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Abstract

The mean lifetime of the � lepton is measured in a sample of 25700 � pairs
collected in 1992 with the ALEPH detector at LEP. A new analysis of the
1-1 topology events is introduced. In this analysis, the dependence of the

impact parameter sum distribution on the daughter track momenta is taken
into account, yielding improved precision compared to other impact parameter
sum methods. Three other analyses of the one- and three-prong � decays are
updated with increased statistics. The measured lifetime is 293:5 � 3:1 �
1:7 fs. Including previous (1989{1991) ALEPH measurements, the combined

� lifetime is 293:7 � 2:7� 1:6 fs.
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1 Introduction

The �rst theoretical descriptions of the weak interactions were motivated by the obser-

vation that muon decay, muon capture, and neutron decay are all roughly characterized

by a single coupling constant. The universality of the charged-current coupling is in-

corporated in the standard model of electroweak interactions. The hypothesis of lepton

universality may be tested by comparing the decay rates of1 �� ! e����, �� ! �����,

and �� ! e����. With the possibility of a di�erent coupling constant g` for each lepton

generation, the universality tests may be written
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where f(x) = 1 � 8x + 8x3 � x4 � 12x2 ln x is a correction for the masses of the charged
leptons, �W = 0:9997 is a correction to the W propagator, and �
 = 1:0001 is a QED
radiative correction [1].

Non-universal e�ective couplings may arise from direct violation of lepton universality
or from other extensions of the Standard Model [2]. At present, the sensitivity of the uni-
versality tests is limited by the experimental uncertainties on the � lifetime and branching
fractions. In this letter, an improved measurement of the � lifetime is presented. Four

analysis methods are used. The �rst, the momentum-dependent impact parameter sum
method (MIPS), is a new method for analyzing the 1-1 topology events in which the mean
lifetime is extracted from the impact parameter sum distribution. The impact parameter
sum is, roughly speaking, the distance between the two daughter tracks at their point of
closest approach to the beam axis. The strong dependence of the impact parameter sum

distribution on the daughter track momenta is taken into account in this analysis. The
other three measurements reported herein are updates based on the impact parameter
sum (IPS), impact parameter di�erence (IPD), and decay length (DL) methods [3, 4].

The MIPS and IPS measurements have small statistical uncertainties because the
impact parameter smearing related to the size of the luminous region is nearly cancelled
in the impact parameter sum. These results are, however, sensitive to the assumed impact

parameter resolution. On the other hand, the IPD method, also applied to 1-1 events, is

subject to a statistical error from the size of the luminous region, but the �tting procedure

used to determine the lifetime is insensitive to the impact parameter resolution. The DL

method yields a precise lifetime measurement from � 's decaying into three-prong �nal
states.

In the following, the impact parameter of a reconstructed daughter track with respect

to the beam axis is denoted d. The impact parameter is measured in the projection onto

the plane perpendicular to the beam axis. By convention, the sign of d is chosen to be
that of the z component of the particle's angular momentum about the beam axis. In the

case of perfect resolution and zero beam size, the impact parameter of a daughter track

1Decays with �nal state photons are implicitly included.
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is related to the � decay length ` according to

d = ` sin � sin ; (4)

where � is the angle between the � momentum and the incident e� beam, and  is the

signed azimuthal angle between the daughter track and the parent � . In a 1-1 event, the

sum of the impact parameters, d+ + d�, is denoted �.

A � mass of m� = 1776:96 � 0:26MeV=c2 [5] is assumed throughout this paper.

2 Apparatus and data sample

The ALEPH detector is described in detail elsewhere [6, 7]. The tracking system consists

of a high-resolution silicon strip vertex detector (VDET), a cylindrical drift chamber (the

inner tracking chamber or ITC), and a large time projection chamber (TPC). The VDET

features two layers of 300�m thick silicon wafers. Each layer provides measurements in

both the r-� and r-z views at average radii of 6:3 and 10:8 cm. The spatial resolution for
r-� coordinates is 12�m and varies between 12 and 22�m for z coordinates, depending
on track polar angle. The angular coverage is jcos �j < 0:85 for the inner layer and
jcos �j < 0:69 for the outer layer. The design of VDET includes a 5% overlap of the
active regions of adjacent wafers in r-�, providing a constraint on the circumferences of
the VDET layers through studies of reconstructed charged tracks. In this situation, the

overall scale of measured impact parameters and decay lengths is essentially set by the
average pitch of the strips on the VDET wafers, which is known with a relative uncertainty
of less than 10�4. The ITC has eight coaxial wire layers at radii of 16 to 26 cm. The TPC
provides up to 21 three-dimensional coordinates per track at radii between 40 and 171 cm.
A superconducting solenoid produces a magnetic �eld of 1:5T.

Charged tracks measured in the VDET-ITC-TPC system are reconstructed with a
momentum resolution of �p=p = 6 � 10�4pT (GeV=c)

�1 � 0:005. An impact parameter

resolution of 28�m in the r-� plane is achieved for muons from Z! �+�� having at least
one VDET r-� hit.

The electromagnetic calorimeter (ECAL) is a lead/wire-chamber sandwich operated in
proportional mode. The calorimeter is read out via projective towers subtending typically
0:9�� 0:9� in solid angle which sum the deposited energy in three sections in depth. The

hadron calorimeter (HCAL) uses the iron return yoke as absorber with an average depth
of 1:50m. Hadronic showers are sampled by 23 planes of streamer tubes, providing a

digital hit pattern and inducing an analog signal on pads arranged in projective towers.
The HCAL is used in combination with two layers of muon chambers outside the magnet

for � identi�cation.

The data sample used in this analysis was collected in 1992 at
p
s = 91:3GeV and

corresponds to 32100 produced � pairs. Candidate � -pair events are selected according

to the algorithm described in [8]. The overall e�ciency for this selection is 78%, with an

expected background contamination of 1:6%. The �+�� sample contains 25679 candidate
events to which further cuts are applied for the di�erent analyses.
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Table 1: Numbers of surviving candidate events in the 1-1 event selection.

Cut Events

�+�� candidates 25679

1-1 topology 14808

Opposite charges 14611

jd�j < 2 cm; jz�j < 10 cm 14599

Bhabha rejection 14363

� 2 extra tracks 13939

� 1 VDET r-� hit 13219

� 4 ITC hits 12934

� 8 TPC hits 12876

Track �t �2=dof < 5 12485

p > 1GeV=c 12096

Bremsstrahlung rejection 11494

Final state radiation rejection 10983

3 Selection of 1-1 topology events

Three di�erent analyses of the 1-1 topology events are described in sections 5, 6, and
7. Each event in the basic �+�� sample is divided into hemispheres according to the
reconstructed thrust axis. The 1-1 events are selected by requiring each hemisphere
to contain exactly one track with VDET hits. The two tracks are required to have
opposite charges and satisfy very loose cuts on d� and z� (the z coordinate at the point

of closest approach to the beam axis). Up to two extra tracks (without VDET hits),
e.g., from photon conversion, are allowed in each hemisphere. Additional track quality
cuts are imposed to ensure that the � daughter tracks are well measured. Information
from the ECAL is used to reject electrons from � ! e��� decays that undergo hard
bremsstrahlung in the detector material. When evidence of a bremsstrahlung photon
is found, either as a separated cluster in the ECAL or in the form of excess energy

in the electron cluster, the expected impact parameter shift due to the bremsstrahlung

interaction, �d, is estimated. This estimate is independent of the actual reconstructed
impact parameter. The event is rejected if j�dj > 100�m. Finally, events with hard
�nal state radiation are rejected by requiring both hemisphere invariant masses to be less

than 2GeV=c2. The mass is computed from the charged daughter track (assumed to be

a pion) and all photon candidates with energy greater than 2GeV. The selection criteria
for 1-1 events are summarized in table 1. The selection algorithm is more e�cient and

rejects more background than the scheme used in [4]. The e�ciency for selecting �+��

events of 1-1 topology is 47%. Monte Carlo simulations of e+e� ! e+e�, �+��, q�q, and



 ! `+`�, q�q are used to predict the background contamination in the 1-1 sample,

0:37 � 0:05(stat)%. The dominant background source is the reaction 

 ! `+`�. The
contamination from cosmic rays is of the order of 0:01%.
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4 Impact parameter sum resolution

Both the MIPS analysis (section 5) and the IPS analysis (section 6) require an accurate

evaluation of the impact parameter sum resolution for each event of 1-1 topology. The rms

resolution on the impact parameter sum is 80�m, compared to 180�m for the rms of the

true impact parameter sum distribution in the selected �+�� events. A parametrization

of the resolution, based on measurements from real e+e� and �+�� events and simulated

�+�� events, is described in this section.

The resolution function is written as the convolution of three terms:

g(� � �0) = R+ 
R� 
G(�b); (5)

where �0 denotes the true impact parameter sum with respect to the �+�� production

point and R+ and R� describe the measurement error distribution for the two impact

parameters, d+ and d�. G(�b) represents a small additional smearing related to the

size of the interaction region. This smearing arises because the impact parameters are

measured with respect to the beam axis rather than the �+�� production point.

The tracking resolution function for each impact parameter is taken to be the sum of
three Gaussian functions:

R� = (1� a2 � a3)G(�) + a2G(b2�) + a3G(b3�): (6)

The parameter � represents the width of the Gaussian resolution core, while a2, b2, a3,
and b3 characterize the amplitudes and widths of the second and third Gaussian functions
which describe the tails of the distribution.

Measurement of the impact parameter sum for track pairs having a common spatial
origin o�ers direct experimental access to the actual tracking resolution function R. To

cover the entire relevant momentum range, e+e� and �+�� �nal states coming from Z
decays and 

 collisions are analyzed. The impact parameter resolution is measured
separately for the electron and muon samples. Another set of resolution parameters is
extracted from simulated Z! �+�� events.

It is assumed that the resolution for a given track depends on the error estimate �̂
provided by the track helix �tter, the track momentum p, the polar angle �, and the
con�guration of vertex detector r-� hits (hit in the inner layer only, outer layer only, or

both layers).

The width of the Gaussian core of the tracking resolution, �, is derived from the track

�t error �̂ in the following way. First, the error estimate �̂ is parametrized by the function
ŝk(p; �), where

ŝ2k(p; �) = �̂2int;k +
�̂2ms;k

p2 sin3 �
; (7)

and k = 1; 2; 3 identi�es the VDET hit con�guration. The parameters �̂int;k and �̂ms;k are

extracted by means of a �t to the �̂ values; �̂int;k describes the intrinsic detector resolution,
�̂ms;k the contribution of the multiple scattering. The angular dependence corresponds to

scattering of straight tracks by cylindrical shells of material.

The parameters of the resolution function R are then determined by means of a �t to
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the reconstructed impact parameter sum distribution, under the assumption that

� = �̂
sk(p; �)

ŝk(p; �)
; (8)

where sk(p; �) has the same functional form as ŝk(p; �). This second �t measures the

parameters �int;k and �ms;k which correspond to the observed detector intrinsic resolution

and multiple scattering term.

Other parameters are also left free to vary in this second �t. The amplitude of the

second Gaussian function, a2, is allowed to depend on the track momentum according to

the empirical formula

a2 =
ahighp

2 + alowpminpmax

p2 + pminpmax

: (9)

The parameters ahigh and alow describe the asymptotic values of a2 for high and low

momentum tracks, respectively; pmin = 1GeV=c, pmax = 45GeV=c. The width of the

second Gaussian, on the other hand, is �xed to b2 = 3 times the core width, a value that

�ts the impact parameter resolution of all the selected data samples reasonably well. The
systematic e�ects of this choice are estimated by varying b2 by 20% of its value. Finally,
the parameters a3 and b3 are left free to match the more distant tails of the tracking
resolution.

The � daughter tracks studied in the lifetime analyses are electrons, muons, and
hadrons. An average resolution function for the one-prong � decays is assembled from the

parameters obtained from the real e+e� and �+�� events and simulated �+�� events. The
parameters of the �rst and second Gaussians in the d resolution function for high momen-
tum electrons di�er signi�cantly from the muon parameters, whereas these parameters are
comparable for muons and hadrons in simulated � decays. The resolution function used
in the lifetime �t to the data is therefore constructed by combining the electron and muon

parameters for the �rst and second Gaussians in proportion to the electron abundance
in � decays. Hadron tracks contribute most to the far tails of the tracking resolution in
Monte Carlo � decays. Large tracking errors may result either from nuclear interactions
or from confusion caused by extra tracks produced in photon conversions. The parameters
a3 and b3 used to describe the long resolution tails in the lifetime �ts are thus taken from
the �+�� Monte Carlo sample. The second Gaussian contains between 5% and 12% of

the tracks, depending on momentum. The third Gaussian contains roughly 0:2% of the
tracks; its width is about 20 times that of the core Gaussian.

The entire procedure is repeated for simulated e+e� and �+�� events. Background
events (mostly from Z! �+�� and 

 ! �+��) are included in the Monte Carlo analysis.

The resolution parameters so obtained are used to study the lifetime analysis methods

with simulated �+�� events.

An important source of systematic uncertainty in the lifetime analyses is the simulation
accuracy for hadron tracks, which is assessed in a study of real and simulated e+e� ! q�q
events. The resolution is measured from the impact parameter distribution of hadron

tracks whose reconstructed point of closest approach to the axis of their jet lies upstream
of the primary vertex. The impact parameters are measured with respect to the primary

vertex, which is reconstructed for each event. Non-Gaussian resolution tails are measured

in three di�erent momentum ranges, and for samples requiring either one or two vertex
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detector hits. The contribution of lepton tracks to the far tails is studied by comparing

the �tted values of a3 and b3 from the real and simulated e+e� and �+�� samples.

Other contributions to the systematic uncertainty in the � lifetime analyses are deter-

mined from the statistical uncertainties on the �tted resolution parameters. A possible

di�erence between muons and hadrons is taken into account by in
ating the statistical

uncertainties on ahigh and alow according to the statistical precision of the comparison

between Monte Carlo �+�� events and hadronic � decays.

In these resolution studies and in all three lifetime analyses of the 1-1 events, the

reconstructed track impact parameters are corrected for systematic o�sets due to detector

alignment and drift �eld parametrization errors. The o�sets are measured as a function of

� and � from a large sample of tracks from Z! q�q events. The d corrections are typically

15�m.

The function G(�b), which describes the smearing related to the beam size, is a Gaus-

sian function with variance

�2b = 4 sin2
��

2
(�2x sin

2 �+ �2y cos
2 �); (10)

where �x and �y represent the rms width and height of the interaction region, �� =

�+� ��� � is the acollinearity of the tracks in the r-� projection, and � = (�++ ��)=2.
The beam axis position is determined from selected reconstructed charged tracks in Z
decay events (excluding � pairs), averaged over blocks of roughly 75 events. The vertical
extent of the luminous region is taken to be 5�m (rms). The horizontal extent of the
luminous region (typically 110�m rms) is measured from the �tted primary vertices of
selected Z! q�q decays, over blocks of about 270 events. The uncertainty on the position

of the beam axis is folded into �x and �y.

5 Momentum-dependent impact parameter sum

analysis

The MIPS method, a variation of the \miss distance" method [9], is applied to events
of 1-1 topology. In this analysis, the momenta p� of the charged daughter tracks are

used in addition to � in a maximum likelihood �t for the mean � lifetime. The daughter
track momenta are strongly correlated with the � decay angles. For monoenergetic � 's
decaying into two bodies, there is a one-to-one relationship between the charged daughter

momentum and the angle between the � and daughter directions in three dimensions. The

presence of three-body decays and �nal states with �0's dilutes the correlation somewhat.

Nevertheless, the width of the d distribution depends strongly on the charged daughter
momentum, as shown in �g. 1. The plots show the mean of jd̂j=c�mc as a function of p in
the accepted Monte Carlo events, where d̂ denotes the true impact parameter with respect

to the �+�� production point and �mc is the mean � lifetime assumed in the Monte Carlo

generator. The two plots correspond to the two possible \event helicities." The event
helicity of a Z ! �+�� event is de�ned to be the helicity of the ��. The d̂ distribution
also depends slightly on the � polar angle �� ; the plots in �g. 1 are integrated over �� .

For a given p, the d̂ distribution has a cusp at d̂ = 0 and is symmetric about that
point. To construct the likelihood function it is necessary to parametrize the distribution
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Figure 1: Mean of j�j = jd̂j=c�mc as a function of the daughter track momentum: (a)

positive helicity events and (b) negative helicity events, as de�ned in the text. For a given
event, the �+ and �� decays enter the same plot. The curves show the parametrization
described in the text.

of d̂ as a function of p and �� . Since the true impact parameters are proportional to
the � lifetimes, the required information about � decay angles and momenta is contained
in the distribution of � � d̂=c�mc. The � probability density for event helicity h is well
represented by the sum of two bipolar exponential functions:

fh(�jp; ��) = r

2�1�(p; �� )
exp

� j�j
�1�(p; �� )

+
1� r

2�2�(p; �� )
exp

� j�j
�2�(p; �� )

; (11)

with
r = (�2 � 1)=(�2 � �1);

�(p; �� ) = (c1t+ c2t
2 + c3t

3 + c4t
4 + c5t

5)(1 + c6j�=2� �� j); (12)

and

t =

 
Ebeam

pc
� 1

! 1

2

: (13)

In this parametrization, �(p; �� ) is equal to the mean value of j�j as a function of p and �� .
An independent set of parameters �1, �2, c1, c2; : : : ; c6 is �tted for positive and negative

event helicities. The curves plotted in �g. 1 represent the functions �(p; �� ), averaged over
�� .
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The probability density function of �� � �+ + �� for �xed p+, p�, �� , and event

helicity h is then

Eh(��jp+; p�; �� ) =
Z
1

�1

d�+

Z
1

�1

d��fh(�+jp+; ��)fh(��jp�; ��)�(�� � �+ � ��); (14)

where �� is now taken to be the polar angle of the ��, and � is the Dirac delta function.

Since the individual event helicities are unknown, the Eh are mixed according to the known

� polarization as a function of the �� polar angle:

E(��jp+; p�; ��) = 1 + P� (��)

2
E+ +

1 � P� (��)

2
E�; (15)

where

P� (��) = � A`(1 + cos ��)
2

1 + cos2 �� + 2A2
` cos ��

(16)

at the Z peak. A` is the measured asymmetry parameter [10]. The value of �� is taken

from the event thrust axis direction (computed from the reconstructed charged and neutral

particles) in the hemisphere containing the ��. The uncertainty on the �� polar angle

has an insigni�cant e�ect on the �tted lifetime.

The probability density function for the true impact parameter sum �̂ = d̂+ + d̂� is

D(�̂j�� ; p+; p�; ��) = 1

c��
E(�̂=c�� jp+; p�; ��): (17)

The �tting function is constructed by convolving D with the resolution function described
in section 4.

In order to remove the few remaining events with poorly measured tracks, a con�dence
level (CL) is calculated for each of the selected events. The CL of an event is de�ned

to be the integrated probability density for the event to have a reconstructed � equal
to or larger than the observed value. (A mean � lifetime of 296 fs is assumed for this
calculation.) The CL distribution is found to be uniform, as expected, except for a peak
at very small values. Since the 1-1 sample contains approximately 104 events, one event
is expected to have CL < 10�4; 8 such events are observed. These events are excluded

from the �t, leaving a sample of 10975 events.

The �t to the data yields a mean � lifetime of 297:1 � 3:6 fs. Figure 2 shows the �

distribution for the data, overlayed with the best �t function.

Monte Carlo �+�� events are used to check for biases in the analysis method. The

lifetime �t yields �� = 297:8 � 1:1 fs, compared with the input value, �mc = 296 fs. The

calculated bias of +0:61 � 0:38% is subtracted from the lifetime value obtained from the
data.

Additional systematic uncertainty on the measured lifetime arises from the parametri-

zation of the impact parameter resolution and from the simulation of the � decay distribu-

tions and the backgrounds. The uncertainty associated with the d resolution parametriza-
tion, �0:78%, includes contributions of�0:76% from the statistical errors on the measured

resolution parameters and �0:16% from the parameters of the third Gaussian function,
which are obtained from Monte Carlo events. A bias of �0:07 � 0:07% is related to the

di�erent � distributions for di�erent � decay modes; this value is based on the experi-

mental uncertainties on the branching fractions and on a study of the e�ciencies of the
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Figure 2: Impact parameter sum distribution for data. The overlayed curve is the result
of the maximum likelihood �t.

event selection algorithm for the various decay modes in data and Monte Carlo. The
correlation of the transverse polarizations of the �+ and �� is not simulated in the event

generator [11] used for the �nal lifetime bias determination, so a special generator [12]
without initial or �nal state radiation was used to determine that this correlation changes
the measured lifetime by �0:22�0:44%. The uncertainty associated with the longitudinal
� polarization is negligible. The bias due to background events is predicted from Monte
Carlo simulation to be �0:25 � 0:06%. The net bias is +0:07%. The total systematic

uncertainty of �0:97% is the quadratic sum of the various contributions, including the sta-
tistical uncertainty on the Monte Carlo bias determination. The systematic uncertainties
for all four � lifetime analyses are summarized in table 2.

The mean � lifetime obtained with the MIPS method, corrected for biases, is

�� = 296:9 � 3:6 (stat) � 2:9 (syst) fs: (18)

6 Impact parameter sum analysis

The original IPS method [4] is also applied to the 1-1 event sample. In this analysis,
the daughter track directions are considered in addition to the impact parameter sum
in the �t for the mean � lifetime. The sphericity axis is calculated for each event from

the charged and neutral particles. The axis so obtained is used as an estimate of the �

production axis, from which the azimuthal � decay angles  � are determined. The decay
angles are de�ned as  = �daughter� �� .

The distribution of the true sum of impact parameters �0 may be expressed analytically

9



Table 2: Systematic uncertainties in the � lifetime analyses. Dashes denote inapplicable

or negligible contributions.

Systematic uncertainties (%)

Source MIPS IPS IPD DL

Monte Carlo statistics 0:38 0:41 0:32 0:61

d resolution measurement 0:76 0:97 { {

d resolution simulation 0:16 0:12 0:26 {

Decay branching fractions/e�ciencies 0:07 0:11 0:07 {

Transverse � polarization correlation 0:44 0:44 { {

Backgrounds 0:06 0:06 0:07 0:11

Detector alignment { { 0:10 0:36

Final state radiation { { 0:17 {

Vertex �2 cut { { { 0:40

Total 0:97 1:15 0:47 0:82

in terms of the mean � lifetime, for �xed �,  0+, and  
0

�
[4]. Here, � denotes the polar

angle of the �� momentum and  0
�
are the true decay angles. The measured  � angles are

subject to correlated errors associated with the � direction determination. These errors
(typically 20mrad in azimuth) are dominated by the e�ects of the unobserved neutrinos.
Since the tracking errors on �� are negligible by comparison (typically 0:5mrad), the reso-

lution function for the reconstructed �,  +, and  � may be factored into two independent
functions g and h:

dN(� j +;  �)
d�

=
Z
d 0+ d 

0

�
h( +;  �;  

0

+;  
0

�
)
Z
d�0 g(� � �0)

dN(�0 j 0+;  0�)
d�0

: (19)

The resolution on the impact parameter sum is characterized by the function g, which
is described in section 4. The function h gives the probability for a � pair with recon-
structed decay angles ( +;  �) to have true angles ( 

0

+;  
0

�
). This function is constructed

numerically, averaging over track momenta and polar angles, in an analysis of a high
statistics sample of simulated � pairs without detector simulation.

Candidate � pairs of 1-1 topology are �rst selected as described in section 3. Ad-
ditional event selection requirements are imposed for this analysis. The requirement

j j < 0:15 rad reduces background from 

 processes and eliminates some of the re-
maining events that contain acoplanar � 's due to �nal state radiation. Finally, events

containing mismeasured tracks are removed by the requirement j�j < 0:18 cm. A maxi-
mum likelihood �t is performed on the remaining 10464 events. The �tted mean � decay

length is h`i = 0:2231�0:0029 cm. Figure 3 shows the distribution of � for various ranges

of  + +  �. The �tted function is also shown.

A bias on the measured mean decay length is expected due to the use of the single

(momentum-independent) h function. The correlated measurement errors on d and  

are expected to yield a small positive decay length bias. Monte Carlo �+�� events are

analyzed in exactly the same way as the real events, in order to determine the total bias
on the measured lifetime. The �tted mean decay length in the Monte Carlo sample is
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1:49 � 0:41% lower than the generated value.

The other systematic uncertainties (table 2) are very similar to those described in sec-

tion 5. The uncertainty associated with the measurement of the d resolution in data events

is �0:97%. This includes contributions of �0:44% for the parameters of the core Gaus-

sian function and �0:86% for the second Gaussian. A systematic uncertainty of �0:12%
is assigned for the parameters of the third Gaussian function. A bias of �0:14 � 0:11%

is expected due to di�erences between data and Monte Carlo in the branching fractions

and selection e�ciencies for the various � decay modes. The transverse � polarization

correlation gives a bias and uncertainty of �0:22 � 0:44%. The bias due to background

is �0:24 � 0:06%. The total systematic bias and uncertainty is �2:09 � 1:15%. After

corrections, the mean � lifetime obtained in the IPS analysis is

�� = 297:4 � 3:8 (stat) � 3:4 (syst) fs: (20)

The systematic uncertainty related to the resolution parametrization is larger for IPS than

for MIPS because the true impact parameter sum distribution assumed in the IPS �tting

function has no explicit momentum dependence. In the MIPS analysis, tracks with lower

momentum (and poorer resolution) are associated with a wider true impact parameter
distribution, leading to a reduced sensitivity to the resolution parameters.

7 Impact parameter di�erence analysis

The 1-1 topology events were also analyzed with the IPD method. A brief description of
this method is given here; more details are given in [3] and [4]. The following quantities

are determined for each event:

Y = d+ � d�;

X =
�p� (
p
s)

�p0�
�� sin �;

(21)

where �p� (
p
s) is the mean � momentum, determined from Monte Carlo simulation after all

event selection criteria are applied, �p0� is the mean � momentum at
p
s = 91:25GeV, and �

is taken from the event thrust axis. No estimate of the � direction is needed to determine
�� (= �+ � �� � �). The lifetime is then determined from the Y vs: X distribution and
the relation

hY i =

"
�p0�
m�

��

#
X: (22)

The parameters of the line hY i = a0 + a1X are determined by means of an unbinned,
weighted least-squares �t with an iterative trimming procedure to remove poorly measured

events.

The IPD analysis of the 1992 data bene�ts from the smaller LEP beam size and

from an improved event selection algorithm (section 3) compared to the 1991 analysis.
Another important change is the reduction of the trim fraction in the �t from 2% to 0:2%

of the events. The new trim fraction is chosen to minimize the statistical and systematic

uncertainty on the lifetime.

The �t range jXj < 0:18 is chosen in order to reduce the e�ect of radiative Z! �+��

events and background from two-photon interactions; 10876 events enter the �t. The �t
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Figure 4: (a) hY i vs: X. The solid line shows the result of the �t described in the text.

The dashed curve shows the expected shape of hY i vs: X. (b) Plot of pulls (deviation
from �tted line divided by uncertainty).

results are a0 = +0:0004� 0:0002 cm and a1 = +0:2204� 0:0041 cm, with �2 = 11500 for
10853 degrees of freedom (�g. 4). From simulated events the intercept a0 is predicted to

be +0:0003� 0:0001 cm; the o�set from zero is caused by bremsstrahlung of daughter e�

tracks in the detector material. As a check of the procedure, di�erent �t ranges in X are
used. The resulting variations in the �tted slope are consistent with those observed for

Monte Carlo events.

The �tted value of a1 is corrected for several biases which are estimated from Monte
Carlo simulation. The lifetime bias introduced by the selection procedure is +0:29�0:18%.

Surviving radiative events tend to have shorter decay lengths and a wider X distribution.

Although the lifetime calculation does take into account the reduction of the mean �

momentum due to radiation, the greater in
uence in the �t of events with large jXj yields
an additional bias of �0:18� 0:03%. The assumption that �� is small results in a bias on
a1 of �0:12�0:01%. The acollinearity of the � pairs in the remaining 
�+�� events yields
a bias of �0:44�0:06%. The bias due to errors in the measurement of � is +0:02�0:02%.

The net bias due to tracking errors on d and � and trimming is +0:50 � 0:25%. The

statistical uncertainty on �� takes into account the small dependence of the trimming bias

on �� . The total uncertainty for the above biases is �0:32%, due to limited Monte Carlo
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statistics.

The systematic uncertainty on the lifetime associated with simulation of the detector

resolution is �0:26%. The simulation of the selection e�ciency for di�erent � decay modes

yields an uncertainty of �0:07%. The net lifetime bias due to backgrounds is estimated

from Monte Carlo simulation to be �0:24� 0:07%. An additional systematic uncertainty

of �0:17% for the e�ects of �nal state radiation in the Z! �+�� decays is derived from a

study of isolated photons in data and Monte Carlo. Detector alignment errors contribute

�0:10% to the lifetime uncertainty. The total bias is �0:17� 0:47%.

The mean � lifetime is calculated from eq. 22. The mean � momentum, �p0� =

45:38GeV=c, is obtained with negligible uncertainty from a Monte Carlo simulation. The

corrected a1 corresponds to

�� = 288:4 � 5:6 (stat) � 1:4 (syst) fs: (23)

8 Decay length analysis

The classical decay length or vertex method is used to measure the mean lifetime of � 's

decaying into three charged tracks.

Three-prong hemispheres with �q = �1 are selected from the basic �+�� sample. The

event sphericity axis is determined from the reconstructed charged and neutral particles
for each event containing a candidate decay. The three charged tracks are required to
point within 18� of this axis. Neutral particles outside of this cone are discarded and
the sphericity axis is recalculated. This procedure avoids the large � direction error (and
consequent lifetime bias) which is possible in radiative events.

Track quality cuts are applied to the three-prong candidates, as shown in table 3.
In particular, each of the three tracks is required to have at least one r-� or r-z hit in
the VDET. Decays with an identi�ed electron are rejected to reduce contamination from

photon conversions. The decay vertex is reconstructed and �tted using the full three-
dimensional information provided by the detector. A candidate is retained only if the
result of the vertex �t has a �2 CL greater than 4%.

The position and size of the interaction region and the position and uncertainty of the
�tted decay vertex are used to calculate the most probable � 
ight distance; the � 
ight

path is constrained to be parallel to the event sphericity axis, determined as described
above. The uncertainty on the � direction is taken into account by increasing the assumed

size of the interaction region in the plane perpendicular to the sphericity axis. The �2 CL
of this decay length �t is required to be greater than 0:4%, and the uncertainty on the

�tted decay length is required to be less than 0:3 cm. The typical decay length resolution

is 650�m. Figure 5 shows the decay length distribution for the remaining 2835 � 's. One
� has a �tted decay length greater than 3 cm and is discarded. The overall selection

e�ciency for three-prong � decays is 30%.

The mean decay length is extracted from the decay length distribution by means of

a maximum likelihood �t. The probability function is taken to be the convolution of
a decreasing exponential with a Gaussian resolution function. The decay length uncer-

tainties are multiplied by a scaling factor k which is free to vary in the �t. The results

for data are h`i = 0:2209 � 0:0044 cm and k = 1:22 � 0:04. For simulated events with
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Table 3: Numbers of surviving candidate � decays in the three-prong selection.

Cut Decays

Three prongs in cone about sphericity axis 7998

� 8 TPC hits 7542

� 1 VDET r-� hit 5569

jdj < 0:5 cm; jz0j < 4 cm 5491

p > 0:5GeV=c 5388

�(�2=dof) < 15 5307

No electron 4648

Invariant mass less than 2GeV=c2 4645

Vertex �t CL > 4% 2893

Decay length �t CL > 0:4% 2837

Decay length uncertainty < 0:3 cm 2836

Decay length < 3 cm 2835
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Figure 5: (a) Decay length distribution for data (squares with error bars) and Monte

Carlo (histogram). The Monte Carlo decay lengths have been adjusted to correspond to

�mc = 292 fs. (b) Decay length distribution for data with curve showing �t result.
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a generated mean lifetime of 296 fs, the same procedure gives h`i = 0:2250 � 0:0014 cm

and k = 1:12 � 0:01. The values of k obtained from data and Monte Carlo are di�erent

because the tracking errors are smaller in the simulated events. The mean momentum of

selected � 's is calculated to be 45:29GeV=c by means of a Monte Carlo simulation. The

calculated bias on the mean decay length is �0:52 � 0:61%. This Monte Carlo result is

used to correct for possible biases in the analysis.

Several sources of systematic errors are studied. First, the bias due to the residual

contamination of hadronic events is found from Monte Carlo simulation to be �0:24 �
0:11%. The e�ect of distortions in track z coordinate measurements, correlated with polar

angle, is studied using q�q events; a bias of �0:18�0:36% is found. The bias due to impact

parameter o�sets is zero when averaged over all azimuthal angles. The e�ects of pattern

recognition errors are studied by varying the vertex �2 probability cut; a systematic

uncertainty of �0:40% is deduced. In order to study the tails of the tracking resolution,

the decay length distribution was �tted with a two-Gaussian resolution function. The

resulting amplitude of the wider Gaussian is consistent with zero, and the �tted mean

decay length is identical to the value given above.

The total systematic bias and uncertainty is �0:94� 0:82%. The corrected � lifetime
obtained with the DL method is

�� = 291:9 � 5:8 (stat) � 2:4 (syst) fs: (24)

9 Conclusions

The MIPS, IPS, and IPD analyses are all based on the 1-1 topology events. The correlation
coe�cients for the statistical errors of these three analyses are determined by means of a
Monte Carlo simulation. The correlation coe�cients are 0:84 � 0:02 between MIPS and
IPS, 0:46 � 0:04 between MIPS and IPD, and 0:48 � 0:04 between IPS and IPD. Some

components of the systematic errors are common to two or more of the measurements.
The procedure of [13] is used to determine the optimum weights for averaging the four
measured lifetimes. Correlations among the statistical and systematic errors are taken
into account. The combined result for the 1992 data is

�� = 293:5 � 3:1 (stat) � 1:7 (syst) fs; (25)

with �2 = 2:4 for 3 degrees of freedom (CL = 49%). Including the previous ALEPH
measurements [3, 4], the combined result is

�� = 293:7 � 2:7 (stat) � 1:6 (syst) fs; (26)

with �2 = 6:3 for 10 degrees of freedom (CL = 79%). This result is consistent with the

world average in [14] and with a recent measurement [15].

The ALEPH measurements of the � lifetime and branching fractions may be used in

equations 2 and 3 to test lepton universality. For B(� ! e���) = 17:79 � 0:12 � 0:06%
[16], B(� ! ����) = 17:31�0:11�0:05% [16], m� = 1776:96�0:26MeV=c2 [5], and other

quantities from [14], the ratios of the e�ective coupling constants are

g�

g�
= 0:9943 � 0:0037(Be)� 0:0053(�� )� 0:0004(m� ) (27)
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and
g�

ge
= 0:9946 � 0:0035(B�) � 0:0053(�� )� 0:0004(m� ): (28)

These results are consistent with the hypothesis of lepton universality.
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