Searches for Lepto-Quarks and Vectorlike-Quarks at the ATLAS Experiment

2024. Apr. 10 (Wed.)

Tomoya lizawa

University of Oxford

on behalf of the ATLAS Collaboration

DIS2024 @ Maison MINATEC, Grenoble

Leptoquarks

Motivations

- ✓ **Hints for lepton flavour universality violation** is observed in charged and neutral current processes in B-physics.
 - R_D/R_{D*} : 3.2 σ deviation in global average
 - $R_{\kappa}/R_{\kappa*}$: Now SM consistent?
 - $R_{K}/R_{K^{*}}$: Now SM consistent?

 B \rightarrow Kμμ angular variable discrepancies, muon g-2 $R(D^{(*)}) = \frac{\mathcal{B}(B \to D^{(*)}\tau^{-}\bar{\nu}_{\tau})}{\mathcal{B}(\bar{B} \to D^{(*)}\ell^{-}\bar{\nu}_{\tau})}$, $(\ell = e \text{ or } \mu)$
 - and more...
- ✓ The size of the anomalies suggests a tree-level mediator, such as leptoquarks (LQs).

Analysis Targets

U₁: Vector LQ in U₁ model

- ✓ LQs are hypothetical particles that carry color and a fractional electric charge, decay into quark-lepton pairs.
 - LQs appear in several BSM models, such as a part of GUT.
- ✓ Scalar LQ and Vector LQ of minimal coupling scenario, Yang-Mills (YM) coupling scenario are considered.
- ✓ LQ can be produced in pair, single, or non-resonant.
 - In this presentation, searches targeting single- and pair- produced LQ resonant production with run-2 data.
- ✓ Decay modes also have variations. As experimental signature,
 - quark: top, bottom, charm, light-jet
 - lepton: τ, μ, e, ν

Leptoquark Recent (>= 2022) Publications

- ✓ Pair-produced scalar and vector LQs decaying to 3rd-gen quarks and 1st/2nd-gen leptons (Link)
- **✓ Leptoquark pair production in bτbτ final states (Link)**
- ✓ Excited tau and leptoquark search (2taus+2jets) (Link)
- ✓ Search for single scalar leptoquark production in the btautau final state (Link)
- ✓ Search for leptoquarks decaying to a top quark and a light lepton (Link)
- ✓ Combination of searches for pair-produced leptoquarks in final states with b-tagged jets (Link)
- ✓ Search for charged lepton flavour violation in top quark production and decay (Link)
- ✓ Exotics Run 2 physics report (<u>Link</u>)
- ✓ You can find all the ATLAS results in ATLAS public results page
- ✓ The ones shown in red are introduced in the next pages, which are picked up by my bias!

Pair Production, Decaying to bτbτ

ATLAS

- ✓ Full hadronic $τ_{had} τ_{had}$ and semi-leptonic $τ_{lep} τ_{had}$ (lep = e, μ) channels.
- \checkmark Higher energy phase space is selected by p_T , E_T^{miss} , scalar sum of p_T (s_T).
- ✓ Top modeling is reweighted, fake τ ID is corrected, multi-jet fakes are estimated by data-driven Fake Factor (FF) method.
- ✓ Parametric Neural Network (PNN) is used to separate signal and bkg.
 - PNN is used as final discriminant variable.

Variable	$ au_{ m lep} au_{ m had}$ channel	$ au_{ m had} au_{ m had}$ channel
$ au_{ m had ext{-}vis} \ p_{ m T}^0$	✓	✓
$s_{ m T}$	✓	✓
$N_{b-{ m jets}}$	✓	✓
$m(\tau, \text{jet})_{0,1}$		✓
$m(\ell, \text{jet}), m(\tau_{\text{had}}, \text{jet})$	✓	
$\Delta R(\tau, \text{jet})$	✓	✓
$\Delta\phi(\ell,E_{\mathrm{T}}^{\mathrm{miss}})$	✓	
$E_{\rm T}^{ m miss} \phi$ centrality	✓	✓

Pair Production, Decaying to bτbτ

	Obs. limit [GeV]	Exp. limit [GeV]
Scalar LQ	1460	1410
Vector LQ (minimal-coupling)	1650	1590
Vector LQ (Yang-Mills)	1910	1820

- ✓ Binned Profile Likelihood fit is performed for PNN score distribution.
 - No significant excess over SM expectation is observed. 95% confidence-level upper limits are set.
- \checkmark Significantly improve the sensitivity mainly due to upgraded τ and b-jet identification, improved MVA.

Pair Production, Combination

				In	terpretati	on					
Searc	ch		S	calar			ctor	Si	Signal Region		
Final State	Citation	LQ_3^u	LQ_3^d	LQ_{mix}^{u}	LQ_{mix}^{d}	$U_1^{ m YM/MC}$	$ ilde{U}_1^{ m YM/MC}$	N_ℓ	$N_{ au_{ ext{had}}}$	$N_{b m jets}$	
t v b au		\checkmark	✓	_	_	✓	_	0	1	≥ 2	
b au b au		\checkmark	_	_	_	\checkmark	_	$\{0, 1\}$	$\{1, 2\}$	$\{1, 2\}$	
$t \tau t \tau$		_	\checkmark	_	_	_	\checkmark	$\{1, 2, 3\}$	≥ 1	≥ 1	
$t\nu b\ell$		_	_	√	√	_	_	1	_	≥ 1	
$b\ell b\ell$		_	_	\checkmark	_	_	_	2	_	$\{0, 1, 2\}$	
$t\ell t\ell (2\ell)$		_	_	_	\checkmark	_	_	2	_	_	
$t\ell t\ell \ (\geq 3\ell)$		_	_	_	\checkmark	_	_	$\{3,4\}$	_	≥ 2	
tvtv		√	_	√	_	√	_	0	0	≥ 2	
$b\nu b\nu$		_	\checkmark	_	\checkmark	_	_	0	_	≥ 2	

- ✓ A statistical combination of various searches for pair-produced leptoquarks.
- ✓ All possible decays of the leptoquarks into quarks of the third generation and charged or neutral leptons of any generation are investigated.
- ✓ Overlap among regions, systematics effects are carefully checked.

Pair Production, Combination

- ✓ Simultaneous binned profile-likelihood fits are performed to CRs and SRs.
- ✓ The resulting lower bounds on leptoquark masses exceed those from the individual analyses by up to 100 GeV, depending on the signal hypothesis.
- ✓ For most combinations of the parameters, these are the best limits to date!

Single Production, Decaying to btt

- ✓ The single production contribution becomes larger than that from pair production at high mass and coupling values.
- \checkmark Higher energy phase space is selected by p_T , E_T^{miss} , scalar sum of p_T of all the reconstructed objects (S_T) .
- \checkmark Top modeling is reweighted, fake τ ID is corrected, multi-jet fakes are estimated by data-driven FF method.
- $\mathbf{S}_{\mathbf{T}}$ is used as final discriminant variable.

Single Production, Decaying to btt

- ✓ Binned Profile Likelihood fit is performed for S_T distribution.
 - No significant excess over SM expectation is observed.
 - 95% confidence-level upper limits are set.
- \checkmark The results are interpreted considering all LQ production modes in the U₁ model.
- ✓ This analysis is the first ATLAS result for the search of singly produced LQs in the bττ final state!
- ✓ An additional model-independent search considering both the high and low b-jet p_T signal regions is performed.

Vectorlike Quarks

Vectorlike Quark Introduction

- ✓ Vectorlike Quarks (VLQs) are color triplet, spin 1/2, fermionic partners of SM quarks in many BSM models.
 - Composite Higgs, Little Higgs, Extra Dimensions, etc, to explain radiative divergences to the Higgs mass.
- ✓ VLQs could appear as different types of multiplets:
 - SU(2) singlets, doublets, or triplets of T, B, X or Y
 - **ξW=0.5**, **ξZ=ξH=0.25** for singlet, **ξW~0**, **ξZ=ξH=0.5** for doublet
- ✓ T and B have the same electric charge as the SM t- and b-quarks
- ✓ X and Y have electric charges 5/3 and -4/3, respectively

- ✓ Pair production (dominates at low mass) and single production (dominates at high mass and high coupling)
- ✓ **Preferential coupling to third generation SM quarks** is assumed to cancel out the Higgs boson mass divergence from top-quark loops.
 - Possible decay channels: $T \rightarrow Wb$, $T \rightarrow Zt$, $T \rightarrow Ht$, $B \rightarrow Wt$, $B \rightarrow Zb$, $B \rightarrow Hb$, $X \rightarrow Wt$, $Y \rightarrow Wb$
- ✓ Parameters of model:
 - **M**_{T. B}: Mass of the T/B quark
 - **k**: Global electroweak coupling parameter
 - **ξW, ξZ, ξH**: Relative couplings to W, Z, H bosons respectively
 - Relative width: Γ/M~κ²M²

Vectorlike Quark Recent Publications

- ✓ Single VLQ production in all-hadronic final state ($T\rightarrow Ht$, $H\rightarrow bb$, $t\rightarrow bqq$) (Link)
- ✓ VLQ pair search with opposite sign multileptons (T/B, T→Zt/b, B→V(H)t/b, Z→II) (Link)
- ✓ VLQ pair production search in the Zt+X decay with a 1 lepton plus MET plus jets final state (TT, BB) (Link)
- ✓ Single VLQ via the Ht/Zt decay in the 1-lepton channel (T→Ht, Zt) (Link)
- ✓ VLQ single production search with opposite sign multileptons ($T\rightarrow Zt$, $Z\rightarrow II$) (Link)
- ✓ Search for vector-like B \rightarrow bH with H \rightarrow bb (Link)
- ✓ VLQ pair production search in the Wb+X final state (TT→Wb and Wb, Ht, Zt, BB→Wt and Wt, Hb, Zb) (Link)
- ✓ Search for MET plus a single-top-quark $(T \rightarrow Zt, Z \rightarrow vv, t \rightarrow bqq)$ (Link)
- ✓ You can find all the ATLAS results in <u>ATLAS public results page</u>
- **✓** The ones shown in red are introduced in the next pages which are picked up by my bias!

Pair Production, lepton+jets, >= 1b

- ✓ Optimised for the TT→WbWb channel with one W boson decaying leptonically and the other hadronically.
- ✓ High-pT hadronically decaying W bosons are tagged as a single large-radius (large-R) jets. New!
- ✓ Top modelling is reweighted, tt and W+jets are corrected from CR, multijets are estimated by Matrix-Method.

15/21

✓ T candidates are reconstructed such that **the mass difference between the leptonically and hadronically decaying T candidates is minimised**. The mass is the final discriminant variable.

Pair Production, lepton+jets, >= 1b Link

- ✓ Limits are set on
 - $B(T \rightarrow Wb) = 1$
 - SU(2) Singlet T
- ✓ Limits between BRs are also checked.
- ✓ Though this analysis is optimized for TT→Wb+X, BB→Wt+X is also considered.
- ✓ The most stringent limits are set for the scenario B(T→Wb) = 1.

Single Production, $B \rightarrow bH(bb)$

- This analysis focuses on B \rightarrow bH with H \rightarrow bb.
- Large-R jet with variable-radius (VR) track-jets is exploited to explore presence of b-hadrons in large-R jets.
 - Higgs Candidates (HC) are reconstructed as single large-R jets, classified by the b-tagged track-jet multiplicity. 17/21
- Multijets (> 90% in this analysis) are estimated by data-driven ABCD method.

Single Production, $B \rightarrow bH(bb)$

- ✓ **Invariant mass of B candidate** is used as discriminant variable.
- ✓ The first search for a single vector-like B quark in the bH(bb) final state in ATLAS!
- This search improves on the previously published searches by CMS in the B → bH channel!

Search for E_T^{miss} + Single-top

- ✓ A search for events with one top quark and missing transverse momentum in the final state is performed.
 - The results are interpreted in the context of simplified models for Dark Matter particle production and the single production of a vector-like T quark.
- ✓ A Deep Neural Network (DNN) based identification of large-R jet originated from hadronically decaying top
- ✓ Extreme gradient-boosted (XGBOOST) decision tree (BDT) is used for signal and background separation.
 - It is used as final discriminant variable.

Search for E_Tmiss + Single-top

ATLAS

✓ No significant excess above the SM expectation is found in any of the signal regions.

ATLAS

- The results are therefore interpreted in terms of expected and observed upper limits on the signal cross-section as a function of the model parameters.
- ✓ This limit outperforms previous results by approximately 400 GeV.
 - This improvement partially comes from the refined object reconstruction and a XGBoost algorithm.

Summary

- ✓ The summary of ATLAS Run-2 Leptoquarks and Vectorlike Quarks searches are introduced.
 - No significant excess is found, thus the strongest limits are set.

Leptoquarks

- ✓ Pair and single production searches are performed.
- ✓ Searches for LQ decaying to third generation particles as well as orthogonal generation are considered.
- \checkmark Pair production to btbt, orthogonal generation, combination and single production to ttt are introduced.

Vectorlike Quarks

- ✓ Pair and single production searches are performed.
- ✓ Limits are set on VLQ mass and couplings for singlet and doublet.
- ✓ Several combinations of parameter spaces are being searched.

The ATLAS results can be found and have been updated in the ATLAS publication page, and...

Stay tuned for the upcoming new channels and Run-3 results!

Backup

Pair Production, Decaying to bτbτ 🗓

	$ au_{ m lep} au_{ m had}$ channel	$ au_{ m had}$	$ au_{ m had}$ channel		
e/μ selection	= 1 'signal' e or μ $p_{\rm T}^e > 25, 27 {\rm GeV}$ $p_{\rm T}^{\mu} > 21, 27 {\rm GeV}$. No	'veto' e or μ		
$ au_{ m had-vis}$ selection	$= 1 \tau_{\text{had-vis}}$ $p_{\text{T}}^{\tau} > 100 \text{GeV}$		= $2 \tau_{\text{had-vis}}$ 140, 180 (20) GeV		
Jet selection	$p_{\gamma}^{ m j}$	$\geq 2 \text{ jets}$ et $> 45 (20) C$ 1 or 2 b -jets			
Additional selection	$m_{ au au}^{ ext{MN}}$	Opposite charge e , μ , τ_{had} and τ_{had} $m_{\tau\tau}^{\text{MMC}} \notin 40 - 150 \text{GeV}$ $E_{\text{T}}^{\text{miss}} > 100 \text{GeV}$ $s_{\text{T}} > 600 \text{GeV}$			
	Obs.	limit [GeV]	Exp. limit [GeV]		
Scalar LQ		1460	1410		
Vector LQ (minima	nl-coupling)	1650	1590		
Vector LQ (Yang-N	Mills)	1910	1820		

Pair Production, Orthogonal Generation

	Preselection	n		Variable	Description
	$E_{\mathrm{T}}^{\mathrm{miss}}$ trigge exactly one signal veto on additional base $E_{\mathrm{T}}^{\mathrm{miss}} > 250~\mathrm{C}$ $\geq 4~\mathrm{small}$ - $R~\mathrm{j}$ $m_{\mathrm{T}}(\ell, E_{\mathrm{T}}^{\mathrm{miss}}) > 3$ $\Delta\phi(E_{\mathrm{T}}^{\mathrm{miss}}, j_{1,2})$	l lepton eline leptons GeV jets 0 GeV		$m_{ m T}(\ell, E_{ m T}^{ m miss})$ $m_{ m eff}$ Lepton flavour $p_{ m T}(\ell)$ $m_{ m inv}(b_1, \ell)$ $n_{ m large}$ $am_{ m T2}$	transverse mass of lepton and $E_{\rm T}^{\rm miss}$ scalar sum of the transverse momenta of leptons, jets, and $E_{\rm T}^{\rm miss}$ flavour of the signal lepton transverse momentum of the lepton invariant mass of the leading- $p_{\rm T}$ b -jet and the lepton reclustered large- R jet multiplicity asymmetric transverse mass
Top reweighting region	W+jets CR	Single-top CR	Training region	$E_{\rm T}^{ m miss}$ significance	measure for assessing the compatibility of the observed $E_{\rm T}^{\rm miss}$ with zero,
$n_b \ge 1$ $m_{\mathrm{T}}(\ell, E_{\mathrm{T}}^{\mathrm{miss}}) \ge 120 \mathrm{GeV}$ $am_{\mathrm{T2}} < 200 \mathrm{GeV}$	$n_b = 1$ $50 \text{GeV} \le m_{\text{T}}(\ell, E_{\text{T}}^{\text{miss}}) < 120 \text{GeV}$ $am_{\text{T2}} > 200 \text{GeV}$ $t_{\text{had}} \text{candidate veto}$ $\text{lepton charge} = +1e$	$n_b = 2$ $m_{\rm T}(\ell, E_{\rm T}^{\rm miss}) < 120{\rm GeV}$ $am_{\rm T2} > 200{\rm GeV}$ large- R jet veto $ \Delta R(b_1, b_2) > 1.2$	$n_b \ge 1$ $m_{\mathrm{T}}(\ell, E_{\mathrm{T}}^{\mathrm{miss}}) \ge 120\mathrm{GeV}$ $am_{\mathrm{T}2} > 200\mathrm{GeV}$	$m_{ m T}(b_1,E_{ m T}^{ m miss}) \ p_{ m T}(t_{ m had}) \ \Delta\phi(E_{ m T}^{ m miss},b_2) \ m_{ m inv}(b_2,\ell) \ \Delta\phi(E_{ m T}^{ m miss},b_1) \ \Delta\phi(t_{ m had},\ell) \ p_{ m T}(b_1)$	taking resolutions into account transverse mass of leading- $p_{\rm T}$ b -jet and $E_{\rm T}^{\rm miss}$ transverse momentum of $t_{\rm had}$ azimuthal angle separation between $E_{\rm T}^{\rm miss}$ and subleading- $p_{\rm T}$ b -jet invariant mass of subleading- $p_{\rm T}$ b -jet and lepton azimuthal angle separation between $E_{\rm T}^{\rm miss}$ and leading- $p_{\rm T}$ b -jet azimuthal angle separation between $t_{\rm had}$ and lepton transverse momentum of leading- $p_{\rm T}$ b -jet

<u>Link</u>

Pair Production, Combination

	$\mathcal{B} = 0.0$		$\mathcal{B} = 0.5$		$\mathcal{B} = 1.0$	
	95% CL L	imit [GeV]	95% CL Limit [GeV]		95% CL Limit [GeV]	
	Observed	Expected	Observed	Expected	Observed	Expected
$LQ_3^u \to tv/b\tau$	1240	1240^{+70}_{-90}	1340	1300^{+70}_{-80}	1480	1440^{+70}_{-80}
$LQ_3^d \rightarrow t\tau/b\nu$	1260	1260^{+80}_{-80}	1360	1340^{+60}_{-70}	1520	1470^{+70}_{-70}
$LQ_{mix}^{u} \rightarrow tv/b\mu$	1230	1310^{+70}_{-70}	1570	1510^{+70}_{-70}	1710	1650^{+90}_{-90}
$LQ_{mix}^{u} \rightarrow tv/be$	1230	1310^{+70}_{-70}	1510	1550^{+80}_{-80}	1730	1740^{+90}_{-100}
$LQ_{mix}^{d} \rightarrow t\mu/b\nu$	1240	1260^{+70}_{-80}	1430	1470^{+70}_{-70}	1600	1650^{+80}_{-80}
$LQ_{mix}^d \rightarrow te/bv$	1230	1250^{+70}_{-70}	1450	1500^{+70}_{-70}	1650	1660^{+90}_{-90}
$U_1^{ m YM} o t v/b au$	-	-	1840	1810^{+80}_{-90}	-	-
$U_1^{ m MC} o t v/b au$	-	-	1580	1560^{+70}_{-70}	-	-
$U_1^{ m YM} o t v/b \mu$	-	-	1980	1930^{+50}_{-60}	-	-
$U_1^{ m MC} o t v/b \mu$	-	-	1710	1660^{+50}_{-50}	-	-
$U_1^{ m YM} ightarrow t v/be$	-	-	1900	1930^{+50}_{-70}	-	-
$U_1^{ m MC} ightarrow t v/be$	-	-	1620	1650^{+50}_{-60}	-	-
$ ilde{U}_1^{ m YM} ightarrow t au$	_	-	-	-	1810	1810^{+80}_{-70}
$\tilde{U}_1^{ m MC} ightarrow t au$	_	-	-	-	1540	1530^{+90}_{-60}

Single Production, Decaying to btt Link

Signal Regions	Selection		
Preselection	ℓ (trigger, isolated), $\tau_{\rm had\text{-}vis}$ (medium $\tau_{\rm had\text{-}ID}$), $q(\ell) \times q(\tau_{\rm had\text{-}vis}) < 0$, $\Delta\phi(\ell, E_{\rm T}^{\rm miss}) < 1.5$, $m_{\rm vis}(\ell, \tau_{\rm had\text{-}vis}) > 100$ GeV, $S_{\rm T} > 300$ GeV, at least one b -jet		
High b -jet p_T SR Low b -jet p_T SR	Leading <i>b</i> -jet $p_T > 200 \text{ GeV}$ Leading <i>b</i> -jet $p_T < 200 \text{ GeV}$		
Control/Validation Regions	Selection	Purpose	
Multijet-CR	ℓ (trigger, pass/fail offline isolation), $m_{\rm T}(\ell, E_{\rm T}^{\rm miss}) < 30{\rm GeV}$, one b -jet, $\tau_{\rm had}$ -ID score < 0.01 , $E_{\rm T}^{\rm miss} < 50{\rm GeV}$	Measure lepton fake-factor	
Top-CR SS-CR	Satisfy SR except: $\Delta\phi(\ell, E_{\rm T}^{\rm miss}) > 2.5$, no $S_{\rm T}$ and lead. b -jet $p_{\rm T}$ req. Satisfy SR except: $q(\ell) \times q(\tau_{\rm had\text{-}vis}) > 0$, no $\Delta\phi(\ell, E_{\rm T}^{\rm miss})$, and $S_{\rm T}$ req.	Derive top correction Measure jet $\rightarrow \tau$ background scale factor	
High b -jet $p_{\rm T}$ VR Satisfy high b -jet $p_{\rm T}$ SR except: $1.5 < \Delta \phi(\ell, E_{\rm T}^{\rm miss}) < 2$ $300~{\rm GeV} < S_{\rm T} < 600~{\rm GeV}$		Background modelling validation	
Low b -jet p_T VR	Satisfy low <i>b</i> -jet p_T SR except: $1.5 < \Delta \phi(\ell, E_T^{miss}) < 2.5$, $300 \text{ GeV} < S_T < 600 \text{ GeV}$	Background modelling validation	
b-tag Z-CR	Satisfy SR except: 45 GeV $< m_{\rm vis}(\ell, \tau_{\rm had\text{-}vis}) < 80$ GeV, $p_{\rm T}(\ell)/p_{\rm T}(b\text{-}{\rm jet}) > 0.8, \Delta\phi(\ell, \tau_{\rm had\text{-}vis}) > 2.4, \text{ no } S_{\rm T} \text{ req.}$	Z+ heavy-flavour jets normalisation factor	
Signal Regions	Selection		
Preselection	$\tau_{\rm had,1}$ (trigger, medium $\tau_{\rm had}$ -ID), τ_2 (loose $\tau_{\rm had}$ -ID), q $S_{\rm T} > 300$ GeV, at least one b -jet	$(\tau_1) \times q(\tau_2) < 0, m_{\text{vis}}(\tau_1, \tau_2) > 100 \text{ GeV}$	
High b -jet p_T SR Low b -jet p_T SR	Leading <i>b</i> -jet $p_T > 200 \text{ GeV}$ Leading <i>b</i> -jet $p_T < 200 \text{ GeV}$		
Control/Validation Regions	n Selection	Purpose	
DJ-CR CR-1 SS-VR Z+light flavour je	$ au_1$ and $ au_2$ satisfy very loose $ au_{ m had}$ -ID, $q(au_1) imes q(au_2) < 0$ Satisfy SR except: $ au_2$ fail loose $ au_{ m had}$ -ID Satisfy SR except: $q(au_1) imes q(au_2) > 0$ ts VR Satisfy SR except: 0 b -jets, $\Delta \phi(au_1, au_2) > 0.25$, $m_{ m vis}(au_1, au_2) < 100$ GeV, $E_{ m T}^{ m miss} > 60$ GeV	Measure $\tau_{\text{had-vis}}$ fake-factor Apply $\tau_{\text{had-vis}}$ fake-factor Multijet modelling check Z+light jets modelling	

Pair Production, lepton+jets, >= 1b

Selection	SR1/SR2	<i>t</i> ŪCR	$S_{\mathrm{T}}^{\mathrm{Low}}\Delta m\mathrm{CR}/S_{\mathrm{T}}^{\mathrm{High}}\Delta m\mathrm{CR}$	W+jetsCR	<i>tī</i> RWR
Preselection	✓	✓	✓	✓	✓
$N_{\mathrm{Large-}R}$ Jet	≥ 1	≥ 1	≥ 1	≥ 1	≥ 1
$S_{\mathrm{T}}[\mathrm{GeV}]$	>1900	1400-1900	1400–1900 / >1900	900–1900	>800
$N_{W ext{-}\mathrm{tag}}$	≥ 1	≥ 1	≥ 1	≥ 1 partially inverted	≥ 1
$N_{b ext{-tag}}$	≥ 1	≥ 1	≥ 1	≥ 1	≥ 2
$\Delta R(W_{\rm had},b_{\rm had})$	> 1.0	> 1.0	> 1.0	_	< 1.0
$\Delta R(\ell, u)$	< 0.7	< 0.7	< 0.7	< 1.0	< 1.2
$\Delta m_{ m VLQ} [{ m GeV}]$	< 200 / 200–500	< 500	> 500	_	_
$m_T^{\mathrm{lep}}, m_T^{\mathrm{had}}[\mathrm{GeV}]$	_	_	_	_	< 700
Included in fit	yes / yes	yes	yes / yes	no	no
Goal	Optimise signal sensitivity	Constrain $t\bar{t}$ normalisation	Constrain single top uncertainties	Derive W+jets normalisation factor	Derive $t\bar{t}$ S_{T} shape reweighting

Pair Production, lepton+jets, >= 1b

✓ Top modelling is corrected by reweighting factor.

Pair Production, Zt+X with 1 lepton + MET

Preselection
$E_{ m T}^{ m miss}$ triggers
= 1 signal lepton
no additional baseline lepton
\geq 4 jets
$\geq 1 b$ -jet
$E_{\mathrm{T}}^{\mathrm{miss}} > 250\mathrm{GeV}$
$m_{\rm T}^W > 30 {\rm GeV}$
$ \Delta\phi(j_{1,2}, \vec{E}_{\mathrm{T}}^{\mathrm{miss}}) > 0.4$

	Training region low-NN _{out} CR/SR	Top reweighting region	W+jets CR	Single-top CR
m_{T}^{W} [GeV]	> 120	> 120	$\in [30, 120]$	∈ [30, 120]
am_{T2} [GeV]	> 200	< 180	> 200	> 200
b-jet multiplicity	≥ 1	≥ 1	= 1	≥ 2
Large- <i>R</i> jet multiplicity	≥ 1	≥ 1	≤ 1	≤ 1
m(large-R jet) [GeV]	_	_	< 150	< 150
Lepton charge	_	_	+1	_
$\Delta R(b_1, b_2)$	_	_	_	> 1.4
$NN_{ m out}$	< 0.5/≥ 0.5	_	_	_

Pair Production, Zt+X with 1 lepton + MET

Link

30/21

Variable	Description
$m_{ m eff}$	scalar sum of the transverse momenta of leptons, jets, and $E_{\rm T}^{\rm miss}$
$N_{b ext{-jets}}$	b-jet multiplicity
$N_{b ext{-jets}} \ m_{ ext{T}}^W$	transverse mass of lepton and $E_{\mathrm{T}}^{\mathrm{miss}}$
am_{T2}	asymmetric transverse mass
$p_{\mathrm{T}}(\text{large-}R \text{ jet}_2)$	transverse momentum of second-highest- p_T large- R jet
$ \Delta\phi(\mathrm{jet}_1,E_{\mathrm{T}}^{\mathrm{miss}}) $	azimuthal angle between $E_{\mathrm{T}}^{\mathrm{miss}}$ and highest- p_{T} jet
$E_{ m T}^{ m miss}$	missing transverse momentum
$\eta(\mathrm{jet}_1)$	pseudorapidity of highest- $p_{\rm T}$ jet
$m(\text{large-}R \text{ jet}_1)$	mass of highest- p_T large- R jet
$N_{\text{const}}(\text{large-}R \text{ jet}_1)$	number of small- R jets reclustered to the highest- p_T large- R jet
$p_{ m T}(\ell)$	transverse momentum of lepton
$p_{\mathrm{T}}(\mathrm{jet}_3)$	transverse momentum of third-highest- $p_{\rm T}$ jet
$p_{\mathrm{T}}(\mathrm{jet}_2)$	transverse momentum of second-highest- p_T jet

Single Production, $B \rightarrow bH(bb)$

<u>Link</u>

Preselection									
	$\geqslant 1$ large- R jet, $p_{\rm T} > 480~{\rm GeV}$								
No leptons & no $\gamma\gamma$ pairs with $m_{\gamma\gamma} \in [105, 160] \text{ GeV}$									
$\geqslant 2$	track-jets	associated	with the l	arge-R jet	, ≥ 1 <i>b</i> -ta	ngged track	k-jet		
		$\geqslant 1 \text{ sm}$	all- R jet w	ith $p_{\rm T} > 3$	$00 \mathrm{GeV}$				
		$\Delta R(\mathrm{sn}$	nall- R jet, l	arge-R jet) > 2.0				
			HC recon	struction	l				
		Any lar	ge-R jet w	ith $p_{\rm T} > 4$	80 GeV				
	≥ 2	2 ghost-ma	tched track	-jets with	$p_{\rm T} > 50 \ {\rm C}$	GeV			
			Pass colline	earity veto	1				
Highest	b-tag mult	iplicity: 2	track-jets	Highest	b-tag mult	iplicity: 1	track-jet		
		Select	candidate •	with larges	st $m_{ m HC}$				
		VLB	candidate	reconstr	uction				
	H	C + small	$R \text{ jet}, p_{\mathrm{T}}(s)$	small- R jet	;) ¿ 400 G	eV			
		$\Delta R(\mathrm{sr}$	nall-R jet, l	arge-R jet) ; 2.5				
]	Kinematic	selection	1				
			$\log \Delta R^*$	`¿ 0.67					
			$p_{ m T}^{ m HC}/m_{ m c}$	В ; 0.4					
		1	$m_{\mathrm{HC}} \in [105]$	[5, 135] GeV	7				
≥ 1 forw	vard jet	.							
= 0 for	ward jet	$\geqslant 1$ for	ward jet	= 0 for	ward jet				
		Smal	1-R jet b -	tagging s	tatus				
Tag	No Tag	Tag	No Tag	Tag	No Tag	Tag	No Tag		
SR			Cor	ntrol samp	les				

Search for E_T^{miss} + Single-top

<u>Link</u>

$N_{b ext{-tagged jets}}$	$\Delta\phi_{ m min}(j,E_{ m T}^{ m miss})$	VCP oost soore) 7
	$-i \min (j, i-1,)$	XGBoost score	$N_{ m forward\ jets}$
≥ 2	∈ [0.2, 1]	_	_
1	$\in [0.2, 1]$	_	_
1	≥ 1	< 0.5	$- (\geq 1)$
≥ 2	≥ 1	_	_
0	$\in [0.2, 1]$	_	_
0	≥ 1	< 0.5	$- (\geq 1)$
0	≥ 1	≥ 0.5	- (≥ 1)
1	≥ 1	≥ 0.5	$- (\geq 1)$
	≥ 2 1 1		

<u>Link</u>

Search for E_T^{miss} + Single-top

Variable	Description	Scalar DM mediator	Vector DM mediator	VLQ
$E_{ m T}^{ m miss}$	Missing transverse momentum	✓	✓	√
Ω	$E_{\mathrm{T}}^{\mathrm{miss}}$ and large- R jet p_{T} balance: $\frac{E_{\mathrm{T}}^{\mathrm{miss}} - p_{\mathrm{T}}(J)}{E_{\mathrm{T}}^{\mathrm{miss}} + p_{\mathrm{T}}(J)}$	\checkmark	\checkmark	\checkmark
N_{jets}	Small- <i>R</i> jet multiplicity	\checkmark	\checkmark	\checkmark
$\Delta R_{ m max}$	Maximum ΔR between two small- R jets	\checkmark	\checkmark	\checkmark
$m_{\rm T,min}(E_{\rm T}^{\rm miss},b\text{-tagged jet})$	Transverse mass of $E_{ m T}^{ m miss}$ and the closest b -tagged jet	\checkmark	\checkmark	\checkmark
$m_{ m top ext{-}tagged}$ jet	Mass of the large-R top-tagged jet	\checkmark		\checkmark
$\Delta p_{\mathrm{T}}(J,\mathrm{jets})$	Scalar difference of large- R jet p_T and the sum of p_T of all small- R jets.	✓	\checkmark	
H_{T}	Sum of all small- R jet $p_{\rm T}$		\checkmark	\checkmark
$H_{ m T}/E_{ m T}^{ m miss}$	Ratio of $H_{ m T}$ and $E_{ m T}^{ m miss}$		\checkmark	\checkmark
$\Delta E(E_{\mathrm{T}}^{\mathrm{miss}},J)$	Energy difference between $E_{\mathrm{T}}^{\mathrm{miss}}$ and the large- R jet		\checkmark	\checkmark
$\Delta\phi(E_{ m T}^{ m miss},J)$	Angular distance in the transverse plane between $E_{ m T}^{ m miss}$ and large- R jet		✓	✓
$p_{\mathrm{T}}(\mathrm{J})$	Large- R jet p_T			\checkmark
$m_{\mathrm{T}}(E_{\mathrm{T}}^{\mathrm{miss}},J)$	Transverse mass of the $E_{ m T}^{ m miss}$ and large- R jet			\checkmark
$\Delta \phi(b$ -tagged jet, $J)$	Angular distance in the transverse plane between the large- R jet and the leading b -tagged jet			✓

Pair Production, Decaying to bτbτ

- ✓ Binned Profile Likelihood fit is performed for PNN score distribution.
 - No significant excess over SM expectation is observed. 95% confidence-level upper limits are set.
 - Significantly improve the sensitivity mainly due to upgraded τ and b-jet identification, improved MVA4/21

Pair Production, Combination

For any combination of the parameters, these are the best limits to date!

Pair Production, Orthogonal Generation

- \checkmark Searches for LQs decaying to orthogonal generation quark (t, b) and lepton (e, μ , ν).
 - Aroused interest to explain B-anomalies, muon g-2.
- \checkmark Top modeling is reweighted, CRs are defined and fit simultaneously with SR to normalize top and W+jets.
- ✓ NNs are trained by mass and angular variables, and used to separate signal and background.
 - NNs are used as final discriminant variable.

Pair Production, Orthogonal Generation

- ✓ Binned Profile Likelihood fit is performed for NN score distribution simultaneously for SR and CRs.
 - No significant excess over SM expectation is observed. 95% confidence-level upper limits are set.
- ✓ Upper limits on the production cross-section are derived for eight models as a function of leptoquark mass and branching ratio into the charged lepton. $\frac{37/21}{2}$

Pair Production, Zt+X with 1 lepton + MET

- ✓ Investigates all possible decay modes and combinations of branching ratios for the pair-produced T and B.
- ✓ Singlet and doublet T, B, as well as X are considered.
- ✓ Top modelling is reweighted, single-top and W+jets are normalized from CR.
- \checkmark NNs are trained for various signal hypotheses and branching ratio to better separate signal and background.
 - Used as final discriminant variables.

Pair Production, Zt+X with 1 lepton + MET

VLQ	Scenario	Exp. limit [TeV]	Obs. limit [TeV]	LITIK
\overline{T}	$\mathcal{B}(T \to Zt) = 100\%$	1.45	1.47	
T	singlet	1.33	1.26	
T	(T, B) or (X, T) doublet	1.41	1.41	
B	singlet	1.30	1.33	
B/X	$\mathcal{B}(B/X \to Wt) = 100\% \text{ or } (T, B)/(X, T) \text{ doublet}$	1.42	1.46	
T/B/X	(T, B) or (X, T) doublet, mass degenerate	1.56	1.59	

- The obtained mass limits are 300 to 400 GeV higher than in the earlier ATLAS analysis in the same final state.
- The strongest lower limits for T, B and X are at 1.59 TeV for (T, B) and (X, T) weak-isospin doublets where both VLQ are considered and assumed to be mass degenerate.

 39/21

Single Production, multi-lepton

<u>Link</u>

- ✓ Singly produced T and the final state has 2 leptons (e or μ) or 3 leptons (2l and 3l channels).
- ✓ Variable radius reclustered jets (vRC jets) are used to identify hadronically decaying boosted top-quark jets.
- ✓ Z+jets modelling is reweighted in 2l channel, VV and tt + X modellings are reweighted in 3l channel.
- \checkmark p_T(II) is final discriminant variable.

ATLAS

- ✓ 2I and 3I channels are statistically combined.
- Limits on the T mass and coupling are set for singlet and doublet.