protons
measured in Xe–Xe collisions at

√
sNN = 5.44 TeV [63, 107] in the transverse-momentum ranges (0.5 <

pπ
T < 1) GeV/c, (0.7 < pK

T < 2) GeV/c, and (0.7 < pp
T < 2.5) GeV/c, respectively, and in the same

centrality classes. The four parameters of the Blast-Wave fits represent the kinetic freeze-out temperature
(Tkin), the mean transverse expansion rapidity (ρ0), the amplitude of its azimuthal variation (ρa), and the
variation in the azimuthal density of the source (s2), as described in Ref. [112].

The values of the Blast-Wave parameters extracted from the fits are reported in Table 3 for each cen-
trality interval. The elliptic flow of (anti)deuterons is calculated using the parameters obtained from the
simultaneous fit and the deuteron mass, i.e., assuming the same kinetic freeze-out conditions.

The simple coalescence model used in this context is based on the assumption that the invariant yield
of (anti)deuterons with transverse momentum pT is proportional to the product of the invariant yields
of its constituent nucleons with transverse momentum pT/2 and on isospin symmetry, due to which the
proton and neutron v2 are identical. Considering only elliptical anisotropies of the constituent nucleons,
i.e., neglecting higher-order harmonics, the (anti)deuteron v2 from coalescence is obtained from that of
(anti)protons using the scaling law [64]
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Table 3: Blast-Wave parameters extracted from the simultaneous fits of the pT spectra and v2 of pions, kaons, and
protons. See text for details.

Fit parameters Centrality 0–20% Centrality 20–40%
Tkin (MeV) 112±2 111±2

ρ0 1.29±0.05 1.31±0.05
ρa ×10−2 5.87±0.02 8.85±0.02
s2 ×10−2 4.94±0.02 8.86±0.02
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Figure 7: (Anti)deuteron v2 measured at |y| < 0.5 in the centrality classes 0–20% (left) and 20–40% (right) in
comparison with the Blast-Wave predictions obtained from simultaneous fits of the pT spectra and v2 of pions,
kaons, and protons [63]. Statistical and systematic uncertainties are represented by bars and boxes, respectively.

v2,d(pT) =
2v2,p(pT/2)

1+2v2
2,p(pT/2)

. (7)

The comparison between the (anti)deuteron v2 measurements and the simple coalescence predictions
is shown in Fig. 8. As observed already in elliptic-flow measurements in Pb–Pb collisions for both
(anti)deuterons and (anti)3He, the data are closer to the Blast-Wave predictions in more central colli-
sions and to the coalescence model in more peripheral collisions. These two simple models represent
approximate limits for (anti)nucleus flow which describe the measurements in complementary centrality
intervals.

As noted in Ref. [63], the flow coefficients at low pT are expected to be smaller in Pb–Pb collisions than

17



(Anti)nuclei production and flow in Xe–Xe collisions at
√

sNN = 5.44 TeV ALICE Collaboration

0 0.5 1 1.5 2 2.5 3 3.5
)/Ac (GeV/

T
p

0

0.1

0.2

0.3

0.4

/A
| >

 2
}

η∆
{S

P
, |

2
v

ALICE

 = 5.44 TeVNNsXe −Xe

20%−0| < 0.5y|

0 0.5 1 1.5 2 2.5 3 3.5
)c/A (GeV/

T
p

0.5

1.0

1.5

2.0

D
at

a/
M

od
el 0 0.5 1 1.5 2 2.5 3 3.5

)/Ac (GeV/
T

p

0

0.1

0.2

0.3

0.4

/A
| >

 2
}

η∆
{S

P
, |

2
v

Coalescence
dd + 

40%−20

0 0.5 1 1.5 2 2.5 3 3.5
)c/A (GeV/

T
p

0.5

1.0

1.5

2.0
D

at
a/

M
od

el

Figure 8: (Anti)deuteron v2 measured in the centrality classes 0–20% (left) and 20–40% (right) in comparison
with the coalescence predictions based on the mass-number scaling. Statistical and systematic uncertainties are
shown as bars and boxes, respectively. The flow of deuterons is measured at midrapidity, i.e., |y|< 0.5.

in Xe–Xe ones, due to the larger radial flow in the Pb–Pb case. Such an effect is expected to be larger
in central collisions and for heavier particles, such as light nuclei. The results of the v2 of deuteron in
Xe–Xe collisions, however, seem to be above the corresponding measurements in Pb–Pb collisions, as
already observed in the case of the flow of lighter identified particles [63]. However, the present results
have large statistical uncertainties, which do not allow for quantitative comparisons with the Pb–Pb
results. In Ref. [63], more quantitative comparisons between the flow coefficients of light-flavor hadrons
in Pb–Pb collisions and those in Xe–Xe collisions are discussed and interpreted as due to the interplay
of the nuclear deformation of the Xe nucleus with respect to the Pb one, and of initial-state fluctuations
proportional to the square root of the mass number of the colliding nucleus.

5.5 Thermal fit

The pT-integrated yields of d and 3He for central (0–10%) Xe–Xe collisions are shown in Fig. 9 to-
gether with those of π , K, p, and φ . At the LHC, the production of most light-flavor hadrons and light
(anti)(hyper)nuclei in nucleus–nucleus collisions can be described in the framework of the statistical
hadronization approach via thermal models based on the grand canonical ensemble with a single chem-
ical freeze-out temperature (Tchem), and a given volume V of the fireball. Thermal model fits to the
ALICE data for the yields of π , K, φ , p [107], d, and 3He measured in central (0–10%) Xe–Xe collisions
at

√
sNN = 5.44 TeV are performed using the open source Thermal-FIST package [113]. The fit con-

verges at Tchem = (154.2 ± 1.1) MeV, V = (3626 ± 298) fm3, and χ2/NDF = 0.83. All other parameters
are fixed using the parameterizations reported in Ref. [106]. The calculations are carried out using the
energy-dependent Breit–Wigner treatment of resonance widths with constant branching ratios [114]. En-
abling the partial chemical equilibrium [102], without baryon annihilation, does not significantly change
the results of the calculated yields of light nuclei, once the Tchem and Tkin are fixed to 155 MeV and
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100 MeV, respectively. The results for the yields obtained from the thermal fit are shown as solid lines
in Fig. 9. Similar fits to the measured yields have been carried out using the GSI-Heidelberg thermal
model [115]. For such fit, the temperature of the system and the baryochemical potential are fixed to the
results obtained in the most central Pb–Pb collisions at

√
sNN = 2.76 TeV with the S-matrix correction

for the protons (Tchem = 156.6 MeV, µB = 0.7 MeV), while the volume V is a free parameter [116]. The
fit to the Xe–Xe data converges at V = (2996 ± 102) fm3 (|y|<0.5), and χ2/NDF = 0.55.
The main difference between the two models is in the treatment of the interactions: while the GSI-
Heidelberg approach implements the S-matrix formalism [117–121] to include non-resonant pion–nucleon
interactions at LHC energies, Thermal-FIST uses the energy-dependent Breit–Wigner resonance widths [122].
Since the pion is the most abundant particle at freeze-out and the corresponding cross sections for
hadronic interactions are large, the handling of πN interactions is a key aspect when analyzing ob-
servables involving nucleons in ultra-relativistic nucleus–nucleus collisions. The different treatment of
interactions is reflected in the different results of both the volume of the system, which is driven by the
abundance of pions, and its temperature. The interplay between these two parameters is anticorrelated.
Indeed, fixing in the Thermal-FIST model the Tchem to a higher value, e.g., the value used for the GSI-
Heidelberg fit (Tchem = 156.6 MeV), the resulting volume becomes smaller (V = (3095 ± 101) fm3), and
comparable with that obtained with the GSI-Heidelberg approach.
The resulting yields for the GSI-Heidelberg model are shown as dotted lines in Fig. 9, being well com-
patible with the Thermal-FIST results. Light hadron yields are taken from Ref. [107]. The yields of all
given species are the average of the particle and antiparticle yields. The yield of 3He in the 0–10% cen-
trality class is obtained using the same scaling used for alpha nuclei in Ref. [5]. The results of the models
prove that the production of light nuclei in Xe–Xe collisions is sensitive to the temperature of the system
at chemical freeze-out. Similar fits to the most central Pb–Pb collisions at

√
sNN = 2.76 TeV in one unit

of rapidity at midrapidity, including the S-matrix, gave as results Tchem = 156.6 MeV, µB = 0.7 MeV,
and V = 4175 fm3 [116]. The Tchem obtained from the fit of the Thermal-FIST model to the measured
light-flavor hadron yields in central Xe–Xe collisions is similar to the Tchem obtained in central Pb–Pb
collisions using S-matrix based thermal model and consistent with the pseudocritical temperature of the
chiral crossover transition predicted by lattice QCD calculations, T = (156.5 ± 1.5) MeV [123]. More-
over, the final state light nuclei yields can also be modified by the baryon annihilation [102], which is not
included in this model comparison. However, the effect of baryon annihilation is expected to be more
sensitive in central Pb–Pb collisions compared with central Xe–Xe collisions, due to the higher charged-
particle multiplicity in Pb–Pb events compared with Xe–Xe [102]. This can be seen in Fig. 4 and 5, in
which the two model calculations agree with the measurements, considering the current precision of the
data, within 2σ for the ratio of deuteron yields and 1σ for those of 3He.

6 Summary

Measurements of (anti)deuteron and (anti)3He production and of the elliptic-flow of (anti)deuteron in
Xe–Xe collisions at

√
sNN = 5.44 TeV are presented. These results contribute to the understanding

of the light (anti)nucleus production mechanism by complementing the existing picture, which includes
measurements in different collision systems and at different center-of-mass energies per nucleon–nucleon
pair. The hadrochemistry of light nuclei, i.e., the relative abundance of particles, in small collision
systems (pp and p–Pb) was found to be independent of collision energies and systems and mostly driven
by ⟨dNch/dη⟩. This is further investigated for the first time in heavy-ion collisions at LHC energies
by comparing the measurements in Xe–Xe collisions, and the measurements are found to be consistent
across the two different collision systems at similar charged particle multiplicity densities. The canonical
statistical model and the coalescence predictions are tested by comparing the multiplicity dependence
of (anti)deuteron and (anti)3He yields, relative to proton and pion yields. The Xe–Xe results fit the
behavior of the previous ALICE measurements, which are qualitatively described by the CSM and, in
the case of the ratio of deuterons to protons, also by coalescence, across all multiplicities. A version
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Figure 9: Thermal fit to the measured hadron yields in Xe–Xe collisions at
√

sNN = 5.44 TeV, performed with
two different implementations of the statistical hadronization model, namely the Thermal-FIST [113] and the GSI-
Heidelberg model [115]. The yields shown for each given species are the average of the particle and antiparticle
yields. In the bottom panel, the ratios of data to the model calculations are shown.

of the CSM with Vc= 1.6 dV /dy, a multiplicity-dependent annihilation freeze-out temperature and the
Saha equation approach [48] to compute light-nucleus abundances in the hadronic phase, captures the
decreasing trend of data at high multiplicity, corresponding to central Pb–Pb and Xe–Xe collisions, in
all reported particle ratios. This suggests that such suppression is due to baryon annihilations in the
hadronic phase. However, the same implementation of the CSM model fails to simultaneously reproduce
the trend of the particle ratios at intermediate multiplicities. This shows that at the moment there is
no common implementation and available parametrization of the CSM able to reproduce all particle
ratios from small collision systems to central heavy-ion collisions. The yields of light-flavor hadrons
produced in Xe–Xe collisions are described, in the framework of the statistical hadronization model,
with different implementations of the thermal fit, namely the Thermal-FIST package [113] and the GSI-
Heidelberg model [115]. In the former case, the fit converged at Tchem = (154.2 ± 1.1) MeV, V = (3626
± 298) fm3, while in the latter case the temperature and baryochemical potential are fixed to Tchem=
156.6 MeV, µB= 0.7 MeV and the fit converges at a volume V = (2996 ± 102) fm3. The results from
the two models are consistent with each other within 2σ , with the results obtained in Pb–Pb collisions
(Tchem = 156.6 MeV) [116], and with the pseudo-critical temperature for the transition from QGP to
hadron gas predicted by lattice QCD calculations (T = (156.5 ± 1.5) MeV) [123]. Finally, the results
of the elliptic flow of (anti)deuterons are compared with the predictions of a simple coalescence model
and to the expectations of a Blast-Wave fit of v2 and pT of light-flavor hadrons measured in the same
collision system and at the same energy. Such comparison shows that the data are closer to the Blast-
Wave predictions in more central collisions and to the coalescence model in more peripheral collisions,

20



(Anti)nuclei production and flow in Xe–Xe collisions at
√

sNN = 5.44 TeV ALICE Collaboration

as already observed in the results of (anti)deuterons and (anti)3He flow measured in Pb–Pb collisions.
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L. Krcal 32,38, M. Krivda 100,60, F. Krizek 86, K. Krizkova Gajdosova 32, C. Krug 66, M. Krüger 64,
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