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1 Introduction

Flavour physics plays an important role in searches for signals of beyond the Standard Model
interactions. In particular, non-unitarity of the Cabibbo-Kobayashi-Maskawa (CKM) matrix
would be a strong indicator of new physics. Two elements of this CKM matrix, |Vcd| and
|Vcs|, can be deduced from the weak decays of D and Ds mesons into a lepton and a neutrino
by combining experimentally measured decay rates with theory determinations of the decay
constants fD and fDs , respectively. Precise, ab-initio predictions of the decay constants are
required and these can be obtained using lattice QCD. However, observables involving both
charm and light or strange quarks are challenging to compute on the lattice with all sources
of systematic uncertainty under control. The charm quark mass does not provide a high
enough scale to admit an effective-field theory treatment, while employing a relativistic quark
action with discretisation effects typically of O(a2), including O(m2

ca
2), requires simulations

with fine lattice spacings. Furthermore, the light (and strange) quark mass dependence needs
to be sufficiently constrained, in particular, close to the physical point.
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In this work we present results for the D and Ds decay constants from an analysis of
Nf = 2+1 gauge field configurations generated by the Coordinated Lattice Simulations (CLS)
consortium [1–3] with non-perturbatively O(a) improved Wilson quarks [4, 5] and the tree-
level Symanzik-improved gauge action [6]. The charm quark is introduced as a quenched
flavour, thus making our setup a partially quenched realisation of the four-flavour theory.
As argued later, the impact of a missing charm quark in the sea is expected to be below
our small total uncertainties.

A unique feature of this study is that both the continuum limit extrapolation and light
and strange quark mass dependence is tightly constrained by the use of 49 high-statistics
ensembles, which lie on three trajectories in the (sea) quark mass plane and which span a
range of lattice spacings from a ≈ 0.10 fm down to below a ≈ 0.04 fm (a2 varies by a factor
of 6). Two of the trajectories meet at the physical point: along one trajectory the flavour
average of the light and strange quark masses is held constant, and along the other the strange
quark mass is fixed to approximately its physical value. The third trajectory runs towards
the SU(3) chiral limit, with the light and strange quark masses set to be equal. Overall,
the pion mass varies from mπ ≈ 420MeV down to 129 MeV, where for most ensembles the
spatial extent L is large enough such that mπL ≳ 4 and significant finite-volume effects are
avoided. Lattice spacings as fine as 0.04 fm are achieved utilising open boundary conditions
in time [7] to avoid the problem of topological freezing.

The pseudoscalar meson decay constants are defined through matrix elements of the
axial vector current between pseudoscalar states and the vacuum. For Wilson fermions,
the current is multiplicatively renormalised and, in order to achieve leading order O(a2)
discretisation effects, O(a) improved. For the latter, this includes evaluating terms to remove
the leading quark mass-dependent cutoff effects. We remark that, because of the precision
non-perturbative determination of the renormalisation factor of ref. [8] and the improvement
coefficients of refs. [9, 10] employed in our analysis, renormalisation and improvement is not
a significant source of uncertainty in our results.

With both the light and strange quark masses varying across the ensembles, we perform
a simultaneous chiral and continuum extrapolation of fD and fDs with all correlations taken
into account. Any mistuning of the trajectories, where for a particular lattice spacing the
relevant trajectory does not go through the physical point, can be corrected for using the
chiral-continuum fit parameterisation. Our final results at the physical point read

fDs = 246.8(0.64)stat(0.61)sys(0.95)scale[1.3]MeV ,
fD = 208.4(0.67)stat(0.75)sys(1.11)scale[1.5]MeV , (1.1)

fDs/fD = 1.1842(21)stat(22)sys(19)scale[36] ,

where the first error is statistical, the second systematic (arising from the parameterisation
of the lattice spacing and quark mass dependence), the third component is due to the scale
setting (taken from ref. [3]) and within the last bracket we give the total uncertainty. These
results are the most precise for Nf = 2 + 1 lattice QCD to-date and are consistent with
the recent work of ref. [11], which utilises a sub-set of the ensembles employed here (with
a mixed action setup). Our errors are more than twice those quoted by FNAL/MILC in
their Nf = 2 + 1 + 1 study [12] (see the 2021 FLAG report [13] for a comprehensive review
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of lattice results). An immediate improvement in our results would be achieved through
a more precise determination of the scale. However, once the uncertainties are reduced to
the level of a few per mille, isospin-breaking effects, as well as the absence of charm sea
quarks, will need to be considered.

The structure of the rest of the paper is as follows. In section 2 we give details of our
lattice setup and the ensembles employed. The construction of the two-point correlation
functions is discussed in section 3, along with the Symanzik improvement and renormalisation
of the relevant heavy-light operators. The fitting procedure to extract the bare decay
constants from the correlation functions is described in section 4. Finite-volume effects are
not significant in our setup, and this is demonstrated in section 5. In section 6, we outline
the set of chiral and continuum limit extrapolations performed and how the results at the
physical point are combined via a model averaging procedure. We also specify our choice of
hadronic scheme, i.e. the lattice scale employed and the external (physical) input used to
define the physical quark masses. The final results are presented in section 7 and compared
with previous works. We conclude in section 8. Additional information on the simulations,
including the masses and bare decay constants for the individual ensembles and the scheme
dependence of the final results, are collected in appendices. Preliminary accounts of this
work have been presented in refs. [14, 15].

2 Lattice setup

In the following we describe the set of Nf = 2 + 1 ensembles utilised in our analysis. We
have employed non-perturbatively O(a) improved Wilson fermions [4, 5] and the tree-level
Symanzik improved gauge action [6]. All ensembles have been created within the CLS effort.1
We have ensembles at six values of the squared bare coupling constant g2

0 = 6/β, which
corresponds to lattice spacings ranging from a = 0.098 fm down to a = 0.039 fm. At each
value of β, simulations are carried out along three trajectories in the quark mass plane,
as visualised in figure 1:

• The TrM = const. line: the trace of the (bare) quark mass matrix M is kept fixed,
TrM = 2ml +ms = const.. The latter also holds for the renormalised quark masses up
to O(a) effects, 2m̂l + m̂s = const. +O(a). The constant is chosen such that the flavour
average of the pseudoscalar octet meson masses squared rescaled with the Wilson flow
parameter t0 is close to its physical value, M̄2 ≡ 8t0

(
2m2

K +m2
π

)
/3 = M̄2

phys, where mπ

and mK are the masses of the pion and kaon, respectively. See refs. [3, 16] for more
details on the simulations along this trajectory.

• The m̂s ≈ const line: the renormalised strange quark mass is kept approximately
constant. The constant is chosen such that m̂s is near its physical value, m̂s ≈ m̂phys

s ,
see ref. [17] for further details.

1For uptodate information on the CLS Nf = 2 + 1 ensembles, see https://www-zeuthen.desy.de/alpha/pub
lic-cls-nf21/.
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Figure 1. Overview of the ensembles used in this work in the plane of (renormalised) light and
strange quark masses: the chiral trajectory where TrM = const. approaches the physical point from
below (blue line) and meets the trajectory with renormalised strange quark mass m̂s ≈ const. (orange
line) at the physical point by construction. A third trajectory for which the light and strange quark
masses are equal, ml = ms (yellow line), approaches the SU(3) chiral limit. The orange line is
obtained by setting 8t0(m2

K − 1
2m

2
π) to its physical value, analogously the blue line is defined by

fixing M̄2 ≡ 8t0
(
2m2

K +m2
π

)
/3 = M̄2

phys.

• The symmetric line: the light and strange quark masses are equal, ml = ms. This line
has an intersection point with the TrM = const. trajectory (referred to as the SU(3)
symmetric point) and approaches the SU(3) chiral limit.

Note that in the literature often only either the TrM = const. or the m̂s ≈ const trajectory
is considered when chiral extrapolations are performed. In such cases, (ideally) small deviations
of the simulation points from the desired chiral trajectory arise due to discretisation effects
and mistuning of the simulation parameters (as the simulation parameters that would match
the desired trajectory can only be determined after the quark mass plane has been sufficiently
explored). The latter deviations are often corrected by means of reweighting or a Taylor
expansion [16]. The need to employ such methods is avoided in our analysis, since our set
of ensembles allows for a reliable parametrisation of both the light and strange quark mass
dependence of our observables and the extraction of the results at the physical point.

An overview of the lattice spacings and pion masses of the ensembles we utilise is shown
in figure 2. More details are given in tables 2 and 3 in appendix A. In order to circumvent
critical slowing down towards the continuum limit due to the freezing of the topological
charge [18], open boundary conditions in time [7] have been implemented for ensembles with
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Figure 2. Overview of the ensembles entering the present study: three different quark mass
trajectories (left: ml = ms, centre: TrM = const., right: m̂s ≈ const.) have been analysed at six
(four for m̂s ≈ const.) different lattice spacings. Additional ensembles with different spatial volumes
exist for selected parameter sets. From these dedicated ensembles, the small volumes (S100, S201,
U101, U102, U103, X252, X253) do not enter the final extrapolation. Also the ensembles B452 and
N300 have been excluded. For these two cases the rather small temporal extent, in view of the given
statistics, did not allow for a reliable extraction of the ground state.

a ≲ 0.05 fm, while for other ensembles, antiperiodic boundary conditions have also been used.
In the spatial directions, periodic boundary conditions are always imposed. We emphasise
that for four of the six lattice spacings (the exceptions are the coarsest and finest lattice
spacings) the ensembles provide excellent coverage of the quark mass plane in the region
of interest. All together, this setup enables a detailed investigation of the quark mass and
cutoff dependence when performing combined chiral-continuum extrapolations of the decay
constants to the physical point.

The charm quark is partially quenched in our analysis. Two values of the charm quark
mass are employed per ensemble, which are chosen such that only a small interpolation or
(in a few cases) extrapolation to the physical value is required. The dependence of the charm
quark mass on the light and strange sea quark masses is expected to be mild and we usually
use the same hopping parameters for a given gauge coupling. The values of the hopping
parameters for the light, strange and charm quarks are listed in table 3. The bare quark
mass amh of the heaviest quark, as defined in eq. (3.4), ranges from 0.48 on the coarsest
ensembles to 0.14 on the finest ones.

Finite-size effects can also be quantified in our analysis. Ensembles were generated with
different spatial extents at several simulation points for mπ > 200MeV and a ≥ 0.064 fm. In
particular, at mπ ≈ 286MeV and a = 0.064 fm, five volumes are realised with mπL ranging
from 3.0 to 5.9. As detailed in section 5, we find that finite volume effects are under control
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for mπL ≳ 3.5. We impose an additional cut of L ≥ 2.3 fm to ensure that the spatial extent
is much larger than the inverse pseudo-critical temperature. We remark that for almost all
simulation points there exists at least one ensemble with a spatial lattice extent L ≳ 4/mπ.

We achieve high statistics across our set of ensembles. In particular, for almost all
ensembles we have a large number of configurations with respect to the (possibly) slowest
mode in the simulation. See table 2 of appendix A for the number of configurations utilised
for each ensemble and ref. [3] for details on the autocorrelations. The resulting precision
of better than 0.6‰ and 6‰ for the heavy-light meson masses and bare decay constants,
respectively, is illustrated in tables 4 and 5.

More details on the simulations performed by CLS using the openQCD code [19, 20]
can be found in refs. [1–3]; we highlight here that the code package has several algorithmic
improvements built in, such as the Hasenbusch trick [21], improved integrators [22], a multi-
level integration scheme [23] and a deflated solver [24, 25]. Furthermore, for the Nf = 2 light
fermion part of the action, a twisted mass term is added in order to increase the stability of
the HMC simulation [19, 26]. The effect of this additional term is removed by appropriate
reweighting of the observables. Note that reweighting is also applied in the strange sector in
order to account for errors arising from the use of a rational approximation [27, 28]. The
strange quark reweighting factor usually does not vary significantly, however, it turns out
that the factor can acquire a negative sign [29], which should be included in the ensemble
averages. We utilise the signs calculated in refs. [26, 29] in our analysis. Only very few
configurations have a negative strange reweighting factor and the effect of the negative signs
is to (at most) slightly increase the statistical uncertainty.

3 Observables

The pseudoscalar decay constants fD and fDs are defined via the matrix elements of the axial
vector current between D and Ds meson states at momentum p and the vacuum, respectively,〈

0
∣∣Alc

µ

∣∣D(p)
〉
= ifDpµ,

〈
0
∣∣Asc

µ

∣∣Ds(p)
〉
= ifDspµ. (3.1)

The axial vector current is given by Aqc
µ (x) = q(x)γµγ5c(x) for quark flavours q = l, s. In order

to remove O(a) cutoff effects from the matrix elements, we construct an improved current

Aqc,I
µ = Aqc

µ + acA
1
2
(
∂µ + ∂∗µ

)
P qc, (3.2)

where the pseudoscalar operator is P qc(x) = q(x)γ5c(x) and ∂µ and ∂∗µ denote the lattice
forward and backward derivatives, respectively. Together with an O(a) improved fermion
action, the above current eliminates all O(a) effects in the chiral limit. At non-vanishing
quark mass, two additional terms are needed which depend on the valence quark masses and
the sum of the sea quark masses. The renormalised O(a) improved current reads [30](

Aqc,I
µ

)
R
= ZA

[
1 + a

(
bAmqc + b̄ATrM

)]
Aqc,I

µ +O(a2), (3.3)

where mqc and TrM denote the bare vector Ward identity quark mass combinations

mqc =
1
2 (mq +mc) , TrM = 2ml +ms, with mq = 1

2a

(
1
κq

− 1
κcrit

)
. (3.4)
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The hopping parameter for quark flavour q is denoted by κq and κcrit labels its critical
value. For the renormalisation factor ZA and the improvement coefficients cA and bA, we
employ the non-perturbative determinations of refs. [8–10], respectively. The improvement
coefficient b̄A has been computed in refs. [10, 31], however, as the coefficient is compatible
with zero for the range of gauge couplings considered here, we set b̄A = 0 in our analysis.
For κcrit we utilise the results of ref. [3]. For convenience, we collect the values for the
renormalisation factor, improvement coefficients and κcrit for each gauge coupling used in
this work in table 6 of appendix A.

We remark that the gauge coupling g2
0 also undergoes O(a) improvement, g̃2

0 = g2
0(1 +

1
3abg(g2

0)TrM), where to consistently apply Symanzik improvement to this order, the improved
coupling should be held constant away from the chiral limit [30, 32]. While there has been a
recent effort to calculate bg non-perturbatively [33], there is no determination available as
yet for the range of coupling constants relevant for our calculations and the simulations are
performed at fixed values of g0. Note that the renormalisation factor and coefficients of the
mass-dependent improvement terms in eq. (3.3) should be evaluated at g̃2

0. However, for the
latter the difference between, for instance, bA evaluated at g2

0 or g̃2
0 enters at O(a2) and can

be ignored. To leading order in perturbation theory bg(g2
0) = 0.036g2

0 +O(g4
0) [34]. Using

this estimate, the values of the improved coupling associated with our ensembles are very
close to g2

0 and in practice we evaluate renormalisation factors (as well as the improvement
coefficients) at the gauge coupling where we have actually performed the simulation.

Holding g2
0 (and not g̃2

0) fixed in the simulations, means that the lattice spacing depends
(mildly) on the quark masses, a = a(g2

0, aTrM). This introduces (mass-dependent) cutoff
effects of O(a) in dimensionful quantities extracted in the simulation (at fixed g2

0), such as
a meson mass amM. This effect is also expected to be small. Nevertheless, we circumvent
this issue by rescaling all dimensionful quantities with appropriate powers of the gradient
flow parameter t0 (determined on the same ensemble) to form dimensionless combinations
such that the O(a) effects cancel.

In order to obtain the matrix elements of eq. (3.1), we evaluate the two-point functions

Cqc
A0P̃

(t) ≡ Cqc
A0P̃

(x0, y0) = − a6

L3

∑
x⃗,y⃗

〈
Aqc,I

0 (x)
(
P̃ qc(y)

)† 〉
,

Cqc
P̃ P̃

(t) ≡ Cqc
P̃ P̃

(x0, y0) = − a6

L3

∑
x⃗,y⃗

〈
P̃ qc(x)

(
P̃ qc(y)

)†〉
, (3.5)

at zero momentum, where t = x0 − y0 is the difference between the sink and source timeslices,
x0 and y0, respectively. The spatial extent is denoted by L. The correlators are calculated
by means of point-to-all propagators, where, for the pseudoscalar interpolator at the source
and sink P̃ qc(†), we apply Wuppertal smearing [35, 36] with APE-smoothed links [37]. The
number of smearing iterations is varied across the ensembles to optimise the overlap with the
ground state. More iterations are needed as the light quark mass decreases and we rescale
the number of iterations with a−2 to ensure (roughly) the same root mean square quark
smearing radius as the lattice spacing is varied. In table 2 of appendix A, the individual
numbers of smearing iterations for each quark are summarised for all ensembles. For more
details related to the smearing, we refer the reader to ref. [3].

– 7 –
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We compute the above two-point functions for two charm quark masses close to the
physical charm quark mass. For a given gauge coupling, the same two values of the hopping
parameter are normally utilised for each ensemble and the number of smearing iterations
employed for the charm quark is also kept fixed. Note that the charm propagators are
computed with the highest numerical precision that is possible with our code: we impose
relative residuals of around 10−15. No problems due to the numerical accuracy of the charm
quark propagators are observed when fitting to the correlation functions to extract the
heavy-light meson masses and decay constants (within the fit ranges chosen). Our fitting
procedure is outlined in the following section.

In order to increase statistics, source operators are inserted at different temporal positions.
For ensembles with open boundaries, the source positions are placed on a fixed set of time slices
(equally distributed within the bulk region, with random spatial positions), while for those
with periodic boundaries, the source positions are chosen randomly for each configuration.
The total number of sources (per configuration) for each ensemble can be found in table 2.

4 Extraction of the bare quantities

In this section we describe how we extract the masses and decay constants of the heavy-
light and heavy-strange mesons from fits to the relevant two-point correlation functions.
In the first step, we average the two-point functions over the source positions. While this
is straightforward on ensembles with periodic boundary conditions, care has to be taken
when open boundaries in the time direction are imposed as the data can only be averaged in
the bulk of the lattice, where boundary effects are negligible and translational invariance is
effectively restored. We identify the boundary region by fitting the P̃ P̃ correlation function
to the form suggested in ref. [19], which accounts for states which propagate in from the
boundary, and by applying the criterion that the contribution of these states is less than 1

4 of
the statistical uncertainty of the correlation function. To be conservative, a minimal distance
of 1.5 fm is taken, even when boundary states have decayed earlier. For the heavy-light
mesons, this is the case for almost all ensembles. We then average over all two-point functions
where the source and sink are in the bulk region. The resulting correlation function is free
from significant boundary effects and only depends on the source-sink separation, although
contributions from excited states are still present.

We take a similar approach when extracting the ground state masses and matrix ele-
ments of interest. We determine the region where excited state contamination has fallen
below the noise by fitting the effective mass of each correlation function with the two-state
functional form,2

meff(t) = m0 + c1 exp(−m1t) , (4.1)

over the range [tmin, tmax] and using the criterion from above. The upper end of the fit region
tmax is set by the time slice where the relative statistical uncertainty of the effective mass

2We define the effective mass of a correlation function C(t) by meff(t) = log[C(t − a)/C(t + a)]/(2a) in
the case of open boundary conditions, and in the case of periodic boundary conditions as the solution of
C(t)/C(t + 1) = cosh[meff(t) · (t − T/2)]/ cosh[meff(t) · (t + 1 − T/2)].
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Figure 3. Results from our combined fits to the P̃ P̃ and A0P̃ two-point functions for the heavy-
strange meson on ensemble E300 (left, mπ = 175MeV, a = 0.049 fm) and the heavy-light meson on
ensemble E250 (right, mπ = 130MeV, a = 0.064 fm). Note that the results displayed are for the
second charm hopping parameter (κc2), see table 3 in appendix A. Top: the fit result for the meson
mass mD(s) (blue band) is shown together with the effective masses of the two correlation functions.
The lower end of the fit range (tmin) in each case is indicated by a dashed line. Bottom: the result
for the decay constant obtained from the fit (grey band) is displayed along with the effective decay
constant (eq. (4.4)). The dashed line indicates the tmin of the A0P̃ two-point function.

exceeds 8%. To fix the start of the fit region tmin, we scan over various fits, increasing tmin
while keeping tmax fixed. The best fit is identified by monitoring the fit quality, as given
by the reduced χ2 for uncorrelated fits introduced in ref. [38]. To avoid overfitting in a
region where only a single state can be resolved, we then identify the best fit to be the one
with the highest Akaike weight, computed as outlined in section 6.4. In general, we find
the determination of the region of ground state dominance to be largely insensitive to the
procedure used to choose the best fit. The resulting regions of ground state dominance start
in the range from 0.6 fm to 1.6 fm, where the variation within this range depends on the
quark masses and the smearing parameters, as well as on the statistical accuracy of the data.

In the next step, we perform a combined fit to the P̃ P̃ and A0P̃ correlation functions
within the fit ranges determined above. Excited state contributions can be neglected and the
correlation functions as defined in eq. (3.5) are modelled with single-exponentials with the
same energy mD for q = l, and mDs for q = s and amplitudes Aqc

A0P̃
and Aqc

P̃ P̃
,

Cqc
A0P̃

(t) = Aqc
A0P̃

e−mD(s) t
, Cqc

P̃ P̃
(t) = Aqc

P̃ P̃
e−mD(s) t

. (4.2)
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Note that the A0P̃ correlation function is constructed using the improved axial vector current
in eq. (3.2). The combined fit helps to reduce the statistical uncertainty of the smeared-
smeared P̃ P̃ amplitude that is inherently noisier. Based on the spectral decomposition
of the correlators, the bare matrix elements are extracted from the ground state energy
and amplitudes via

fD(s) =
√
2Aqc

A0P̃√
Aqc

P̃ P̃
mD(s)

. (4.3)

The renormalisation and remaining (mass-dependent) O(a) improvement are applied as
outlined in section 6.2.

Representative results of the combined fits are displayed in figure 3. In the upper panels
the fitted masses of the heavy-strange meson on ensemble E300 (a = 0.05 fm, mK = 496MeV)
and the heavy-light meson on ensemble E250 (a = 0.064 fm, mπ ≈ mphys

π ), are shown together
with the effective masses of the corresponding P̃ P̃ and A0P̃ correlators. One can clearly
see that the extraction of the mass is mostly constrained by the smeared-point two-point
function. Thanks to the smearing of the pseudoscalar interpolator at the source, we can easily
identify a region where excited state contributions are sufficiently suppressed. The lower
panels compare the results for the decay constant, computed as given in eq. (4.3), with an
effective decay constant constructed from the correlation functions and the fitted meson mass

f eff
D(s)

(t) =
√
2Cqc

A0P̃
(t)√

Cqc
P̃ P̃

(t)mD(s) exp(−mD(s)t)
. (4.4)

These figures demonstrate that there are no significant excited state contributions present
in the region, where we extract the meson masses and decay constants. For completeness,
the analogous results for the heavy-light meson for ensemble E300 and the heavy-strange
meson for ensemble E250 are displayed in figure 11 in appendix B.

We collect our results for the bare decay constants from O(a) improved currents for both
choices of the heavy quark mass, enclosing the physical charm for almost all ensembles, in
table 5 of appendix A. We find a statistical precision at the level of about 0.5% in most
cases. The statistical uncertainties and the (auto-)correlations of the Monte Carlo data are
determined and propagated using the Γ-method [39, 40]. We utilise the pyerrors package
implementation of this method [41]. An analysis using the bootstrap method has also been
performed as a consistency check. For the simultaneous interpolation to the physical point
and extrapolation to the continuum limit, detailed in section 6, the masses of the light-light,
light-strange and heavy-heavy mesons are also needed along with the flow scale t0. The
meson masses are extracted adopting the same procedure as outlined above. However, for
the determination of the boundary for the pion, the smeared-source local-sink correlation
function has been used (instead of the P̃ P̃ correlation function), which for this particular
case leads to a more conservative result. Table 4 in appendix A lists the meson masses and t0
in lattice units obtained on each ensemble. Note that, in addition to the ensembles with small
volumes discussed in the next section, ensembles B452 and N300 have been also excluded.
For these two ensembles, the rather small temporal extent in view of the given statistics did
not allow for a reliable extraction of the ground state.
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Figure 4. Volume dependence of the heavy-light meson mass (left) and decay constant (right).
Results for fixed gauge coupling and light and strange quark masses but different spatial extents are
normalised to the value on the ensemble with the largest spatial volume. Ensembles with mπL < 3.5
or L < 2.3 fm are excluded from the final analysis resulting in the omission of the six leftmost data
points and the blue data point around mπL ≈ 4.5. Note that the ratios are formed using the results
for the second charm hopping parameter (κc2), see table 3 in appendix A. For the mπ ≈ 286MeV
ensembles, the lattice spacing is a = 0.064 fm, while for all others a = 0.085 fm.

5 Finite-volume effects

In this analysis, our goal is to ensure that all systematics are under control, including effects
arising from simulating on a finite spatial volume. The latter are expected to be small for
heavy meson observables, such as the mass [42] and decay constant. We test this expectation
by analysing ensembles with the same light and strange quark masses and gauge coupling
but different spatial extents. The volume dependence of mD and fD for five sets of ensembles
is shown in figure 4. These ensembles cover a range in the pion mass from mπ ≈ 423MeV
down to 220 MeV and in the spatial extent from 2.1 fm up to 4.1 fm, with 2.8 ≤ mπL ≤ 5.9.
In particular, for mπ ≈ 286MeV, we have results for five different values of L. Modulo
fluctuations in the data, the heavy-light meson mass tends to increase as mπL falls below
4, while no clear dependence can be resolved for the decay constant, although we cannot
exclude a small decrease for mπL ≲ 3. To be conservative, we omit all ensembles with
mπL < 3.5 or L < 2.3 fm, namely ensembles S100, S201, U101, U102, U103, X252, X253.
Among the remaining 40 ensembles, no dependence on the volume within uncertainties is
found. This also holds for the heavy-strange meson masses and decay constants and light-light
and light-strange meson masses, which also enter the analysis. Therefore, we decide not to
perform an explicit infinite-volume extrapolation of the remaining data. For completeness,
the volume dependence of mDs , fDs , mπ and mK is given in figure 12 in appendix B.

6 Chiral and continuum extrapolation

To determine the decay constants at the physical point of isospin symmetric, 2 + 1 flavour
QCD, we extrapolate to the continuum limit and evaluate the decay constants for physical
light, strange and charm quark mass. In our setup the approach to the continuum is
controlled by ensembles with larger-than-physical light quark masses at six values of the
lattice spacing, whereas the light and strange quark mass dependence is tightly constrained at
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the physical point and the SU(3) symmetric point by ensembles which lie on three trajectories
in the quark mass plane (see section 2 for more details). We perform a combined fit to
the heavy-light and heavy-strange decay constants, which by construction are equal on the
ensembles with SU(3) symmetry. Flavour symmetry provides further strong restrictions
on the description of the data.

The charm quark is partially quenched in our setup. On each ensemble, the charmed
observables are evaluated for two values of the heavy quark mass that encompass the physical
charm quark mass. We choose not to interpolate our data to the physical point ensemble-by-
ensemble but instead to fit all the data together and to account for the heavy quark mass
dependence in the fit parametrisation. As there are 80 data points in total in the vicinity of
the charm quark mass, this enables us to go beyond a simple linear interpolation.

6.1 Fixing the hadronic scheme

External input is required to set the lattice spacing in physical units, as well as to adjust
the simulated masses of the light, strange and charm quarks to match those in nature. As
described in succeeding subsections, this is realised by evaluating fits to the lattice spacing
and meson mass dependence of the decay constants at the physical point, which therefore
must be specified and defines our hadronic scheme. For scale setting, we employ the physical
value of the gradient flow scale [43],

√
tphys
0 = 0.1449(7)

(9) fm, determined utilising the Ξ baryon
mass from ref. [3]. In the light quark sector, we define the physical point in isospin symmetric
QCD using the values for the pion and kaon masses given in FLAG’s 2016 review [44],

mπ = 134.8(3)MeV , mK = 494.2(3)MeV . (6.1)

In the heavy quark sector, one would ideally fix the (valence) charm quark mass using
a quantity that can be determined very accurately and that is largely insensitive to the
dynamical light and strange (sea) quark content of the ensembles. One such quantity is
the mass of the pseudoscalar charmonium meson. This choice introduces a small intrinsic
imprecision, because in our analysis we neglect the quark-line disconnected contributions
to the corresponding mass-degenerate pseudoscalar correlation function used to extract the
charmonium mass, and likewise QED effects are omitted. To account for this, for the physical
ηc meson mass we adopt the result mηc = 2978.3(1.1)MeV quoted in ref. [45] and originally
calculated in ref. [46]. It applies to pure Nf = 2 + 1 + 1 QCD, i.e. in the absence of quark-
disconnected diagrams and QED effects, and thus complies with our situation especially in
these respects. Compared to the experimental value, mexp

ηc = 2983.9(4)MeV [47], there is a
5.6MeV shift such that we advocate as ηc input, fixing the charm quark mass, the central
value from [45] with a 6MeV error, viz.

mηc = 2978(6)MeV . (6.2)

We are confident that 6MeV reasonably quantifies the systematic uncertainty on our mηc

input, which is dominantly due to ignoring the impact of charm annihilation to gluons. This
is supported by ref. [46], where the latter was estimated to be 7.3(1.2)MeV, and is also
in line with calculations that include the disconnected diagrams [48–50]. The value (6.2)
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is also among the physical inputs entering the Nf = 2 + 1 mixed-action study [11] with
maximally twisted Wilson valence fermions.

Alternatively, one can tune the heavy-strange meson mass to the Ds mass. As explained
in ref. [51], correcting the experimental result for the absence of electromagnetic effects that
were estimated in ref. [52], mDs assumes the value

mDs = 1966.0(4)MeV . (6.3)

This mass is approximately constant across the ensembles along the m̂s ≈ const. trajectory,
but varies along the TrM = const. and symmetric lines.

A third possibility is to match the flavour average of heavy-light and heavy-strange
meson masses with the flavour averaged D meson mass. Taking mD = 1866.1(2), again from
ref. [51] in the isospin-symmetric limit of QCD and upon subtracting the electromagnetic
mass contributions, then yields as physical input for the flavour average:

mD̄ = 2
3mD + 1

3mDs = 1899.4(3)MeV . (6.4)

This combination is our preferred choice, as it remains almost constant along the TrM = const.
trajectory, i.e. at constant physical flavour average of pion and kaon masses (denoted as
M̄2

phys in section 2), for which we have the most ensembles. Nevertheless, we also fix the
physical charm quark mass using the ηc and Ds masses to check the sensitivity of our results
to the matching procedure.

Lastly, for the sake of completeness, it should be mentioned that at a preliminary stage of
our work [14, 15], we had also explored the spin-flavour averaged meson mass to fix the charm
quark mass: its construction as a suitable linear combination of heavy-light and heavy-strange
pseudoscalar and vector meson masses is guided by heavy-quark symmetry, and its use was
also tested in ref. [53]. However, since the vector meson correlators are considerably noisier
than the pseudoscalar ones (even if they allow extracting the ground state mass reliably), the
statistical errors of the vector meson masses are still relatively large. Consequently, we do not
observe any gain in overall statistical precision when including the spin-flavour averaged meson
mass in the combined chiral-continuum fits and hence disregard it from our final analysis.

6.2 The loss function

To describe the dependence on the light, strange and heavy quark masses and on the lattice
spacing, we use the independent variables t0, mπ, mK, mD̄1 , mD̄2 in the fits (or {mD1

s
,mD2

s
}

or {mη1
c
,mη2

c
} in the alternative schemes). The dependent variables for the simultaneous fit

of heavy-light and heavy-strange decay constants for two values of the heavy quark mass
per ensemble are fD1

s
, fD2

s
, fD1 and fD2 . We use the method described in appendix F.4 of

ref. [3] to promote independent variables to fit parameters in order to take their uncertainty
and correlation with the dependent variables into account. For a fully correlated fit we have
to compute a 9 × 9 covariance matrix per ensemble, which reduces to 6 × 6 on ensembles
with SU(3) symmetry. As different Monte Carlo chains are not correlated with each other,
the full covariance matrix of the fit is block diagonal.

In practice, we fit the bare matrix elements of the O(a) improved axial vector current
defined in eq. (4.3) with a fit function which describes the renormalised O(a) improved decay
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constants (outlined in the next section) divided by the factor (cf. eqs. (3.3) and (3.4))

ZA (1 + bAamqc) = ZA

(
1 + bA

(
1
4κq

+ 1
4κc

− 1
2κcrit

))
. (6.5)

This approach enables us to take the uncertainties in the renormalisation and improvement
factors and the critical hopping parameter (which all only depend on the gauge coupling)
consistently into account. Treating these quantities as external input, we introduce Bayesian
priors and widths (3 priors per β, with 18 priors in total) which are set to the central values
and uncertainties, respectively, listed in table 6. Following ref. [3], the full loss function
that is minimised in the fit corresponds to

χ2 =
ne∑

e=1

N∑
i,i′=1

δf i
e(C−1

e )ii′
δf i′

e +
18∑

j=1

(
δpj

∆pj

)2

(6.6)

where ne is the number of ensembles, N = 9 or 6 is the number of observables for each
ensemble, δfe is the difference of the data and our model, Ce is the covariance matrix for
ensemble e, δpj is the difference of the prior and the corresponding fit parameter and ∆pj is the
width of the prior. We remark that the prior fit parameters, obtained from the minimisation,
agree within errors with the prior values. We make use of the Cholesky-decomposition of
the covariance matrix

(C−1
e )ii′ = (Le)ik(LT

e )ki′
, (6.7)

to rewrite the ne × N residuals as

rk
e = δf i

e(Le)ik , (6.8)

which leads to the final form

χ2 =
ne∑

e=1

N∑
k=1

rk
e (rT

e )k +
18∑

j=1

(
δpj

∆pj

)2

. (6.9)

The loss function is minimised using the Levenberg-Marquardt algorithm in the scipy
package [54, 55].

6.3 The fit model

Having defined the loss function, we now introduce the models used to describe our data. We
simultaneously fit to the dimensionless combinations

√
8t0fD and

√
8t0fDs , where t0 is the

gradient flow scale. The light, strange and charm quark dependence of the decay constants
is expressed in terms of the basis

M̄2 := 1
3
(
2m2

K +m2
π

)
∝ (2ml +ms) , δM2 := 2

(
m2

K −m2
π

)
∝ (ms −ml) , (6.10)

M̄H := mD̄ = 2
3mD + 1

3mDs ∝ mc , (6.11)

and, similarly, we form dimensionless combinations to give,

M̄2 := 8t0M̄2 , δM2 := 8t0δM2 , M̄H :=
√
8t0M̄H . (6.12)
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To begin with, we consider the light and strange quark mass dependence of the decay
constants in the continuum limit at fixed charm quark mass. The leading terms in our
ansätze are inspired by next-to-leading order (NLO) SU(3) heavy meson chiral perturbation
theory (HMχPT) [56] and read

√
8t0fDs = f0 + c1 M̄2 + 2

3c2 δM
2 + c3

(
4µK + 4

3µη

)
, (6.13)

√
8t0fD = f0 + c1 M̄2 − 1

3c2 δM
2 + c3

(
3µπ + 2µK + 1

3µη

)
, (6.14)

where the chiral logarithms are defined as

µX = 8t0m2
X log(8t0m2

X) (6.15)

with X ∈ {π,K, η}, and the mass of the η meson is given by the Gell-Mann-Okubo relation

m2
η ≈ 4

3m
2
K − 1

3m
2
π = M̄2 + 1

3δM
2 . (6.16)

Note that SU(3) symmetry constrains the coefficients of the expansion, with fD = fDs when
δM2 = 0, and, to this order, only four low energy constants are needed to parameterise
both decay constants. If we assume NNLO SU(3) ChPT [57] for the dependence of t0 on
the quark masses, the rescaling of fD(s) with

√
8t0 does not introduce any additional terms

in eqs. (6.13) and (6.14).
Turning to the heavy quark mass dependence, we only have to describe this dependence

in a small region around the physical charm quark mass. We consider terms proportional
to M̄H, δM2M̄H, M̄2M̄H and M̄2

H, among others (see below). Such terms arise when expanding
in the difference between M̄H and its value at the physical point.3

We use the gradient flow scale determined on each ensemble, t0/a2, to parameterise
the lattice spacing dependence,

a2 := a2

8t0
= a2

chiral(g2
0)

8t0,chiral
+O(a2M̄2) , (6.17)

where t0,chiral is the value of t0 in the chiral limit. The value of the lattice spacing in the
chiral limit at g2

0 is labelled as achiral ≡ limM→0 a(g2
0, aTrM). Note that, assuming ChPT to

hold, the leading order correction (starting at a2M̄2) originates from the correction to t0 at
NNLO SU(3) ChPT. As we are simulating at fixed g2

0 (not fixed g̃2
0), discretisation effects

enter as (small) order a3M̄2 corrections, and order a4M̄2 and a4δM2 effects arise due to O(a2)
corrections on t0/a

2. Each of the above terms is taken into account in our fit models as
part of the description of the discretisation effects.

Our ansatz for the lattice spacing effects is guided by Symanzik effective theory [58, 59].
After full O(a) improvement of the action and observables, cutoff effects start at order a2.
Due to the relatively large mass of the charm quark, we expect to resolve mass-dependent

3An alternative approach, that is consistent with the heavy quark limit, would be to form the combinations√
mD(s) fD(s) and to expand in powers of 1/mD(s) . Given that the (global) interpolation to the physical charm

quark mass is tightly constrained by the large number data points (see section 6.5), we expect this approach
to yield very consistent results.
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cutoff effects. As outlined in refs. [60, 61], quantum corrections to Symanzik effective theory
may introduce discretisation effects of order a2[ḡ2(1/a)]γ̂i , where ḡ2(1/a) is the renormalised
coupling, leading to a logarithmic modification of the cutoff effects. In refs. [61, 62] it has been
found that the smallest anomalous dimension γ̂i for pseudoscalar and axial vector currents
is 0 for our action and there is no dangerous slowing down of the continuum extrapolation.
We assume that contributions from terms with γ̂i > 0 are subleading and consider terms
proportional to a2, a2M̄2, a2δM2, a2M̄H and higher powers in a, as detailed below.

We construct global fit models by combining the individual terms for the dependence on
the light, strange and heavy quark masses and on the inverse cutoff additively, such that the
models are linear in the fit parameters. By investigating the fit quality, we compose a model
with a minimal number of parameters that is able to describe our data reasonably well,

√
8t0fDs(mπ,mK,mD̄, a) = f0 + c1 M̄2 + 2

3c2 δM
2 + c3

(
4µK + 4

3µη

)
+ c4 M̄H (6.18)

+ c5 M̄2
H + c6 δM

2M̄H + c8 M̄2M̄H + c9 a2 + c10 a2M̄H ,

√
8t0fD(mπ,mK,mD̄, a) = f0 + c1 M̄2 − 1

3c2 δM
2 + c3

(
3µπ + 2µK + 1

3µη

)
+ c4 M̄H

+ c5 M̄2
H + c7 δM

2M̄H + c8 M̄2M̄H + c9 a2 + c10 a2M̄H .

Only eleven parameters are needed to describe the 160 naive degrees of freedom, which are
effectively reduced due to the correlation in the data. The fit quality for this fully correlated
fit is χ2/d.o.f = 1.08. Omitting terms in eq. (6.18), e.g. setting any of c5−8,10 to zero, leads
to a significant increase in the χ2. Note that the above expressions are consistent with SU(3)
constraints and there is only one fit parameter (c6 respectively c7) that is not shared by the
ansätze for fD and fDs . We find that, in addition to the linear term, we have to incorporate
a term that is quadratic in M̄H which could not have been resolved when fixing the charm
quark mass ensemble by ensemble prior to the extrapolation. Furthermore, mixed terms
involving the heavy quark mass and the sea quark mass proxies are necessary to achieve a good
description of the data. In terms of lattice spacing effects, mass-independent contributions
and those dependent on the heavy quark are dominant.

To explore the parameter space of the extrapolation and to test for higher order effects,
we build a variety of models, which extend eq. (6.18). We add up to four terms out of the
following list of higher order terms in the quark masses,

M̄2M̄2
H , M̄2δM2 , (δM2)2 , δM2M̄2

H , (δM2)2M̄H , (6.19)

and up to three terms out of the following lists of terms describing lattice artifacts,

a2M̄2 , a2δM2 , a3 , a3M̄2 , a3δM2 , a3M̄H , a4 , a4M̄2 , a4δM2 , a4M̄H . (6.20)

We exclude models that mix a3 and a4 cutoff effects and models with more than 16 parameters.
In total this amounts to K = 482 models. The worst fit quality found in this set has a
fully correlated χ2/d.o.f. = 1.09. The best fit quality of the models under consideration is
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found to be χ2/d.o.f. = 0.92 for the model,

√
8t0fDs(mπ,mK,mD̄, a) = f0 + c1 M̄2 + 2

3c2 δM
2 + c3

(
4µK + 4

3µη

)
+ c4 M̄H (6.21)

+ c5 M̄2
H + c6 δM

2M̄H + c8 M̄2M̄H + c9 a2 + c10 a2M̄H

+ c11 δM
2M̄2

H + c13 a3 + c14 a3δM2 ,

√
8t0fD(mπ,mK,mD̄, a) = f0 + c1 M̄2 − 1

3c2 δM
2 + c3

(
3µπ + 2µK + 1

3µη

)
+ c4 M̄H

+ c5 M̄2
H + c7 δM

2M̄H + c8 M̄2M̄H + c9 a2 + c10 a2M̄H

+ c12 δM
2M̄2

H + c13 a3 + c14 a3δM2 .

Especially the inclusion of higher order cutoff effects, such as the terms multiplying c13 and
c14 in eq. (6.21), is found to improve the fit quality with respect to the base fit.

6.4 Model averages

For our final result, we take into account all the information that we derive from the set of
K fits defined above, by performing a weighted average over the results. The weight that is
assigned to a model k is based on the Akaike information criterion (AIC) [63, 64],

AICk = χ2
k + 2Mk , (6.22)

where Mk is the number of model parameters and the loss function χ2 is defined in eq. (6.9).
The AIC introduces a penalty for each additional fit parameter, such that fits with less
parameters are preferred over fits with more parameters but similar χ2. The weight for
each model reads

wAIC
k = N exp

(
−1
2AICk

)
, (6.23)

where the normalisation N is chosen such that ∑K
k=1w

AIC
k = 1. The central value for an

observable O is computed from a weighted average over all models,

O =
K∑

k=1
wAIC

k Ok , (6.24)

where Ok is the result for the observable based on model k. The statistical error is also
obtained from this weighted average via standard error propagation for derived observables.
Following ref. [65], we estimate the systematic uncertainty, stemming from the variation in
the model space, from the width of the distribution of the results in the model average,

σ2
sys =

K∑
k=1

wAIC
k O2

k −
(

K∑
k=1

wAIC
k Ok

)2

. (6.25)

The fit with the largest model weight of 0.025 is also the fit with the smallest χ2/d.o.f.,
i.e. the one of eq. (6.21). The fit with the smallest contribution to the average has a weight
of 2 · 10−6. The model average does not include cuts on the data, e.g. excluding the data
points for the largest value of M̄2 or a. This is because the base model in eq. (6.18), without
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Figure 5. Dependence of fD and fDs on the pion mass squared for the fit with the largest AIC
weight (eq. (6.21)), with all quantities in dimensionless combinations with the gradient flow scale t0.
The data points are corrected for effects due to the cutoff and mistuning of the light and strange quark
mass and shifted to the physical charm quark mass, see the text. The results lie on three trajectories,
for which TrM = const., m̂s ≈ const. and ml = ms, as described in section 2 and displayed in figure 1.
The central value and error band of the fit in the continuum limit, for the physical charm quark mass,
is projected onto these trajectories. The vertical dashed line indicates the physical point.

higher order terms in lattice spacing or quark masses, adequately represents the entire dataset.
However, we explicitly test that fitting the base model remains consistent when applying
cuts in the lattice spacing, the pion mass, the sea quark parameter M̄2 or the heavy quark
parameter M̄H. Among this set of cuts, the most pronounced impact stems from cuts in the
lattice spacing. The exclusion of ensembles at the coarsest lattice spacings leads to a small
downward shift of the decay constants (and a slight upward shift of their ratio). A similar
effect is observed when including terms that allow for O(a3) or O(a4) cutoff effects when
fitting the full data set, as it is the case in eq. (6.21).

6.5 Illustration of the quark mass and cutoff dependence

We use the fit with the largest model weight (eq. (6.21)) to illustrate the dependence of fD
and fDs on the quark masses and the cutoff. In figure 5, we display the light quark mass
dependence, where the fit is used to correct the results for lattice spacing effects, mistuning
of the light and strange quark masses (see the discussion in section 2) and to shift to the
physical charm quark mass. In terms of the mistuning, for a given pion mass, the strange
quark mass is fixed implicitly by the chiral trajectories: the data on the TrM = const. and
m̂s ≈ const. trajectories are shifted to correspond to the kaon mass which gives the physical
value of M̄2 = (2m2

K +m2
π)/3 ∝ 2ml +ms and 2m2

K −m2
π ∝ ms, respectively. At the physical

point, the continuum fit curves projected onto these two trajectories (coloured blue and
orange, respectively) have to coincide by definition, tightly constraining the fit. The fit curves
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Figure 6. Dependence of fD and fDs on the flavour average D meson mass for the fit with the largest
AIC weight, as shown in figure 5. The dashed line indicates the physical value of

√
8t0mD̄. The data

points are shifted using the fit to the physical pion and kaon masses and lattice spacing effects are
removed. The central value and error for the corresponding mD̄ dependence of the fit are shown as
the black line and grey band, respectively.

clearly show that the strange quark effects on fD are small, while fDs is largely insensitive to
the light quark mass, when keeping the strange quark mass at its physical value.

Along the symmetric line (yellow curve), which approaches the SU(3) chiral limit when
lowering the pion mass, the fD and fDs decay constants are equal. Including the data on
this trajectory helps to constrain the dependence on the parameter M̄2. Flavour breaking
effects are observed for the results on the TrM = const. trajectory, starting from the SU(3)
symmetric point and decreasing the pion mass towards the physical point. The curvature
due to the chiral logarithms can be mapped out thanks to the two ensembles at physical
pion mass and several further ensembles with mπ < 200MeV.

The heavy quark mass dependence of the decay constants, parameterised by M̄H in
eq. (6.21), is presented in figure 6. Note that the data points are corrected for all cutoff
effects (including those arising from the a2M̄H terms) and shifted to correspond to the physical
light and strange quark masses. Two charm quark masses are realised per ensemble and,
overall, the results bracket the physical value of the flavour average D meson mass, indicated
by the dashed line. By performing a global fit of the heavy quark mass dependence, we are
able to resolve terms quadratic in M̄H. However, as seen in the figure, these contributions
are rather minor.

Figure 7 shows the projection of the best fit onto the cutoff dependence for physical quark
masses. Discretisation effects are a significant source of systematics for observables involving
charm quarks, with amc ≈ 0.5 for our coarsest lattice spacing. However, by utilising high
statistics data at six lattice spacings ranging from a ≈ 0.10 fm down to a = 0.039 fm (a2 varies
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Figure 7. Dependence of fD and fDs on the lattice spacing squared for the fit with the largest AIC
weight, as shown in figure 5. The data points are shifted using the fit to the physical pion, kaon and
D̄ meson masses. The central value and error for the corresponding lattice spacing dependence of the
fit are shown as the black line and grey band, respectively.

by more than a factor of 6), we are able to clearly resolve the lattice spacing dependence,
including both a2 and a3 terms. With full non-perturbative O(a) improvement, the size
of these effects is fairly moderate with a 5% difference between the decay constants at the
coarsest lattice spacing and in the continuum limit. When varying the fit model, we found
that fits including a3 or a4 terms were favoured by the data. This is illustrated in figure 8
which shows the lattice spacing dependence for all fits considered. The variation of the
ansatz to describe the cutoff effects, as illustrated in the figure, is the main contribution
to our final systematic uncertainty.

7 Results

Employing the isospin-corrected experimental pion, kaon and flavour average D meson masses
given in section 6.1 and the physical value of the flow scale of ref. [3], we extract results for the
decay constants at the physical point (in the continuum limit) in physical units for each of the
482 fits considered. For the ratio fDs/fD, we simply divide the results at the physical point
for the individual decay constants. Alternatively, one can perform a simultaneous continuum,
chiral extrapolation of the ratio directly. While only a reduced number of terms would need
to be included in the model for such a fit (many terms cancel when taking the ratio of the
two fit forms, for instance, in eq. (6.21)), the data set entering the fit would be much reduced.
In particular, results from ensembles with SU(3) symmetry would not be included. As our
simultaneous fits to fD and fDs take all correlations into account, we would not expected to
obtain more precise results by fitting to the ratio. Following the model averaging procedure
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Figure 8. Illustration of the lattice spacing dependence of all fits considered. Each line corresponds
to the central value of one model that enters the model average. The opacity of a line indicates the
relative model weight, with a black line corresponding to the highest weight. The dashed lines show
the six values of the lattice spacing where the fit is constrained by data.

outlined in section 6.4, our final results at the physical point of Nf = 2+ 1 flavour QCD read

fDs = 246.8(0.64)stat(0.61)sys(0.95)scale[1.3]MeV ,
fD = 208.4(0.67)stat(0.75)sys(1.11)scale[1.5]MeV , (7.1)

fDs/fD = 1.1842(21)stat(22)sys(19)scale[36] ,

where the first error is statistical, the second is due to the systematics and the third arises from
the scale setting. The statistical error includes the uncertainties due to the renormalisation and
improvement coefficients and the hadronic scheme, while the systematic error quantifies the
uncertainty stemming from the model variation for continuum and quark mass extrapolations
or interpolations. The total uncertainty obtained by adding the individual errors in quadrature
is given within the square brackets. We achieve a 0.5%, 0.7% and 0.3% overall error in fDs ,
fD and fDs/fD, respectively. The results for the ratio indicate that SU(3) flavour symmetry
breaking effects in the decay constants are around 20% at the physical point.

We illustrate the variation in the results across the 482 fits in figure 9. This shows the
distributions of the central values, where each fit contributes to the histograms according
to its AIC weight. For both the individual decay constants and the ratio, the spread in the
values is mainly due to the variation in the parametrisation of the discretisation effects, i.e.
the uncertainty arising from the continuum limit extrapolation dominates the systematic
error (indicated by the grey band). In particular, a slight double peak structure visible in
the histogram for the ratio is due to the inclusion or exclusion of O(a3) or O(a4) cutoff
effects in the model. However, this variation is well within the full uncertainty of the final
result (shown as dashed lines).
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Figure 9. AIC weighted histograms of the central values of fDs , fD and their ratio obtained from
the 482 fits that enter our model averaging procedure. The solid lines indicates the central values of
the final results, the grey bands display the corresponding systematic errors and the dotted lines show
the total uncertainties.

fDs fD fDs/fD

Scale setting 53.5% 55.1% 27.8%
Systematic error 22.3% 24.8% 39.0%
Statistical error

Gauge ensembles 20.5% 18.3% 32.0%
Renormalisation and improvement 3.6% 1.8% 0.8%
Physical meson masses 0.1% 0.0% 0.4%

Table 1. Relative contributions to the squared total errors of the final results.

The full error budget can be found in table 1. The uncertainty due to the scale setting
dominates the total in the case of fD and fDs and contributes to the error of the ratio via
the definition of the physical point. The systematic uncertainties are of a similar size as the
statistical uncertainties from the fluctuations of the gauge configurations. The renormalisation
and improvement coefficients [8, 10] are determined precisely enough that they only account
for a few percent of the total squared error. Similarly, the errors due to the physical inputs
that define the physical point are negligible. While the systematic uncertainties are computed
according to eq. (6.25), we track the contribution of all other sources of error to the variance
as part of the error propagation in the Γ method.
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In our Nf = 2 + 1 simulation, where the charm quark is partially quenched, we neglect
strong isospin breaking and QED effects, as well as the effect of charm quark loops in the sea.
For low-energy observables, the latter are expected to be negligible due to the decoupling
of the heavy quark [66]. However, for heavy-light quantities, for which there is no clear
separation of scales, the omission of charm loops may lead to a small but significant effect.
Parametrically, this effect is of O(αs(ΛQCD/2mc)2) [67, 68] for the decay constants, which
amounts to about 0.5%.4 In the ratio of the two decay constants, this effect is further
suppressed by (ms −md)/ΛQCD ∼ 0.4, resulting in an overall effect of about 0.2%. In ref. [72],
the effect of charm quark loops on charmonium decay constants has been investigated non-
perturbatively. Comparing the pseudoscalar decay constants obtained from a pure Yang-Mills
background with their counterparts from a sea with two charm quarks, the authors found an
increase at the level of 0.5%. With respect to our work, this represents a very conservative
upper bound since it quantifies the effect from two heavy sea quarks for an observable with
two heavy valence quarks.

Turning to the effects of strong isospin breaking, with light quarks in the valence sector,
the leading effects for fD are linear in the up and down quark mass difference and are of
O((mu−md)/ΛQCD) ∼ 0.6%. So far, these effects have only have been estimated on the lattice
by FNAL/MILC in their Nf = 2+1+1 study [12] by tuning to the physical up and down quark
masses. They find fD+ − fD = 0.58(7)MeV and fD+ − fD0 = 1.11(15)MeV. This is consistent
with QCD sum rule estimates from Lucha et al., who find fD+ − fD0 = 0.97(13)MeV [73]. For
fDs , strong isospin breaking effects only arise due to the light sea quarks. They are quadratic
in the mass difference and are likely to be much smaller in magnitude than for fD.

Electromagnetic interactions are expected to enter at the level of O(αQED) ∼ 1%. As
it is difficult to separate leptonic decays including a photon in the final state from those
only with a lepton and a neutrino in experiment, both virtual and real radiative corrections
to the decay rate need to be considered. In this case, the decay rate can no longer be
factorised into a decay constant and a term involving the relevant CKM matrix element.
The experimental decay rates are adjusted using estimates of these radiative effects (see, for
example, the PDG review of leptonic decays of charged pseudoscalar mesons [47]) in order to
extract the combinations fD|Vcd| and fDs |Vcs| in a particular scheme. Lattice calculations of
the leading QED corrections, including the determination of the form factors for radiative
leptonic decays, such as Ds → ℓνγ [74, 75], are ongoing.

We conclude that the effect of the missing charm quark loops and isospin breaking in our
calculation is likely to be around the same size as or below our total uncertainties. However,
the absence of these effects also impacts on the predictions for the decay constants indirectly
through the determination of the lattice scale and the tuning of the quark masses. As the
precision increases, the results will depend on the hadronic scheme, with a number of different
schemes being employed in the literature. In order to facilitate a close comparison with
other lattice studies (which use t0 to set the scale), we give the dependence of the decay
constants and their ratio on the input parameters that define our scheme at linear order in

4For this and the following estimates quoted in the text, we use result for ΛQCD from ref. [69], the charm
quark mass as calculated in ref. [53], the values of the light and strange quark masses quoted in ref. [70] and
the determination of mu − md presented in ref. [71].
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appendix C. This allows the results to be shifted to take into account small modifications of
the scheme. In the appendix, we also collect the values of the decay constants for the two
schemes where the charm quark mass is fixed from the mass of the Ds and the ηc meson.
The choice of scheme has very little impact on the results.

From our results for fD and fDs , we can compute the CKM matrix elements |Vcd| and
|Vcs|. The PDG [47] lists the products of decay constants and CKM matrix elements, derived
from the experimental D+ → ℓν[γ] and D+

s → ℓν[γ] decay rates, as

fD+ |Vcd| = 45.82(1.10)MeV , fD+
s
|Vcd| = 243.5(2.7)MeV , (7.2)

respectively, where the uncertainty is due to the estimation of the radiative corrections and
the measured branching fractions. Together with our results in eq. (7.1), we obtain

|Vcd| = 0.2199(15)(52)[55] , |Vcs| = 0.987(5)(10)[13] , (7.3)

where the first error is due to our lattice results and the second arises from the combined
experimental and non-lattice theory uncertainty in eq. (7.2). Note that we have not included
the systematic uncertainties due to the omission of strong isospin breaking and charm loop
effects (estimated previously). These uncertainties are small compared to the total error,
which is dominated by the combined non-lattice uncertainty. The above values are consistent
with, but slightly less precise than, those quoted by the PDG (that are derived from the same
leptonic decay rates [47]). The PDG utilise the FLAG report Nf = 2+1+1 results [13] for the
decay constants, which have smaller errors than ours, as discussed below. The CKM matrix
elements can also be determined from the decay rates for the semi-leptonic decays D → πℓν

and Ds → Kℓν and lattice calculations of the corresponding form factors. At present, the
PDG value for |Vcd| obtained from the leptonic decay is more precise, while for |Vcs| the value
extracted from the semi-leptonic decay rate has smaller uncertainties.

There is a long history of calculating fD and fDs on the lattice. In figure 10, we compare
our values with recent Nf = 2+ 1 and Nf = 2+ 1+ 1 determinations. Only those results that
consider all sources of systematic uncertainty in their analysis and pass the quality criteria of
the FLAG 21 review [13] (for the continuum limit, chiral and finite volume extrapolations,
renormalisation and the treatment of the heavy quark) are shown. We also only display the
latest results for each collaboration. Further recent works can be found in refs. [83–85]. Note
that the ALPHA 23 study of ref. [11] utilises a small subset of the ensembles employed in the
present analysis and we expect some statistical correlation with our values. They include
ten ensembles with mπ ≥ 200MeV on the TrM = const. trajectory in a mixed action setup
with maximally twisted Wilson valence fermions.

For the Nf = 2 + 1 theory, our results are the most precise and represent a significant
improvement on earlier studies. All works are in reasonable agreement with each other.
FNAL/MILC [12] quote the smallest total uncertainties of around 0.3(0.2)% for fD(fDs)
and 0.1% for fDs/fD, and their results dominate the FLAG average for Nf = 2 + 1 + 1. At
this level of precision, the definition of isospin symmetric QCD has a significant impact on
the values of the decay constants. Note that we compare to the isospin symmetric result
for fD given in ref. [12] and follow the FLAG report [13] by rescaling the central value
given for fDs/fD+ = 1.1749(16) by the ratio of the central values for fD+ and fD to obtain
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Figure 10. Comparison of lattice results for the decay constants fD and fDs (top) and their
ratio (bottom) for Nf = 2 + 1 [11, 76–81] and Nf = 2 + 1 + 1 [12, 82]. Only results that fulfil all the
FLAG quality criteria and that are not superseded by later works are displayed. The grey bands show
the FLAG 21 averages from ref. [13].

fDs/fD = 1.1782(16). The FNAL/MILC results for the individual decay constants lie roughly
2σ above ours, while the results for the ratio are slightly more consistent. These differences
are not statistically significant and, as argued above, the absence of charm quark loop effects
in our simulations is likely to lead to a less than one sigma effect.

8 Conclusions

In this work, we determine the leptonic decay constants of the D and Ds mesons in 2 + 1
flavour lattice QCD with Wilson fermions. We utilise 49 high statistics ensembles at six values
of the lattice spacing, which lie on three distinct quark mass trajectories covering a wide
range of light and strange quark masses. This enables us to achieve an excellent description
of both the cutoff effects and the quark mass dependence down to the physical point. The
charm-light and charm-strange decay constants are fitted simultaneously, with all correlations
taken into account, and a large set of parameterisations is considered in order to reliably
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quantify the systematics associated with the continuum limit and chiral extrapolation. Our
final results are summarised in eq. (7.1) and a full error budget is given in table 1. A 0.5%,
0.7% and 0.3% overall uncertainty is achieved for fDs , fD and fDs/fD, respectively. These are
the most precise 2 + 1 flavour results to-date. When simulating isospin symmetric QCD, it is
important to specify the hadronic scheme used to set the scale and tune the quark masses.
In appendix C we give the dependence of the results on the hadronic input, allowing for a
close comparison with other works, where t0 is used to set the lattice scale.

Further improvement in the determination of the decay constants would require a more
precise evaluation of the scale, followed by a reduction in both the statistical and systematic
errors. The main source of the latter error is the continuum extrapolation. The discretisation
effects are moderate but significant, with a 5% difference in the values of the decay constants
at the coarsest lattice spacing and those in the continuum limit. Furthermore, we resolve
cutoff effects beyond the leading order of O(a2). Additional ensembles at the finest lattice
spacing of a = 0.039 fm with quark masses closer to their physical values would help to
further constrain the extrapolation. Generating even finer lattices than the ones employed
in this work is challenging, even with state-of-the-art algorithms, due to the critical slowing
down that is observed towards the continuum limit [18].

The charm quark is partially quenched in our analysis. The effect of charm quark loops on
the decay constants may not depend strongly on the light and strange quark masses, and an
estimate of the size of this effect could be made at the SU(3) symmetric point (corresponding
to mπ = mK ≈ 410MeV), using the ensembles of this work and the 3 + 1 flavour ensembles
of ref. [86]. However, the renormalisation factor for the axial vector current for the 3 + 1
flavour theory, along with the associated O(a) improvement coefficients, would need to be
computed for such comparison to be meaningful.
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A Tables

Table 2. Overview of analysed ensembles along the three quark mass plane trajectories where the
light equals the strange quark mass (sym), the average bare quark mass is constant (TrM), and
the strange quark mass is approximately constant (ms); ensemble name (id), (p)eriodic or (o)pen
boundary conditions (bc) in time, pion and the kaon masses in physical units (see also table 4 for raw
masses including errors) as well as the spatial (L) and temporal (T ) lattice extent in physical units
and the spatial extent in units of the pion mass. The lattice spacing a is taken from ref. [3]. Optimized
number ni of smearing iterations for light (i = l), strange (i = s), and charm (i = c ≡ c1 = c2) quark.
Number of sources Nsrc used to calculate point-to-all propagators on a configuration and total number
of configurations Nconf analysed. Analysed configurations are separated by ∆ molecular dynamic units.
Note that for ensembles with open boundary conditions a certain number of time slices have not been
considered in the computation of some observables for sources close to the boundary due to boundary
effects, see discussion in the text. Ensembles marked with a star do not enter the final extrapolation.

traj. id bc mπ
MeV

mK
MeV

L
fm

T
fm mπL nl ns nc Nsrc Nconf ∆

β = 3.34, a = 0.098 fm
sym A650 p 370 370 2.34 4.69 4.39 160 160 19 12 5062 4

TrM
A653 p 430 430 2.34 4.69 5.10 150 150 19 12 2525 8
A654 p 335 458 2.34 4.69 3.98 185 165 19 12 2533 8

β = 3.4, a = 0.085 fm

TrM

U103∗ o 420 420 2.05 10.9 4.35 220 220 25 9 2475 8
H101 o 423 423 2.73 8.19 5.85 220 220 25 20 2016 4
U102∗ o 358 445 2.05 10.9 3.71 250 210 25 37 1561 8
H102 o 358 444 2.73 8.19 4.95 250 210 25 20 1920 4
U101∗ o 273 465 2.05 10.9 2.83 300 200 25 37 1964 4
H105 o 284 467 2.73 8.19 3.93 300 200 25 20 1827 4

Continued on next page
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Table 2. Overview of analysed ensembles (continued).

traj. id bc mπ
MeV

mK
MeV

L
fm

T
fm mπL nl ns nc Nsrc Nconf ∆

N101 o 281 467 4.09 10.9 5.83 300 200 25 37 1593 4
S100∗ o 211 475 2.73 10.9 2.92 350 170 25 37 983 4
C101 o 220 473 4.09 8.19 4.57 350 170 25 20 2530 4
D150 p 129 482 5.46 10.9 3.56 440 140 25 32 602 4

ms

H107 o 369 550 2.73 8.19 5.10 250 160 25 18 1064 4
H106 o 276 519 2.73 8.19 3.82 250 160 25 18 1506 4
C102 o 218 503 4.09 8.19 4.52 350 160 25 18 1496 4

β = 3.46, a = 0.075 fm
sym X450 p 264 264 3.62 4.83 4.85 400 400 30 32 1059 4

TrM

B450 p 421 421 2.42 4.83 5.15 270 270 30 16 1612 4
S400 o 354 445 2.42 9.66 4.33 310 260 30 21 2872 4
N451 p 289 466 3.62 9.66 5.31 375 250 30 32 1011 4
D450 p 216 480 4.83 9.66 5.29 480 200 30 32 544 4
D452 p 155 487 4.83 9.66 3.80 530 180 30 32 995 4

ms

B452∗ p 352 548 2.42 4.83 4.31 310 200 30 16 1944 4
N450 p 287 527 3.62 9.66 5.27 375 200 30 32 1130 4
D451 p 218 507 4.83 9.66 5.34 480 200 30 32 1028 4

β = 3.55, a = 0.064 fm

sym
X250 p 348 348 3.06 4.08 5.41 445 445 45 32 1500 4
X251 p 267 267 3.06 4.08 4.15 540 540 45 32 1411 4
D250 p 199 199 4.08 8.17 4.12 660 660 45 32 458 4

TrM

N202 o 414 414 3.06 8.17 6.42 390 390 45 20 899 4
N203 o 348 445 3.06 8.17 5.40 445 375 45 21 1543 4
S201∗ o 294 471 2.04 8.17 3.04 540 360 45 20 1955 8
X252∗ p 288 467 2.30 8.17 3.35 540 360 45 32 3508 4
X253∗ p 287 466 2.55 8.17 3.71 540 360 45 32 3005 4
N200 o 286 466 3.06 8.17 4.45 540 360 45 21 1712 4
D251 p 286 465 4.08 8.17 5.91 540 360 45 32 403 4
D200 o 201 481 4.08 8.17 4.16 660 290 45 20 1999 4
E250 p 130 493 6.13 12.3 4.05 795 285 45 32 503 4

ms

N204 o 353 548 3.06 8.17 5.48 445 285 45 24 1500 4
N201 o 287 527 3.06 8.17 4.45 540 285 45 24 1522 4

Continued on next page

– 28 –



J
H
E
P
0
7
(
2
0
2
4
)
0
9
0

Table 2. Overview of analysed ensembles (continued).

traj. id bc mπ
MeV

mK
MeV

L
fm

T
fm mπL nl ns nc Nsrc Nconf ∆

D201 o 204 506 4.08 8.17 4.21 660 285 45 20 1078 4
β = 3.7, a = 0.049 fm

sym N306 o 343 343 2.37 6.32 4.12 750 750 75 21 1507 4

TrM

N300∗ o 426 426 2.37 6.32 5.11 640 640 75 18 1540 4
N302 o 350 454 2.37 6.32 4.20 750 620 75 21 2201 4
J303 o 259 478 3.16 9.48 4.14 950 525 75 20 999 8
E300 o 175 495 4.74 9.48 4.20 800 310 55 16 1137 4

ms
N304 o 355 556 2.37 6.32 4.26 750 465 75 24 1651 4
J304 o 261 527 3.16 9.48 4.18 950 465 75 3 1521 4

β = 3.85, a = 0.039 fm

TrM
J500 o 414 414 2.48 7.44 5.20 1000 1000 115 3 1837 8
J501 o 337 448 2.48 7.44 4.23 1225 1025 115 20 2292 4

Table 3. Hopping parameters used in the computation of the correlation functions. κl and κs match
those that have been used in the generation of the ensemble. Ensembles marked with a star do not
enter the final extrapolation.

traj. id κl κs κc1 κc2

β = 3.34, a = 0.098 fm
sym A650 0.1366 0.1366 0.121904 0.120692

TrM
A653 0.1365715 0.1365715 0.121904 0.120692
A654 0.13675 0.136216193 0.121904 0.120692

β = 3.4, a = 0.085 fm

TrM

U103∗ 0.13675962 0.13675962 0.124056 0.123147
H101 0.13675962 0.13675962 0.124056 0.123147
U102∗ 0.136865 0.136549339 0.124056 0.123147
H102 0.136865 0.136549339 0.124056 0.123147
U101∗ 0.13697 0.13634079 0.124056 0.123147
H105 0.13697 0.13634079 0.124056 0.123147
N101 0.13697 0.13634079 0.124056 0.123147
S100∗ 0.13703 0.136222041 0.124056 0.123147
C101 0.13703 0.136222041 0.124056 0.123147
D150 0.137088 0.13610755 0.124056 0.123147

Continued on next page
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Table 3. Overview of hopping parameters (continued).

traj. id κl κs κc1 κc2

ms

H107 0.13694566590798 0.136203165143476 0.124056 0.123147
H106 0.137015570024 0.136148704478 0.124056 0.123147
C102 0.13705084580022 0.13612906255557 0.124056 0.123147

β = 3.46, a = 0.075 fm
sym X450 0.136994 0.136994 0.1254266 0.12617097

TrM

B450 0.13689 0.13689 0.1258025 0.12503
S400 0.136984 0.136702387 0.126983423 0.125563292
N451 0.1370616 0.1365480771 0.126983423 0.125563292
D450 0.137126 0.136420428639937 0.126983423 0.125563292
D452 0.137163675 0.136345904546 0.126983423 0.125563292

ms

B452∗ 0.1370455 0.136378044 0.1258025 0.12503
N450 0.1370986 0.136352601 0.1258025 0.12503
D451 0.13714 0.136337761 0.126983423 0.125563292

β = 3.55, a = 0.064 fm

sym
X250 0.13705 0.13705 0.12751596 0.12871743
X251 0.1371 0.1371 0.12765893 0.12884069
D250 0.13713129 0.13713129 0.12884069 0.12765893

TrM

N202 0.137 0.137 0.128651119 0.1274374
N203 0.13708 0.136840284 0.128651119 0.1274374
S201∗ 0.13714 0.13672086 0.128651119 0.1274374
X252∗ 0.13714 0.13672086 0.128651119 0.1274374
X253∗ 0.13714 0.13672086 0.128651119 0.1274374
N200 0.13714 0.13672086 0.128651119 0.1274374
D251 0.13714 0.13672086 0.128651119 0.1274374
D200 0.1372 0.136601748 0.128651119 0.1274374
E250 0.137232867 0.136536633 0.128651119 0.1274374

ms

N204 0.137112 0.136575049 0.128651119 0.1274374
N201 0.13715968 0.136561319 0.128651119 0.1274374
D201 0.1372067 0.136546844 0.128651119 0.1274374

β = 3.7, a = 0.049 fm
sym N306 0.13705013 0.13705013 0.13062697 0.13018588
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Table 3. Overview of hopping parameters (continued).

traj. id κl κs κc1 κc2

TrM

N300∗ 0.137 0.137 0.13062697 0.13018588
N302 0.137064 0.1368721791358 0.13062697 0.13018588
J303 0.137123 0.1367546608 0.13062697 0.13018588
E300 0.137163 0.136675163617733 0.13062697 0.13018588

ms
N304 0.137079325093654 0.136665430105663 0.13062697 0.13018588
J304 0.13713 0.1366569203 0.13062697 0.13018588

β = 3.85, a = 0.039 fm

TrM
J500 0.136852 0.136852 0.13242984 0.13206693
J501 0.1369032 0.136749715 0.13242984 0.13206693

Table 4. The gluonic observable t0/a2 and the pseudoscalar masses that are used in the extrapolation
to the physical point in lattice units. Ensembles marked with a star do not enter the final extrapolation.

traj. id t0/a
2 amπ amK amD̄1 amD̄2

β = 3.34, a = 0.098 fm
sym A650 2.2860(76) 0.1829(13) 0.1829(13) 0.90948(53) 0.94916(52)

TrM
A653 2.1727(62) 0.2125(10) 0.2125(10) 0.91999(51) 0.95951(50)
A654 2.1932(83) 0.1657(14) 0.2268(11) 0.91846(53) 0.95798(55)

β = 3.4, a = 0.085 fm

TrM

U103∗ 2.8841(63) 0.18138(75) 0.18138(75) 0.82103(62) 0.85207(65)
H101 2.8468(56) 0.18285(67) 0.18285(67) 0.82029(49) 0.85132(51)
U102∗ 2.888(12) 0.1546(11) 0.19240(78) 0.81953(60) 0.85049(63)
H102 2.8806(75) 0.15458(66) 0.19208(74) 0.81819(60) 0.84913(63)
U101∗ 2.926(13) 0.1178(25) 0.2011(13) 0.81845(73) 0.84946(78)
H105 2.894(13) 0.1227(10) 0.20196(76) 0.81686(75) 0.84771(78)
N101 2.8930(32) 0.12153(53) 0.20172(31) 0.81758(27) 0.84850(29)
S100∗ 2.9223(89) 0.0914(40) 0.20528(75) 0.81651(71) 0.84742(77)
C101 2.9105(47) 0.0952(19) 0.2043(14) 0.81666(51) 0.84754(54)
D150 2.9475(34) 0.0557(11) 0.20840(29) 0.81425(54) 0.84513(57)

ms

H107 2.716(11) 0.1595(11) 0.23777(89) 0.83190(71) 0.86265(76)
H106 2.8208(58) 0.1193(16) 0.22428(78) 0.82381(66) 0.85469(68)
C102 2.8684(53) 0.0942(20) 0.2173(13) 0.81931(66) 0.85015(70)
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Table 4. Overview of t0/a2 and pseudoscalar masses (continued).

traj. id t0/a
2 amπ amK amD̄1 amD̄2

β = 3.46, a = 0.075 fm
sym X450 3.9901(85) 0.10098(43) 0.10098(43) 0.73124(40) 0.70450(33)

TrM

B450 3.663(13) 0.16105(51) 0.16105(51) 0.73582(45) 0.76313(44)
S400 3.6917(77) 0.13540(42) 0.17020(40) 0.69167(36) 0.74324(37)
N451 3.6821(66) 0.11069(42) 0.17826(25) 0.69183(24) 0.74340(26)
D450 3.7068(57) 0.08270(48) 0.18355(19) 0.69092(32) 0.74249(36)
D452 3.7266(36) 0.05939(61) 0.18638(15) 0.68970(31) 0.74128(35)

ms

B452∗ 3.5284(69) 0.13468(48) 0.20969(35) 0.74516(32) 0.77239(33)
N450 3.5919(47) 0.10972(35) 0.20177(23) 0.74035(25) 0.76756(28)
D451 3.6645(52) 0.08337(27) 0.19381(16) 0.69308(25) 0.74461(27)

β = 3.55, a = 0.064 fm

sym
X250 5.321(16) 0.11261(28) 0.11261(28) 0.63537(30) 0.58974(31)
X251 5.499(10) 0.08642(34) 0.08642(34) 0.62294(43) 0.57781(43)
D250 5.619(14) 0.06444(53) 0.06444(53) 0.57317(40) 0.61829(45)

TrM

N202 5.166(21) 0.13382(48) 0.13382(48) 0.59858(64) 0.64445(63)
N203 5.1466(73) 0.11259(32) 0.14397(30) 0.59821(31) 0.64396(32)
S201∗ 5.164(11) 0.09515(57) 0.15232(51) 0.59885(71) 0.64458(77)
X252∗ 5.160(10) 0.09317(27) 0.15106(21) 0.59868(25) 0.64448(27)
X253∗ 5.1535(69) 0.09276(21) 0.15075(19) 0.59861(20) 0.64449(22)
N200 5.1633(70) 0.09264(46) 0.15069(38) 0.59830(33) 0.64407(36)
D251 5.1527(83) 0.09235(27) 0.15053(27) 0.59815(22) 0.64393(24)
D200 5.1790(62) 0.06503(57) 0.15558(56) 0.59766(28) 0.64344(31)
E250 5.2027(44) 0.04218(25) 0.159369(67) 0.59714(35) 0.64299(38)

ms

N204 4.947(10) 0.11413(47) 0.17729(42) 0.60767(43) 0.65342(46)
N201 5.0426(78) 0.09277(44) 0.17042(30) 0.60324(30) 0.64898(33)
D201 5.1363(84) 0.06582(58) 0.16364(37) 0.59901(37) 0.64478(39)
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Table 4. Overview of t0/a2 and pseudoscalar masses (continued).

traj. id t0/a
2 amπ amK amD̄1 amD̄2

β = 3.7, a = 0.049 fm
sym N306 8.811(48) 0.08575(72) 0.08575(72) 0.47077(60) 0.48866(61)

TrM

N300∗ 8.566(39) 0.10649(45) 0.10649(45) 0.47366(65) 0.49153(68)
N302 8.526(25) 0.08758(52) 0.11370(49) 0.47624(45) 0.49409(46)
J303 8.620(15) 0.06476(26) 0.11963(20) 0.47466(28) 0.49250(29)
E300 8.6193(63) 0.04371(35) 0.12395(32) 0.47422(24) 0.49204(25)

ms
N304 8.328(25) 0.08873(76) 0.13923(68) 0.48117(62) 0.49899(63)
J304 8.501(15) 0.06537(27) 0.13175(28) 0.47669(34) 0.49447(36)

β = 3.85, a = 0.039 fm

TrM
J500 13.973(28) 0.08127(30) 0.08127(30) 0.35574(43) 0.37159(46)
J501 14.007(70) 0.06617(35) 0.08801(33) 0.35616(31) 0.37206(32)

Table 5. Bare decay constants in lattice units based on O(a) improved currents defined in eq. (3.2).
Ensembles marked with a star do not enter the final extrapolation.

traj. id afD1 afD2 afD1
s

afD2
s

β = 3.34, a = 0.098 fm
sym A650 0.10683(24) 0.10540(24) 0.10683(24) 0.10540(24)

TrM
A653 0.11141(25) 0.10990(26) 0.11141(25) 0.10990(26)
A654 0.10797(38) 0.10644(40) 0.11477(25) 0.11326(27)

β = 3.4, a = 0.085 fm

TrM

U103∗ 0.10203(47) 0.10121(55) 0.10203(47) 0.10121(55)
H101 0.10186(33) 0.10086(35) 0.10186(33) 0.10086(35)
U102∗ 0.09913(47) 0.09814(49) 0.10362(31) 0.10261(33)
H102 0.09863(55) 0.09761(58) 0.10331(36) 0.10229(38)
U101∗ 0.09599(69) 0.09507(72) 0.10540(34) 0.10440(35)
H105 0.09581(64) 0.09470(67) 0.10570(28) 0.10468(29)
N101 0.09683(33) 0.09582(39) 0.10603(18) 0.10502(18)
S100∗ 0.09424(75) 0.09325(78) 0.10707(23) 0.10606(24)
C101 0.09501(67) 0.09393(71) 0.10716(16) 0.10613(16)
D150 0.09148(64) 0.09042(67) 0.10732(22) 0.10628(23)

ms

H107 0.10203(75) 0.10099(78) 0.11166(44) 0.11064(45)
H106 0.09802(54) 0.09701(56) 0.10933(37) 0.10828(39)
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Table 5. Overview of bare decay constants (continued).

traj. id afD1 afD2 afD1
s

afD2
s

C102 0.09531(74) 0.09422(79) 0.10916(25) 0.10814(26)
β = 3.46, a = 0.075 fm

sym X450 0.08331(31) 0.08402(28) 0.08331(31) 0.08402(28)

TrM

B450 0.09228(26) 0.09157(25) 0.09228(26) 0.09157(25)
S400 0.09138(29) 0.09007(31) 0.09594(19) 0.09465(20)
N451 0.09029(24) 0.08898(29) 0.098113(93) 0.09682(11)
D450 0.08827(38) 0.08692(43) 0.09971(13) 0.09844(14)
D452 0.08643(38) 0.08518(46) 0.10001(13) 0.09872(14)

ms

B452∗ 0.09352(31) 0.09281(33) 0.10232(14) 0.10156(14)
N450 0.08994(28) 0.08918(29) 0.10115(13) 0.10037(12)
D451 0.08855(29) 0.08717(32) 0.10098(11) 0.09969(11)

β = 3.55, a = 0.064 fm

sym
X250 0.07693(18) 0.07785(17) 0.07693(18) 0.07785(17)
X251 0.07285(28) 0.07380(27) 0.07285(28) 0.07380(27)
D250 0.07101(24) 0.07006(26) 0.07101(24) 0.07006(26)

TrM

N202 0.08114(31) 0.08024(33) 0.08114(31) 0.08024(33)
N203 0.07947(25) 0.07846(27) 0.08356(16) 0.08259(18)
S201∗ 0.07655(86) 0.07551(91) 0.08515(33) 0.08419(38)
X252∗ 0.07775(23) 0.07679(25) 0.08523(12) 0.08430(13)
X253∗ 0.07806(19) 0.07718(23) 0.08526(11) 0.08437(10)
N200 0.07788(29) 0.07686(34) 0.08542(15) 0.08449(16)
D251 0.07795(22) 0.07694(24) 0.08521(17) 0.08427(18)
D200 0.07604(33) 0.07501(40) 0.08690(15) 0.08599(17)
E250 0.07434(40) 0.07338(46) 0.08756(14) 0.08668(16)

ms

N204 0.08241(55) 0.08148(60) 0.09019(46) 0.08937(46)
N201 0.07901(34) 0.07802(40) 0.08910(15) 0.08824(16)
D201 0.07651(43) 0.07553(51) 0.08799(18) 0.08706(20)
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Table 5. Overview of bare decay constants (continued).

traj. id afD1 afD2 afD1
s

afD2
s

β = 3.7, a = 0.049 fm
sym N306 0.06244(47) 0.06226(49) 0.06244(47) 0.06226(49)

TrM

N300∗ 0.06374(43) 0.06345(45) 0.06374(43) 0.06345(45)
N302 0.06398(37) 0.06377(39) 0.06735(25) 0.06714(26)
J303 0.06169(35) 0.06148(37) 0.06862(18) 0.06842(19)
E300 0.06019(27) 0.05994(24) 0.06956(17) 0.06934(17)

ms
N304 0.06505(53) 0.06485(54) 0.07194(40) 0.07176(39)
J304 0.06138(36) 0.06111(37) 0.07078(23) 0.07061(24)

β = 3.85, a = 0.039 fm

TrM
J500 0.05136(42) 0.05128(44) 0.05136(42) 0.05128(44)
J501 0.05045(26) 0.05036(25) 0.05320(20) 0.05315(21)

β 3.34 3.4 3.46 3.55 3.7 3.85
ZA [8] 0.7510(11) 0.75629(65) 0.76172(39) 0.76994(34) 0.78356(32) 0.79675(45)
bA [10] 1.249(16) 1.244(16) 1.239(15) 1.232(15) 1.221(13) 1.211(12)
cA [9] −0.055709847 −0.048973873 −0.04320929 −0.036074160 −0.027286251 −0.021260222

κcrit [3] 0.1366938(45) 0.1369153(9) 0.1370613(10) 0.1371715(10) 0.1371530(9) 0.1369767(26)

Table 6. Summary table of input parameters used for the calculation of the decay constants. Note
that cA defines the valence action, so no uncertainty enters for this quantity. For κcrit we use the
values in ref. [3] labeled κcrit (int), and bA from eq. (5.4) in ref. [10] is used. Note that we set b̄A to
zero because all coefficients in eq. (5.3) in ref. [10] are compatible with zero.
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B Additional figures
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Figure 11. Results from our combined fits to the heavy-light current on E300 (left, mπ = 175MeV,
a = 0.049 fm) and the heavy-strange current on E250 (right, mπ = 130MeV, a = 0.064 fm) as in
figure 3.
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Figure 12. Volume dependence of the heavy-strange meson mass (top left) and decay constant (top
right) and the pion mass (bottom left) and kaon mass (bottom right). The results are displayed as in
figure 4.

C Scheme dependence

As outlined in the main text, in particular in section 6.1, an ambiguity with respect to the
way isospin symmetric QCD is defined may be present when comparing results of different
collaborations. To allow for a comparison of our result with other works without this
ambiguity, we here collect our results based on three different schemes that differ in the
matching of the charm quark mass.

In eq. (7.1) we have reported the results using the flavour averaged D meson mass to
fix the mass of the charm quark. Using mDs we obtain

fDs = 247.0(1.4)MeV , fD = 208.7(1.6)MeV , fDs/fD = 1.1833(37) , (C.1)

and with mηc we arrive at

fDs = 246.9(1.3)MeV , fD = 208.6(1.5)MeV , fDs/fD = 1.1838(34) . (C.2)

The impact of switching between the three schemes is thus insignificant.
In table 7 we list the dependence of our final results in the three different schemes

on the input quantities in the form S ∂O
∂S for the dependence of observable O on S. The

derivatives allow to a posteriori adapt our results to a slightly modified scheme with respect
to the choice used in this work.
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S

O
√
t0 mπ mK mD̄ mDs mηc

fDs −1.7329 68.9924 −54.5896 25.5276 — —
fD 7.1078 4.2036 −65.2799 12.8368 — —

fDs/fD −0.048606 0.306618 0.108713 0.049473 — —
fDs −1.4314 65.0836 −55.7642 — 25.4634 —
fD 7.1966 1.7997 −66.0017 — 12.7215 —

fDs/fD −0.047772 0.302094 0.107553 — 0.049883 —
fDs −1.7556 70.6697 −55.3147 — — 21.3979
fD 6.9742 5.6292 −65.5603 — — 10.5432

fDs/fD −0.047976 0.306910 0.106676 — — 0.042791

Table 7. Scheme dependence S ∂O
∂S of observable O with respect to the quantity S. In the case of

fD and fDs the units are MeV, the scheme dependence of the ratio is dimensionless. The horizontal
lines divide three blocks that differ by the matching of the charm quark mass. The central values
of the six quantities S are

√
t0 = 0.1449 fm, mπ = 134.8MeV, mK = 494.2MeV, mD̄ = 1899.4MeV,

mDs = 1966.0MeV, mηc = 2978.0MeV.
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