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Investigating strangeness enhancement with multiplicity in pp collisions
using angular correlations
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Abstract

A study of strange hadron production associated with hard scattering processes and with the under-
lying event is conducted to investigate the origin of the enhanced production of strange hadrons in
small collision systems characterised by large charged-particle multiplicities. For this purpose, the
production of the single-strange meson K0

S and the double-strange baryon Ξ± is measured, in each
event, in the azimuthal direction of the highest-pT particle (“trigger" particle), related to hard scatter-
ing processes, and in the direction transverse to it in azimuth, associated with the underlying event,
in pp collisions at

√
s = 5.02 TeV and

√
s = 13 TeV using the ALICE detector at the LHC. The

per-trigger yields of K0
S and Ξ± are dominated by the transverse-to-leading production (i.e., in the

direction transverse to the trigger particle), whose contribution relative to the toward-leading produc-
tion is observed to increase with the event charged-particle multiplicity. The transverse-to-leading
and the toward-leading Ξ±/K0

S yield ratios increase with the multiplicity of charged particles, suggest-
ing that strangeness enhancement with multiplicity is associated with both hard scattering processes
and the underlying event. The relative production of Ξ± with respect to K0

S is higher in transverse-
to-leading processes over the whole multiplicity interval covered by the measurement. The K0

S and
Ξ± per-trigger yields and yield ratios are compared with predictions of three different phenomeno-
logical models, namely PYTHIA8.2 with the Monash tune, PYTHIA8.2 with ropes and EPOS LHC.
The comparison shows that none of them can quantitatively describe either the transverse-to-leading
or the toward-leading yields of K0

S and Ξ±.

*See Appendix A for the list of collaboration members
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1 Introduction

The enhancement of strange hadron production in heavy-ion collisions with respect to minimum bias pp
collisions was one of the first predicted signatures of quark–gluon plasma (QGP) formation [1–3]. This
strangeness enhancement was first observed at the SPS [4–9] and was later measured in Au–Au collisions
at RHIC [10] and in Pb–Pb collisions at the LHC [11]. The ALICE Collaboration further studied the pro-
duction of strange hadrons in smaller collision systems, such as p–Pb [12–14] and pp collisions [15–21].
The results show that the ratios of (multi-)strange to non-strange hadron yields increase with the multi-
plicity of charged particles produced in the collision, reaching in high-multiplicity pp collisions values
compatible with those measured in peripheral Pb–Pb collisions [22].

The smooth evolution of the ratios with multiplicity across different collision systems implies a common
particle production mechanism in the different systems. This is also supported by other observables,
such as “ridge”-like structures in the two-particle angular correlations at large pseudorapidity differ-
ence [23, 24] and non-vanishing anisotropic flow coefficients [25–27], which suggest the presence of
collective effects in small collision systems [16]. These observations challenge the current understand-
ing of hadronic collisions, as different particle production mechanisms are expected to be involved in the
different collision systems [1].

Several theoretical approaches have attempted to describe the strange hadron production in hadronic
collisions. A qualitative description of the experimental results has been achieved with different event
generators, such as PYTHIA8 with colour ropes [28], HERWIG [29, 30] and EPOS LHC [31], which
combine perturbative Quantum Chromodynamics (pQCD) calculations with phenomenological models
for the description of hard and soft processes, respectively. A qualitative description of strange hadron
production is also provided by the statistical hadronisation model, according to which the relative abun-
dances of strange hadrons with respect to lighter flavours are diminished in small systems by a canonical
suppression of the strangeness quantum numbers [32–35]. However, none of these theoretical approaches
provides a consistent quantitative description of the multiplicity dependence of the hadron-to-pion ra-
tios [15, 22, 36], indicating that the microscopic origin of strangeness enhancement with multiplicity in
small collision systems remains an open issue.

One way to investigate this phenomenon consists in studying the strange hadron production associated
with hard scattering processes and with the underlying event. Hard scattering processes are associated
with high-energy parton shower (jet) hadronisation, whereas the underlying event consists of all the
processes different from the hardest partonic interaction. The ALICE Collaboration has recently studied
the pT spectra of different (multi-)strange hadrons in jets and in the underlying event in minimum bias
pp collisions at

√
s = 7 TeV and

√
s = 13 TeV and in p–Pb at

√
sNN = 5.02 TeV [37, 38], using the

anti-kT algorithm [39, 40] for jet reconstruction. The results indicate that jet fragmentation alone is not
sufficient to describe strange particle production in hadronic collisions at LHC energies and suggest that
the baryon-over-meson yield ratios increase with multiplicity at intermediate pT values [16] might be
driven by particle production in the underlying event.

This paper presents a complementary measurement of strange hadron production associated with hard
scattering processes and the underlying event as a function of the charged-particle multiplicity in pp
collisions. The pT spectra and the pT-integrated yields of K0

S and Ξ± are measured at central rapidities
in pp collisions at

√
s = 5.02 TeV and at

√
s = 13 TeV in the direction of the leading particle (trigger

particle), which is considered to be a proxy for the jet axis, and in the direction transverse to the trig-
ger particle, which is associated with the underlying event and might also receive a contribution from
low-pT jets (mini-jets). For this purpose, the angular correlations between trigger particles and K0

S (Ξ±)
are exploited. The single-strange meson K0

S and the double-strange baryon Ξ± are studied as they have
a different strangeness content and therefore a different sensitivity to strangeness enhancement. In addi-
tion, these species receive a negligible feed-down from other particles, which simplifies the measurement
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of their yields. The K0
S and Ξ± per-trigger yields per unit ∆η∆ϕ are reported as a function of the charged-

particle multiplicity and are compared with the predictions of three different phenomenological models,
namely PYTHIA8.2 with the Monash 2013 tune [41], PYTHIA8.2 with ropes [28] and EPOS LHC [31].

The paper is organised as follows. Section 2 outlines the experimental setup and the data sample used
for this measurement, Sec. 3 presents the experimental details of the analysis along with the associated
systematic uncertainties, and Sec. 4 shows the per-trigger pT spectra and pT-integrated yields of K0

S
and Ξ± as a function of the charged-particle multiplicity, together with their comparison with model
predictions. Finally, the conclusions are drawn in Sec. 5.

2 Experimental setup and data selection

The ALICE apparatus [42, 43] consists of central barrel detectors covering the pseudorapidity interval
|η |< 0.9, a muon spectrometer covering −4.0 < η <−2.5, and a set of detectors at forward and back-
ward rapidities used for triggering and event characterisation purposes. The central barrel detectors are
positioned inside a solenoidal magnet providing a 0.5 T magnetic field along the beam axis and are used
for primary vertex (PV) reconstruction, track reconstruction and charged-particle identification. The
main detectors used for the analysis presented in this paper are the Inner Tracking System (ITS) [44],
the Time Projection Chamber (TPC) [45], the Time Of Flight (TOF) detector [46], and the V0 detec-
tors [47]. The ITS is the innermost detector of the ALICE experiment. The ITS used during the LHC
Run 2 consisted of six cylindrical layers of silicon tracking detectors placed at a radial distance from the
beam pipe between 3.9 and 43.0 cm. The two innermost layers of the ITS were equipped with Silicon
Pixel Detectors (SPD), the two intermediate layers consisted of Silicon Drift Detectors (SDD), and the
two outermost layers of Silicon Strip Detectors (SSD). The SPD was used to reconstruct the PV of the
collision and the tracklets, short two-point track segments covering the pseudorapidity region |η |< 1.2.
The other main functions of the ITS are the reconstruction of secondary vertices from weak decays and
the tracking and identification of particles with momentum smaller than 200 MeV/c. The TPC is the
main tracking detector of the central barrel. It is used for the identification of charged particles by mea-
suring the specific ionisation energy loss dE/dx. The TPC has a cylindrical shape with an inner radius
of 85 cm, an outer radius of 250 cm and an overall length along the beam direction of 5 m. It is filled
with nearly 90 m3 of gas mixture, consisting of Ar/CO2 (88/12) in 2016 and 2018 and Ne/CO2/N2
(90/10/5) in 2017. It covers the pseudorapidity region of |η |< 0.9 for tracks with full radial length and
provides full azimuthal acceptance. The TPC is radially segmented into “pad rows": tracks reconstructed
with the TPC may consist of up to 159 points, each corresponding to one crossed pad row. The TOF
detector is an array of multigap resistive plate chambers (MRPCs) covering the pseudorapidity range of
|η | ≲ 0.9 and providing full azimuthal acceptance. Its primary purpose is the identification of particles
with intermediate momentum via the measurement of their time of flight. The V0 detector consists of
two arrays of scintillation counters, V0A and V0C, placed at forward rapidity. The V0A is located at
+3.3 m from the interaction point and covers the pseudorapidity range of 2.8 < η < 5.1, whereas the
V0C is placed on the opposite side at −0.9 m from the interaction point and covers the pseudorapidity
range of −3.7 < η <−1.7. The V0 detector provides the minimum bias trigger in pp, p–Pb and Pb–Pb
collisions. It is used to classify pp collisions in multiplicity percentile classes based on the total deposited
charge (V0M amplitude).

The analysis presented in this paper was performed using pp collisions at
√

s = 5.02 TeV and√
s = 13 TeV collected by the ALICE experiment during the LHC Run 2 data-taking campaign

(2015–2018). Two samples of pp collisions at
√

s = 13 TeV were used: one collected with the mini-
mum bias (MB) trigger, the other collected with the high multiplicity (HM) trigger. The MB trigger
is provided by the combined signals in the V0A and V0C detectors. The HM trigger is activated on-
line when the amplitude of the signal in the V0 detectors is above a predefined threshold and allows
for the selection of events characterised by approximately 30 charged particles produced at midrapidity,
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i.e., four times more than those collected in minimum bias events (≈ 7). The sample of pp collisions at√
s = 5.02 TeV was collected with the MB trigger, and consists of events characterised by approximately

6 charged particles produced at midrapidity.

To ensure uniform detector acceptance, the reconstructed PV position must lie within ±10 cm from
the nominal interaction point in the beam direction. The contamination from in-bunch pileup events is
removed by excluding events with multiple vertices reconstructed with the SPD. The background from
beam-gas events is removed by using the timing information in the V0 detectors and the correlation
between SPD tracklets and SPD clusters, as discussed in detail in Ref. [43].

The MB events used for the trigger particle-K0
S correlation analysis were collected in 2016 and 2017 and

amount to about 1×109 good quality events. As Ξ± are approximately fifteen times less abundant than
K0

S, all MB events collected in 2016, 2017 and 2018 were used for the trigger particle-Ξ± correlation
analysis, corresponding to 1.6× 109 events after the quality selections. The sample of HM events at√

s = 13 TeV consists of 4×108 selected events collected in 2016, 2017 and 2018. The sample of MB
pp collisions at

√
s = 5.02 TeV consists of 9×108 good events recorded in 2017.

3 Analysis details

The selected events are divided into V0M multiplicity percentile classes defined starting from the distri-
bution of the sum of the signal amplitudes measured with the two V0 detectors. Minimum bias events
at
√

s = 13 TeV are divided into five multiplicity classes (0–5%, 5–10%, 10–30%, 30–50%, 50–100%):
the 0–5% class, for example, contains the 5% of events with the highest V0M amplitude, while the
70–100% class contains the 30% of events with the smallest V0M amplitude. Once corrected for the
V0M trigger efficiency, these ranges represent fractional intervals of the cross section of INEL > 0
events, defined as events having at least one charged particle produced in the pseudorapidity interval
|η | < 1. The corrected intervals are respectively: 0–4.57%, 4.57–9.15%, 9.15–27.50%, 27.50–46.12%,
46.12–100%, respectively. The details about the correction procedure can be found in Ref. [48]. High
multiplicity events at

√
s = 13 TeV are selected in the multiplicity range 0–0.1%, which includes the

0.1% of the MB events characterised by the highest V0M amplitude. These events are further divided
into three multiplicity classes: 0–0.01%, 0.01–0.05% and 0.05–0.1%, with the first one corresponding
to 0–0.0091% of the INEL > 0 cross section, and the sum of the other two classes to 0.0091–0.0915%.
The available number of MB events at

√
s = 5.02 TeV allows for the analysis to be performed only in

two multiplicity classes (0–10%, 10–100%, corresponding to 0–9.15% and 9.15–100% of the INEL > 0
cross section, respectively), as at this energy the sample of MB events is smaller and the average strange
hadron yields per event are smaller than those at

√
s = 13 TeV. For each V0M percentile class, the

average multiplicity of charged particles produced at midrapidity in events containing a trigger parti-
cle, ⟨dNch/dη⟩|η |<0.5, pT,trigg>3 GeV/c, and its systematic uncertainties are computed using the technique
described in Ref. [48].

3.1 Trigger particle identification

In this analysis, a trigger particle is defined as the charged particle with the highest-pT in a given event
(leading particle), coming from the PV, produced in the pseudorapidity interval |η |< 0.8 and within the
transverse momentum range 3 < pT < 15 GeV/c. The minimum pT threshold is applied to select parti-
cles originating from the hadronisation of hard scattering processes. An increase of the threshold value
above 3 GeV/c would increase the contribution from particles originating from hard scattering processes.
However, it would also decrease the number of events with a trigger particle, limiting the possibility of
performing a multiplicity dependent measurement of the angular correlation between trigger particles
and Ξ± baryons. The trigger particles are selected starting from the tracks reconstructed using the TPC
and constrained to the PV. Only tracks in the |η |< 0.8 acceptance region, where full track reconstruc-
tion is provided, are accepted. Standard selections are applied: tracks are required to cross at least 80

4



Strangeness enhancement in pp collisions using angular correlations ALICE Collaboration

out of 159 TPC pad rows and to be formed by more than 70 TPC clusters, where a cluster is the signal
induced by the passage of the particle in a crossed pad row. In order not to have large gaps in the number
of expected tracking points in the radial direction, the ratio of crossed pad rows Ncrossed over findable
clusters Nfindable is required to be greater than 0.8. In order to reject the low-resolution tracks which pass
through the edges of the TPC sectors, tracks with radial lengths smaller than 90 cm are discarded, and
the ratio between the number of crossed pad rows and the radial track length is required to be greater
than 0.8 cm−1. In addition, a maximum pT threshold of 15 GeV/c is applied to retain only tracks with pT
resolution better than 2%. This selection rejects less than 0.5% of tracks. Finally, the goodness-of-fit χ2

per TPC cluster of the track fit in the TPC is required to be smaller than 4. To discard charged particles
not originating from the PV, a selection on the distance of closest approach (DCA) of the track to the PV
is applied both along the beam direction z (DCAz) and in the perpendicular plane (DCAxy):

|DCAz|< 0.04 cm , |DCAxy|<
(

0.0105+
0.035

[pT/(GeV/c)]1.1

)
cm.

The pT-dependent selection on the DCAxy allows for selecting tracks within 7σ from the interaction
vertex in the transverse plane, where σ is the resolution with which the DCAxy is measured.
The fraction of good-quality events containing a trigger particle increases with the event multiplicity,
from approximately 2% in the 50–100% V0M class to 50% in the highest multiplicity class 0–0.01%,
as it is more likely to find a high-pT track in events characterised by a larger multiplicity of charged
particles.

3.2 Identification of K0
S and Ξ±

The strange hadrons K0
S, Ξ− and Ξ+ (in the following Ξ±) are identified in the pseudorapidity range

of |η | < 0.8 via invariant mass analysis techniques, exploiting the topology of their weak decays into
charged hadrons [49]:

K0
S → π

+
π
−

Ξ
− → Λπ

− → pπ
−

π
−(Ξ+ → Λπ

+ → pπ
+

π
+)

B.R.= (69.20±0.05)%

B.R.(Ξ− → Λπ
−) = (99.887±0.035)%

B.R.(Λ → pπ
−) = (63.9±0.5)%.

The charged daughter tracks of K0
S and Ξ± candidates are selected in the pseudorapidity range of

|η |< 0.8, and are required to satisfy the same track quality criteria applied for the trigger particle
selection. Daughter tracks in the whole pT interval are identified by requiring the specific ionisation
energy loss dE/dx measured in the TPC to be compatible with the expected theoretical value within
±3σ , where σ is related to the resolution with which dE/dx is measured. In addition, daughter tracks
are required not to be associated with a “kink topology" [50], which is characteristic of the decay of
charged kaons. The combinatorial background is suppressed by applying standard topological selections
(see ref. [18]), listed in Table 1. A selection on the proper lifetime τ of K0

S and Ξ± candidates is
also applied. The proper lifetime is calculated as τ = d ×m/|p⃗|, where m is the nominal mass of the
considered particle, |p⃗| is the magnitude of the reconstructed momentum, and d is the distance of the
reconstructed secondary decay vertex from the primary one. In order to identify Ξ±, the invariant mass
of the daughter (anti-)Λ is required to differ from the nominal mass value of the Λ by less than 6 MeV/c2,
according to the (anti-)Λ invariant mass resolution. The background from (anti-)Λ in the K0

S sample is
suppressed by rejecting the K0

S candidates whose invariant mass calculated under the pπ assumption
for the daughter tracks lies within ±5 MeV/c2 from the nominal Λ mass. Similarly, the background
from Ω± in the cascade sample is tackled by rejecting the cascade candidates whose invariant mass
calculated under the ΛK assumption for the daughter particles lies within ±5 MeV/c2 from the nominal
Ω mass. The width of the rejected region is determined according to the invariant mass resolution σ of
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Table 1: Daughter-track quality selections, topological and kinematic selections applied to K0
S and Ξ± candidates.

The symbol θP stands for the pointing angle, i.e. the angle between the reconstructed momentum vector of the K0
S

and Ξ± candidates and the line connecting the primary to the secondary vertex. All other symbols are explained in
the text.

Daughter-track selections

Number of TPC clusters > 70
χ2/ndf < 4
Number of TPC crossed pad rows Ncrossed > 80
Ncrossed/Nfindable > 0.8
Track length lTPC in the TPC > 90 cm
Ncrossed/lTPC > 0.8 cm−1

Rejection of kink topology Yes
|η | < 0.8
dE/dx measured in the TPC < 3σ

At least one daughter track has a hit in the SPD or in the TOF Yes

K0
S-topological-variable selections

DCA daughter tracks to PV > 0.06 cm
DCA between daughter tracks < 1σ

cos(θP) > 0.995
DCA K0

S to PV < 0.5 cm
K0

S decay radius > 0.5 cm

Ξ±-topological-variable selections

DCA meson daughter to PV > 0.04 cm
DCA baryon daughter to PV > 0.03 cm
DCA bachelor to PV > 0.04 cm
DCA between daughter tracks of the Λ < 1.5σ

cos(θP) (of Ξ± to PV) > 0.995
cos(θP) (of (anti-)Λ to Ξ± decay vertex) > 0.97
DCA between bachelor and (anti-)Λ < 0.8 cm
DCA Λ to PV > 0.06 cm
(anti-)Λ decay radius > 1.1 cm
Ξ± decay radius > 0.5 cm

K0
S-candidate selections

|ηK0
S
| < 0.8

|mπp −mΛ| > 5 MeV/c2

Proper lifetime τ < 20 cm/c (≃ 7.5⟨τK0
S
⟩)

Ξ±-candidate selections

|ηΞ± | < 0.8
|mπp −mΛ| < 6 MeV/c2

|mKΛ −mΩ| > 5 MeV/c2

Proper lifetime τ < 14.73 cm/c (= 3⟨τΞ±⟩)
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the competing candidate, and corresponds to approximately ±3σ . Finally, to reduce the out-of-bunch
pileup background caused by tracks from other bunch crossings within the TPC integration time, at least
one of the daughter tracks is required to have a hit in the TOF or the SPD.

The signal extraction is performed as a function of pT. The invariant mass distributions of K0
S and Ξ±

candidates are fitted with the sum of two Gaussian functions, used to take into account the invariant mass
resolution of the signal peak, and a first-degree polynomial, used to describe the background. A “peak"
region is defined within ±4σ from µ , where µ and σ are the average mean value and width of the two
Gaussian functions, respectively. For each candidate, “sideband" regions are defined: the sidebands of
the K0

S (Ξ±) invariant mass distributions are defined as the intervals µ −10σ < mπ+π−(mπΛ)< µ −4σ

and µ +4σ < mπ+π−(mπΛ)< µ +10σ . The purity of the K0
S and Ξ± candidates samples, defined as the

ratio between the signal and the total number of candidates in the invariant mass range within ±4σ from
µ , is larger than 0.95 and 0.89 for K0

S and Ξ±, respectively.

3.3 The angular correlation function

The angular correlation between trigger particles, denoted as “h", and associated particles, i.e. the K0
S

(Ξ±) candidates with an invariant mass within 4σ from the average mean value µ of the Gaussian fit
functions, is expressed as a function of the pseudorapidity difference ∆η and the azimuthal angle differ-
ence ∆ϕ between the trigger and associated particles. Examples of the angular correlation distribution
d2Nassoc(∆η ,∆ϕ)/d∆ηd∆ϕ of h-K0

S and h-Ξ±pairs produced in pp collisions at
√

s = 13 TeV are shown
in the left panel of Figs. 1 and 2, respectively. The distributions show a near-side peak centred at (∆η ,
∆ϕ) = (0, 0) which is associated with h-K0

S and h-Ξ± pairs fragmented within the same jet. The distri-
butions are corrected by the efficiency×acceptance×B.R. of associated particles εassoc computed using
a Monte Carlo simulation based on PYTHIA8.2 with the Monash 2013 tune [41] for the generation of
events and on GEANT 4 [51] for the description of the propagation of particles through the material of
the detector. The term εassoc is calculated in events with a trigger particle identified by applying the se-
lections described in Sec. 3.1. It increases with pT, reaching a saturation value of about 35% and 25%
at pT = 3 and 4 GeV/c for K0

S and Ξ±, respectively. For K0
S, εassoc increases with decreasing charged-

particle multiplicity, varying by about 10% from the 0–5% to the 50–100% V0M multiplicity classes,
whereas for Ξ±, because of the different decay topology, it does not depend on multiplicity. For both
particles, εassoc is computed in each multiplicity class and as a function of η and pT, and is applied as a
weight factor to each entry of the angular correlation distribution.
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Figure 1: (left) Example of angular correlation distribution between trigger and K0
S found in the same collision.

(centre) Acceptance correction of trigger-K0
S pairs. (right) Angular correlation distribution divided by the pair

acceptance.

The angular correlation distributions (left panel of Figs. 1 and 2) exhibit a triangular shape in ∆η , which
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is related to the geometrical acceptance of the trigger–associated particle pairs. It is corrected for by
the pair acceptance εpair, calculated with the mixed-event method, which correlates the trigger particle
found in one event with the associated particles produced in different events. These events are required
to have similar characteristics, namely to lie in the same multiplicity class, to have the z-coordinate of
the PV differing by less than 2 cm, and to contain a trigger particle. Each entry of the mixed-event
angular correlation distribution is weighed with 1/εassoc, to take into account the η dependence of the
associated particle efficiency. As shown in the central plot of Figs. 1 and 2, the mixed-event angular
correlation distribution has a triangular shape in ∆η , determined by the η acceptance. In contrast, it
shows no dependence on ∆ϕ , as a consequence of the cylindrical symmetry of the detector. To obtain the
pair acceptance, the mixed-event distribution is normalised to unity at ∆η ≃ 0, where all particle pairs are
assumed to be accepted. The raw angular correlation distributions are divided by the pair acceptance to
retain the genuine physical correlations in such pair-acceptance window d2Ncorrected

assoc (∆η ,∆ϕ)/d∆ηd∆ϕ ,
shown in the right panel of Figs. 1 and 2. The pair acceptance is computed in each multiplicity class.
Since the h-Ξ±acceptance does not show any multiplicity dependence within the statistical uncertainty,
the correction is performed using the pair acceptance computed in the 0-100% multiplicity class, in order
to reduce statistical fluctuations.
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Figure 2: (left) Example of angular correlation distribution between trigger and Ξ± found in the same collision.
(centre) Acceptance correction of trigger-Ξ± pairs. (right) Angular correlation distribution divided by the pair
acceptance.

3.4 Evaluation of the pT spectra and integrated yields

The corrected angular correlation distributions d2Ncorrected
assoc (∆η ,∆ϕ)/d∆ηd∆ϕ (right panel of Figs. 1

and 2) are projected onto the ∆ϕ axis. The ∆ϕ projections are corrected for the contribution of the
combinatorial background due to candidates which are not K0

S (Ξ±). The standard procedure, which is
applied to K0

S in all samples and to Ξ± in the HM sample, consists of subtracting the angular correlations
obtained using K0

S (Ξ±) candidates in the “sidebands" of the invariant mass distributions from those ob-
tained from the peak region. Before subtraction, the angular correlation obtained from the sidebands is
divided by the integral of the invariant mass distribution in the sidebands regions and multiplied by the
integral of the background fit function in the signal region in order to take into account the purity of the
K0

S and Ξ± samples. A different procedure is applied to take into account the contribution of misiden-
tified Ξ± in minimum bias pp collisions at

√
s = 13 TeV and at

√
s = 5.02 TeV, since these samples do

not contain enough events to compute the h-Ξ±angular correlation distributions from the sidebands re-
gions. In this case, the ∆ϕ projections are multiplied by the purity of the sample of Ξ± candidates. This
procedure assumes that the angular correlation distributions for background candidates have the same
shape as for signal candidates. A systematic uncertainty is applied to take into account any difference
with respect to the standard procedure, as described in Sec. 3.5.
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In addition, the ∆ϕ projections are corrected for the fraction of feed-down K0
S (Ξ±). For this purpose, the

distributions are multiplied by (1−FNP), where FNP is the fraction of non-primary K0
S (Ξ±) calculated

using Monte Carlo simulations. This procedure is based on the assumption that the angular correlation
for feed-down particles has the same shape as the angular correlation for primary strange hadrons. This
correction has a negligible impact since in the pT ranges considered in this analysis FNP ∼ 0.5% for Ξ±

and FNP < 0.05% for K0
S.

The associated particle yields are computed by integrating the ∆ϕ projections and are divided by
the width of the ∆η∆ϕ region from which they are extracted. The toward-leading production is ex-
tracted from the region (|∆η | < 0.86, |∆ϕ| < 1.1), chosen to include the whole near-side peak. The
transverse-to-leading production is extracted from (0.86 < |∆η |< 1.2, 0.96 < ∆ϕ < 1.8): this region is
chosen to exclude the away-side peak associated with the recoil jet, whose contribution is situated around
∆ϕ ∼ π and is elongated over the whole ∆η interval, and to exclude any possible residual near-side peak
contribution in the region around ∆ϕ ∼ 0. Finally, the full yield is obtained from the whole ∆η∆ϕ region
(|∆η |< 1.2, −π/2 < ∆ϕ < 3/2π).

To obtain the toward-leading yield, the contribution of the underlying event is subtracted from the
toward-leading ∆ϕ projections. An estimate of the underlying event contribution is provided by the
long-range ∆ϕ projections obtained from the 0.86 < |∆η | < 1.2 region and scaled to take into account
the different ∆η widths of the two regions. This procedure cannot be applied to extract the toward-leading
yield of Ξ± with pT ≲ 2 GeV/c in the minimum bias samples because of the large statistical uncertain-
ties affecting the long-range ∆ϕ projections. To overcome this issue, the angular correlation between
charged particles with 0.15 < pT < 2.5 GeV/c and Ξ± candidates is computed, and the ∆ϕ projections
obtained from the 0.86 < |∆η | < 1.2 region are used as estimates of the underlying event, after being
scaled in order to match the |∆η |< 0.86 projections in the interval 1 ≲ ∆ϕ ≲ 2. These projections do not
suffer from large statistical uncertainties. They are observed to be compatible within uncertainties with
the default distributions in the −π/2 < ∆ϕ < π/2 interval, where the near-side peak lies. A systematic
uncertainty related to this procedure is evaluated as described in Sec. 3.5.

The per-trigger yields per unit ∆η∆ϕ , from now on referred to as “yields", are corrected by an additional
normalisation factor Cnorm in order to obtain the fully corrected pT spectra

(
1

Ntrigg

1
∆η∆ϕ

dN
dpT

)
in the three

different regions:

1
Ntrigg

1
∆η∆ϕ

dN
dpT

=
1

Ntrigg

1
∆η∆ϕ

1
∆pT

Cnorm

∫
∆ϕ

dNcorrected
assoc

d∆ϕ
d∆ϕ, (1)

where Ntrigg is the number of trigger particles in a given V0M multiplicity class and Cnorm considers the
efficiency with which events with a trigger particle are selected. The normalisation factor Cnorm is com-
puted using a Monte Carlo simulation and depends on the efficiency of trigger particle reconstruction
and the difference between the K0

S (Ξ±) spectra measured in events with a reconstructed trigger parti-
cle and events with a generated trigger particle. This correction factor is compatible with one for the
toward-leading spectra, whereas it decreases with pT for full and transverse-to-leading spectra, reaching
a saturation value of about 0.98 at pT > 3 GeV/c for both K0

S and Ξ±.

To compute the pT-integrated yields, the spectra are fitted with four different functions used to extrapo-
late the yield in the unmeasured pT interval. The extrapolated yield is the average obtained from the four
different fit functions: the Lévi-Tsallis [52], the Boltzmann, the Fermi-Dirac, and the mT-exponential
functions [18]. The extrapolated fraction of the K0

S yield amounts up to approximately 1% of the total
yield for full and transverse-to-leading production and to approximately 8% for toward-leading produc-
tion, because of the larger unmeasured pT interval. The extrapolated fraction of the Ξ± yield varies
between 10% and 40% for full and transverse-to-leading production and between 20% and 35% for
toward-leading production, depending on the multiplicity class. It is worth mentioning that the ex-

9
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trapolated fraction for transverse-to-leading yields is larger than for toward-leading yields in the same
unmeasured pT interval, as transverse-to-leading spectra are softer.

3.5 Systematic uncertainties

Several systematic uncertainties affecting the measurement of the full, transverse-to-leading and
toward-leading pT spectra are investigated. All the considered sources of systematic uncertainties are
reported in Table 2 for K0

S (top) and Ξ± (bottom) pT spectra, together with the relative uncertainty asso-
ciated with each of the sources at three different pT values in minimum bias pp collisions at

√
s = 13 TeV.

The topological selections are varied to take into account the differences between the distributions of
the topological variables in the data and in the Monte Carlo simulation used to compute the K0

S and
Ξ± acceptance×efficiencies. The systematic uncertainty is evaluated from the distribution of the fully
corrected yields obtained by randomly changing the topological selections within ranges leading to a
maximum variation of about ±2% in the raw signal yields when one single topological variable is varied.
The relative systematic uncertainty depends on the multiplicity class. Overall, it is smaller than 2% (4%)
for the transverse-to-leading and full pT spectra of K0

S (Ξ±). For the toward-leading spectra of K0
S (Ξ±) it

reaches values up to 8% at pT < 1 (2) GeV/c, decreasing with increasing pT. This source of uncertainty
represents the dominant one for the toward-leading spectra.

The effect of a different fraction of non-primary charged particles in the sample of trigger particles is
evaluated by varying the selection applied to the DCAz of the trigger particles. The systematic uncertainty
is extracted from the distribution of the fully corrected yields obtained by randomly changing the DCAz

selection within the (0,2) cm range. The relative uncertainty associated with this source is smaller than
0.2% for full and transverse-to-leading production, and smaller than 0.5% for toward-leading production:
it represents the smallest contribution to the total systematic uncertainty.

The systematic uncertainty associated with the choice of the ∆η region is assessed by changing the
default boundaries of the ∆η regions by about +10%. The boundaries are not decreased below the
default value, in order not to exclude any part of the near-side peak. The results are compared with those
obtained with the default ranges. The variations are significant according to the Barlow criterion [53],
with a 2σ threshold in at least four out of ten ∆ϕ intervals, indicating that the probability that they are due
to statistical fluctuations is smaller than 0.1%. For both K0

S and Ξ±, the relative systematic uncertainty of
the transverse-to-leading spectra is smaller than 2%, whereas for the toward-leading spectra it decreases
with pT from at most 6% for pT < 1(2) GeV/c for K0

S (Ξ±) to less than 2% for pT > 3 GeV/c. The full
yield, which by definition is obtained from the region (|∆η |< 1.2, −π/2 < ∆ϕ < 3/2π), is not affected
by this source of systematic uncertainty.

Similarly, the systematic uncertainty related to the choice of the ∆ϕ interval is assessed by changing
the default boundaries of the ∆ϕ regions by about ±10%. For both K0

S and Ξ±, the variations of the
transverse-to-leading ∆ϕ interval are significant according to the Barlow check with a 2σ threshold in
at least three pT intervals. The relative uncertainty, computed taking into account only the significant
variations, increases with pT up to 2% for both particles. The variations of the toward-leading yields are
significant for K0

S in minimum bias pp collisions at
√

s = 13 TeV: the relative uncertainty decreases with
pT from about 2% down to ∼ 0.1% for pT > 4 GeV/c. On the contrary, the variations are not significant
for Ξ± toward-leading spectra. As for the choice of the ∆η region, this source does not affect the full
yields.

The relative uncertainties associated with the topological selections and the choice of the ∆η and ∆ϕ

intervals mildly depend on the multiplicity class.

Another systematic effect is related to the choice of the function used to fit the background of the invariant
mass distributions of K0

S and Ξ± candidates. To quantify it, the fit to the background is performed
with a second-degree polynomial and the invariant mass interval in which the fit is performed is varied.

10
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Table 2: Summary of the relative systematic uncertainties of the K0
S (top) and Ξ± (bottom) pT spectra measured

in pp collisions at
√

s = 13 TeV in the V0M multiplicity class 0-100%. The values in parentheses refer to the
toward-leading spectra and are reported only when a difference from the transverse-to-leading and full spectra
is observed. No systematic uncertainty for the toward-leading Ξ± spectra is reported in the lowest pT interval,
as the measurement is performed for pT > 1.0(1.5) GeV/c, depending on the multiplicity class. No significant
centre-of-mass energy dependence is observed. The three sources of uncertainty marked with an asterisk are
observed to be partially uncorrelated across multiplicity, whereas all the other sources are fully correlated across
multiplicity. See text for details.

Hadron K0
S

pT (GeV/c) ≈0.6 ≈1.8 ≈3.5

Topological selections:*

Full 0.3% 0.3% 0.3%

Transverse-to-leading 0.5% 0.5% 0.5%

Toward-leading 2% 2% 1%

Trigger particle DCAz selection 0.1% 0.07% 0.05%

Choice of ∆η region* 0.3% (2%) 0.5% (1.2%) 0.7% (0.7%)

Choice of ∆ϕ region* 0.7% (2.5%) 0.7% (0.7%) 1.2% (0.2%)

Background fit function 0.1% 0.3% 0.5%

Choice of Monte Carlo 1% 1% 1%

Material budget 2% 0.2% 0.4%

Residual in-bunch pileup 2% 2% 2%

Out-of-bunch pileup track rejection 1.2% 1.2% 1.2%

Total 3% (5%) 3% (3.5%) 2.5% (3%)

Hadron Ξ±

pT (GeV/c) ≈0.6 ≈1.8 ≈3.5

Topological selections:*

Full 1% 0.1% 0.2%

Transverse-to-leading 3.0% 0.6% 0.5%

Toward-leading – 5% 3%

Trigger particle DCAz selection 0.1% 0.07% 0.05%

Choice of ∆η region* 2% 1% (2%) 1% (1%)

Choice of ∆ϕ region* 0.9% 1% (–) 1.2% (–)

Background fit function 0.5% 0.5% 0.5%

Misidentified Ξ± subtraction 0.8% 0.4% (2.5%) 0.3% (1.2%)

Out–of–jet subtraction – 5% –

Material budget 2% 2% 2%

Residual in-bunch pileup 2% 2% 2%

Out-of-bunch pileup track rejection 2% 2% 2%

Total 5% 3% (8%) 3% (4%)
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The results obtained in this way are compared with the default ones. For K0
S, the relative systematic

uncertainty increases with pT up to 1.5%. For Ξ±, the relative systematic uncertainty equals 0.5% in all
pT intervals. No dependence on the multiplicity class is observed.

To account for the simplified procedure applied to the subtraction of the contribution of misidentified
Ξ± in the minimum bias samples, the Ξ± spectra measured in the 0–100% multiplicity class of pp
collisions at

√
s = 13 TeV are compared with those obtained using the method based on the sidebands

of the invariant mass distribution. The difference between the spectra obtained with the two methods is
significant according to the Barlow criterion with a 2σ threshold in at least three pT intervals, and their
relative half-difference is assigned as a systematic uncertainty to the Ξ± spectra in all multiplicity classes
in minimum bias events. The relative uncertainty decreases with increasing pT, it is smaller than 1% for
full and transverse-to-leading production and smaller than 3% for toward-leading production.

Since the K0
S efficiency depends on the multiplicity, a systematic uncertainty is assigned to K0

S spectra
in order to account for possible differences between the multiplicity distribution in the data and in the
Monte Carlo simulation used to compute the efficiency correction. To assess this uncertainty, the default
K0

S efficiencies, computed using a Monte Carlo distribution based on PYTHIA8, are compared with those
obtained using a different Monte Carlo simulation based on EPOS LHC [31], and a 1% uncertainty is
added to account for the differences.

Another source of uncertainty for the Ξ± toward-leading spectra is related to the method applied to
subtract the contribution of the underlying event in the low-pT intervals (pT < 2.5 GeV/c) where the
standard method cannot be applied due to large statistical uncertainties. To evaluate this uncertainty,
the Ξ± toward-leading spectra are compared with those obtained using the standard procedure in the
[2.0-2.5) GeV/c interval, where the number of Ξ± candidates is large enough to allow for the application
of both methods. The systematic uncertainty, which amounts to 5–10% depending on the multiplicity
class, is also assigned to the lower pT intervals where the extraction procedure of the toward-leading
yield differs from the standard one.

To take into account the imperfect reproduction of the detector material budget in the Monte Carlo
simulation, the K0

S and Ξ± efficiencies are compared with those obtained using a Monte Carlo with a
different dependence of the material budget on the radial distance from the interaction point. For K0

S, the
uncertainty associated with the material budget decreases with pT from a maximum of 2% and shows
a similar trend in all multiplicity classes. For Ξ±, this systematic uncertainty amounts to 2% and is
independent of multiplicity and pT.

The systematic uncertainties related to pileup rejection are inherited from the analysis of (multi-)strange
hadron production in pp collisions at

√
s = 13 TeV [18]. To account for a residual contamination from

in-bunch pileup, a relative systematic uncertainty of 2% is assigned to both K0
S and Ξ± pT spectra.

The systematic uncertainty due to out-of-bunch pileup, evaluated in Ref. [18] by changing the matching
scheme of the decay tracks with the ITS and TOF detectors, amounts to 1.2% (2%) for K0

S (Ξ±) spectra
in all pT intervals and multiplicity classes.

Finally, another source of systematic uncertainty affecting the pT-integrated yield is associated with
choosing the fit function used to extrapolate the pT-spectra. The uncertainty is given by the half-
difference between the maximum and the minimum extrapolated yields obtained with the four different
fit functions. This uncertainty amounts at most to 0.5% (4%) for full and transverse-to-leading yields of
K0

S (Ξ±), and to 2% (4%) for toward-leading yields of K0
S (Ξ±).

Most of the sources of systematic uncertainties considered in this analysis are fully correlated across
multiplicity, as they determine a shift of the yields in the same direction in all multiplicity classes. Three
sources of uncertainty, namely the selections applied to identify K0

S and Ξ± candidates and the choices of
the ∆ϕ and ∆η intervals, are observed to be partially uncorrelated across multiplicity. For each of these
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sources, in order to determine the fraction of uncertainty which is uncorrelated across multiplicity, the
ratio Rm

var is computed:

Rm
var =

ym
var/ym

def

y0−100%
var /y0−100%

def
. (2)

Here ym
def and y0−100%

def are the default yields measured in a given pT interval in the multiplicity class m and
0–100%, respectively, and ym

var and y0−100%
var are the yields obtained by applying a systematic variation. If

a source of uncertainty is fully correlated across multiplicity, Rm
var ∼ 1. For each source of systematic un-

certainty, the uncorrelated relative uncertainty across multiplicity is computed as the maximum deviation
of Rm

var from unity.

On average, the uncorrelated fraction of the total systematic uncertainty for K0
S (Ξ±) amounts to ap-

proximately 3%(5%), 10%(20%) and 25%(25%) for the full, transverse-to-leading and toward-leading
production, respectively.

4 Results

The full, toward-leading and transverse-to-leading pT distributions of K0
S and Ξ± per unit ∆η∆ϕ area

are shown for the different multiplicity classes in Figs. 3 and 4 for pp collisions at
√

s = 13 TeV and
Figs. 5 and 6 for pp collisions at

√
s = 5.02 TeV. The bottom panels show the ratios to the spectra

measured in the 0–100% multiplicity class. In all multiplicity classes and at both centre-of-mass en-
ergies, the toward-leading spectra (right panels) are harder, i.e. have a larger average pT, than the
transverse-to-leading (central panels) and full (left panels) spectra, as expected from the fact that the
production in the direction of the trigger particle is associated with hard scattering processes. As shown
in the bottom panels of Figs. 3–6, the transverse-to-leading and full pT spectra increase with multi-
plicity in all pT intervals, becoming harder as the multiplicity increases. This behaviour was already
reported for strange hadron spectra measured inclusively, i.e. in all events, in Pb–Pb [11], p–Pb [12]
and pp collisions [16, 18]. In Pb–Pb collisions this behaviour is more pronounced than in small col-
lision systems and is interpreted as an indication of the presence of radial flow. In contrast to the full
and transverse-to-leading spectra, the toward-leading spectra show a much smaller dependence on the
multiplicity.

The full, transverse-to-leading and toward-leading pT-integrated yields of K0
S (Ξ±) per unit ∆η∆ϕ area

are shown in Fig. 7 (8) as a function of the charged-particle multiplicity measured at midrapidity in events
with a trigger particle ⟨dNch/dη⟩|η |<0.5, pT,trigg>3 GeV/c, in the following abbreviated with ⟨dN/dη⟩trigg.
The yields show no dependence on the centre-of-mass energy, as observed in previously published re-
sults [18]. The full and transverse-to-leading yields of both K0

S and Ξ± increase with multiplicity faster
than the toward-leading yields. For better visibility, the toward-leading pT-integrated yields of K0

S and
Ξ± per unit ∆η∆ϕ area are separately shown in Fig. 9, where the Ξ± yields are scaled such that the
lowest-multiplicity Ξ± yield matches the K0

S one. Both the K0
S and Ξ± yields are not compatible with

a flat trend with multiplicity with a 5σ confidence level. The relative increase of the K0
S yield from the

lowest to the highest multiplicity is (1.22±0.04), where the uncertainty is given by the sum in quadrature
of the statistical and the systematic uncertainty uncorrelated in multiplicity. The relative increase of the
Ξ± yield (1.93±0.17) is significantly larger than the K0

S one.

The yields are compared with the predictions of three different phenomenological models, namely
PYTHIA8.2 with the Monash 2013 tune [41], PYTHIA8.2 with ropes [28] and EPOS LHC [31]. PYTHIA

is based on the Lund string hadronisation model [54]. As shown in Ref. [22], PYTHIA8.2 with the
Monash 2013 tune cannot describe the strangeness enhancement with multiplicity in INEL > 0 pp colli-
sions: it underestimates the ratios between strange hadron and pion yields and does not reproduce their
increase with multiplicity. The description is improved if overlapping strings are allowed to interact with
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Figure 3: Transverse momentum distributions of K0
S per unit ∆η∆ϕ area in pp collisions at

√
s = 13 TeV. The left,

central and right panels refer to full, transverse-to-leading and toward-leading production, respectively. Different
colours refer to different multiplicity classes selected using the V0 detector, as indicated in the legend. The spectra
are scaled by different factors to improve the visibility. The bottom panels display the ratios to the spectra measured
in the 0–100% multiplicity class. The statistical errors are represented by the error bars, the systematic uncertainties
by the empty boxes. Error bars are smaller than the marker size and are therefore not visible.
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Figure 4: Transverse momentum distributions of Ξ± per unit ∆η∆ϕ area in pp collisions at
√

s = 13 TeV. The left,
central and right panels refer to full, transverse-to-leading and toward-leading production, respectively. Different
colours refer to different multiplicity classes selected using the V0 detector, as indicated in the legend. The spectra
are scaled by different factors to improve the visibility. The bottom panels display the ratios to the spectra measured
in the 0–100% multiplicity class. The statistical errors are represented by the error bars, the systematic uncertainties
by the empty boxes. Error bars are smaller than the marker size and are therefore not visible.
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Figure 5: Transverse momentum distributions of K0
S per unit ∆η∆ϕ area in pp collisions at

√
s = 5.02 TeV.

The left, central and right panels refer to full, transverse-to-leading and toward-leading production, respectively.
Different colours refer to different multiplicity classes selected using the V0 detector, as indicated in the legend.
The spectra are scaled by different factors to improve the visibility. The bottom panels display the ratios to the
spectra measured in the 0–100% multiplicity class. The statistical errors are represented by the error bars, the
systematic uncertainties by the empty boxes. Error bars are smaller than the marker size and are therefore not
visible.
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Figure 6: Transverse momentum distributions of Ξ± per unit ∆η∆ϕ area in pp collisions at
√

s = 5.02 TeV.
The left, central and right panels refer to full, transverse-to-leading and toward-leading production, respectively.
Different colours refer to different multiplicity classes selected using the V0 detector, as indicated in the legend.
The spectra are scaled by different factors to improve the visibility. The bottom panels display the ratios to the
spectra measured in the 0–100% multiplicity class. The statistical errors are represented by the error bars, the
systematic uncertainties by the empty boxes. Error bars are smaller than the marker size and are therefore not
visible.
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each other, forming the so-called “colour ropes" [28]. Indeed, PYTHIA8 with colour ropes can quali-
tatively describe the strangeness enhancement with multiplicity in pp collisions, as shown in Ref. [22].
Finally, the EPOS LHC [31] event generator implements the core-corona model [55], according to which
strings in a low-density area form the corona and hadronise normally, while strings in a high-density area
form the core and undergo collective hadronisation. As shown in Ref. [15], EPOS LHC can reasonably
well describe the K0

S/π ratio measured in INEL > 0 pp collisions, while it overestimates the strangeness
enhancement with multiplicity for the Λ, Ξ± and Ω± baryons.

The bottom panels of Figs. 7-8-9 display the ratios between the model predictions and the cubic splines
fitted to the data points. Three sources of systematic uncertainty affecting the model predictions were
considered: the choice of ∆η and ∆ϕ regions, which is evaluated as described in Section 3.5 for the
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Figure 7: Upper panel: full (blue), transverse-to-leading (green) and toward-leading (red) K0
S yields per unit ∆η∆ϕ

area as a function of the charged-particle multiplicity measured in events with a trigger particle. The data points
are drawn with markers, the model predictions with lines of different styles, as indicated in the legend. Statistical
and systematic uncertainties of the data points are shown by error bars and empty boxes, respectively. Shadowed
boxes represent systematic uncertainties uncorrelated across multiplicity. The sum in quadrature of statistical and
systematic uncertainties of the model predictions are shown by error bars, too small to be visible in the plot. Bottom
panel: ratio between the model predictions and the cubic spline fitted to the data points. The shaded band around
one represents the sum in quadrature of the statistical and systematic uncertainties of the data points.
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Figure 8: Upper panel: full (blue), transverse-to-leading (green) and toward-leading (red) Ξ± yields per unit
∆η∆ϕ area as a function of the charged-particle multiplicity measured in events with a trigger particle. The data
points are drawn with markers, the model predictions with lines of different styles, as indicated in the legend.
Statistical and systematic uncertainties of the data points are shown by error bars and empty boxes, respectively.
Shadowed boxes represent systematic uncertainties uncorrelated across multiplicity. The sum in quadrature of
statistical and systematic uncertainties of the model predictions are shown by error bars, too small to be visible
in the plot. Bottom panel: ratio between the model predictions and the cubic spline fitted to the data points. The
shaded band around one represents the sum in quadrature of the statistical and systematic uncertainties of the data
points.
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data and is found not to be significant according to the Barlow criterion for both the toward-leading
and the transverse-to-leading production, and the extrapolation of the yields in the unmeasured pT re-
gions: pT < 0.5(1.0) GeV/c for K0

S (Ξ±) toward-leading yield and pT < 0.5 GeV/c for Ξ± full and
transverse-to-leading yields. All the models underestimate the full and the transverse-to-leading K0

S
yields (Fig. 7). The underestimation is more significant at low multiplicity (⟨dN/dη⟩trigg ∼ 10), where all
models underestimate the yields by about 30%. At high multiplicity (⟨dN/dη⟩trigg ∼ 30), both PYTHIA8
implementations underestimate the yields by about 15%, while EPOS LHC predicts values compatible
with the measured ones. The increase with multiplicity of the toward-leading yield of K0

S (Fig. 9) is not
reproduced by any of the three models: both PYTHIA8 implementations overestimate the yields and show
a hint of decrease with multiplicity, whereas EPOS LHC predicts a decrease of the toward-leading yield
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Figure 9: Upper panel: toward-leading K0
S (magenta) and Ξ± (light blue) yields per unit ∆η∆ϕ area as a function

of the charged-particle multiplicity measured in events with a trigger particle. The Ξ± yields are scaled such
that the lowest-multiplicity Ξ± yield matches the K0

S one. The data points are drawn with markers, the model
predictions with lines of different styles, as indicated in the legend. Statistical and systematic uncertainties of
the data points are shown by error bars and empty boxes, respectively. Shadowed boxes represent systematic
uncertainties uncorrelated across multiplicity. The width of the bands represents the sum in quadrature of statistical
and systematic uncertainties of the model predictions. Bottom panel: ratio between the model predictions and the
cubic spline fitted to the data points. The shaded band around one represents the sum in quadrature of the statistical
and systematic uncertainties of the data points.
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with multiplicity. The deviation of the models from the full and transverse-to-leading Ξ± yields (Fig. 8)
is larger than the deviation from those of the K0

S (Fig. 7). Both PYTHIA8 implementations underestimate
the yields: PYTHIA8 Monash underestimates them by approximately 70% over the whole multiplicity
interval, whereas PYTHIA8 with ropes underestimates them by about 50% at low multiplicity and 20%
at high multiplicity. EPOS LHC underestimates the yield at low multiplicity by about 50% and overes-
timates it by about 20% at high multiplicity, predicting an increase of the transverse-to-leading and full
yields with multiplicity larger than the one observed in the data. The increase with multiplicity of the
Ξ± toward-leading yield (Fig. 9) is not described by PYTHIA8 Monash, which predicts a nearly flat trend
with multiplicity. On the contrary, PYTHIA8 with ropes and EPOS LHC can qualitatively reproduce
the increasing trend. These models, however, overestimate the toward-leading yields over the whole
multiplicity interval.

The ratios between Ξ± and K0
S yields as a function of ⟨dN/dη⟩trigg are shown in the top panel of Fig. 10,

together with the model predictions. In the data, the ratio of full yields increases with multiplicity:
this could be related to the larger strangeness content of the Ξ± with respect to the K0

S. Indeed, the
enhanced production of strange hadrons with increasing multiplicity was observed to be higher for par-
ticles with larger strangeness content [15]. The ratio of transverse-to-leading yields increases with the
multiplicity by a factor (1.75± 0.16), with the error given by the sum in quadrature of the statistical
and systematic uncertainty uncorrelated across multiplicity. It is compatible with the ratio of full yields,
because the full yield is dominated by transverse-to-leading production, as shown in Figs. 7 and 8. Also
the toward-leading ratio increases with multiplicity: a flat behaviour with multiplicity is excluded since
a zero-degree polynomial is not able to describe the ratio within the uncertainties uncorrelated across
multiplicity. The increase of the toward-leading ratio from the lowest to the highest multiplicity inter-
val equals a factor (1.58± 0.15). As shown by the double ratio between the toward-leading and the
transverse-to-leading Ξ±/K0

S ratios displayed in the bottom panel of Fig. 10, the toward-leading ratio is
approximately 40% smaller than the transverse-to-leading ratio, suggesting that the production of Ξ±

with respect to K0
S is favoured in transverse-to-leading processes over the whole multiplicity interval

where the measurement was performed. The double ratio is well described by a zero-degree polynomial
with a χ2/ndf = 6.6/7, indicating that the transverse-to-leading and toward-leading yield ratios increase
with multiplicity in a similar way.

The central panel of Fig. 10 displays the ratio between the model predictions and the data points.
PYTHIA8 Monash underestimates the ratios in the whole multiplicity interval, due to the large underesti-
mation of the full and transverse-to-leading Ξ± yields and of the overestimation of the K0

S toward-leading
yield. The toward-leading ratio does not describe the increase observed in the data. The full and
transverse-to-leading ratios show instead an increase with multiplicity, which is smaller than the one
observed in the data, as suggested by the decrease of the model over data ratio from about 0.5 at low
multiplicity to about 0.4 at high multiplicity. PYTHIA8 with ropes can qualitatively describe the increase
of the ratios with multiplicity observed in the data. However, the full and transverse-to-leading ratios are
underestimated in the whole multiplicity interval, and particularly at low multiplicity, where the underes-
timation of the Ξ± yields is larger. The toward-leading ratio is in qualitative agreement with the data, but
its increase with multiplicity is slightly overestimated: this fair agreement is resulting from the overesti-
mation of both the K0

S and the Ξ± toward-leading yields. Finally, EPOS LHC overestimates the increase
with multiplicity of the full and transverse-to-leading ratios, as a consequence of the overestimation of
the increase with multiplicity of Ξ± yields. In particular, the full and transverse-to-leading ratios are un-
derestimated by about 30% at low multiplicity and overestimated by about 20% at high multiplicity. The
toward-leading ratio is instead overestimated in the whole multiplicity interval, mainly as a consequence
of the overestimation of the Ξ± toward-leading yield. Moreover, its increase with multiplicity is larger
than the one observed in the data because the K0

S toward-leading yields predicted by EPOS LHC decrease
with multiplicity. As shown in the bottom panel of Fig. 10, the three models predict a larger double ratio
than the one measured in the data, i.e. they overestimate the toward-leading Ξ±/K0

S production with
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Figure 10: Top panel: full (blue), transverse-to-leading (green) and toward-leading (red) Ξ±/K0
S yield ratios

as a function of the charged-particle multiplicity measured at midrapidity in events with a trigger particle. The
data points are drawn with markers, and their statistical and systematic uncertainties are shown by error bars and
empty boxes, respectively. Shadowed boxes represent systematic uncertainties uncorrelated across multiplicity.
The model predictions are drawn with lines of different styles. The width of the bands represents the sum in
quadrature of statistical and systematic uncertainties of the model predictions, and is visible only for toward-leading
production. Central panel: ratio between the model predictions and the cubic spline fitted to the data points. The
shaded band around unity represents the sum in quadrature of the statistical and systematic uncertainties of the
data points. Bottom panel: double ratio between the toward-leading and the transverse-to-leading Ξ±/K0

S ratios.
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respect to the transverse-to-leading one. The double ratios predicted by PYTHIA8 with ropes and EPOS
LHC are smaller than unity and can be described with a zero-degree polynomial. On the contrary, the
double ratio predicted by PYTHIA8 Monash is compatible with one in the lowest multiplicity class and
decreases to about 0.8 in the highest multiplicity class.

The comparison of the Monte Carlo model predictions with the data suggests that none of the considered
models describes strange hadron production in hard scattering processes or in the underlying event.

5 Summary and outlook

The production of K0
S and Ξ± in pp collisions at

√
s = 5.02 TeV and at

√
s = 13 TeV was measured in

the direction of the highest-pT charged particle (trigger particle) and in the direction transverse to it. The
toward-leading pT spectra are harder than the transverse-to-leading ones, as expected from the fact that
the production in the direction of the trigger particle is associated with hard scattering processes, whereas
the production in the transverse-to-leading direction is related to the underlying event.

The full pT-integrated yields per unit ∆η∆ϕ of K0
S and Ξ± are dominated by transverse-to-leading

production and increase with the multiplicity of charged particles produced at midrapidity. The
toward-leading yields show instead a milder dependence on the multiplicity, indicating that the contri-
bution of transverse-to-leading processes relative to toward-leading ones increases with the multiplicity.
The K0

S and Ξ± yields do not show any significant centre-of-mass energy dependence.

The ratio between the Ξ± and the K0
S yields provides insight into the strangeness enhancement ef-

fect, since the strangeness content of the Ξ± (|S|=2) is larger than the K0
S one (|S|=1). Both the

transverse-to-leading and the toward-leading Ξ±/K0
S yield ratios increase with the multiplicity of charged

particles. The transverse-to-leading ratio is larger than the toward-leading one, suggesting that the rela-
tive production of Ξ± with respect to K0

S is favoured in underlying event processes.

None of the considered models, namely PYTHIA8 Monash tune, PYTHIA8 with ropes and EPOS LHC,
can quantitatively describe the transverse-to-leading and toward-leading yields of K0

S and Ξ±. Both
PYTHIA8 implementations underestimate the full and the transverse-to-leading K0

S and Ξ± yields, with
the largest underestimation observed for the Ξ± yields. The increase of the full and transverse-to-leading
Ξ± yields with multiplicity is overestimated by both PYTHIA8 with ropes and EPOS LHC, leading to an
overestimation of the increase of the full and transverse-to-leading Ξ±/K0

S yield ratios with multiplicity.
The increase of the toward-leading yield of K0

S with multiplicity is not reproduced by any of the three
models. On the contrary, the increase of the Ξ± toward-leading yield with multiplicity is qualitatively
reproduced by PYTHIA8 with ropes and EPOS LHC, while PYTHIA8 Monash predicts a flat trend with
multiplicity. Overall, the comparison with the data indicates that the strange hadron production asso-
ciated with both hard scattering processes and the underlying event is not properly described by any
of the considered models. Additionally, other models such as the most recent implementation of the
core-corona approach EPOS4 [56] could be tested.

Further investigation of the origin of the enhanced production of strange hadrons in high-multiplicity pp
collisions with respect to low-multiplicity ones will be possible thanks to the huge sample of pp collisions
that is being collected during the ongoing Run 3, which is expected to be three orders of magnitude larger
than the Run 2 one. With Run 3 data, measuring the toward-leading and transverse-to-leading yields of
the triple-strange baryon Ω± as a function of the charged-particle multiplicity will become feasible. Ad-
ditionally, it will be possible to study the dependence of the toward-leading and transverse-to-leading Ξ±

yields on the minimum pT of the trigger particle, with higher pT thresholds reducing the contamination
from particles not originating from hard-scattering events. These studies will help improve the current
understanding of strange hadron production mechanisms.
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