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1 Introduction

The outcome of string theory having the largest impact in science is probably the AdS/CFT
correspondence [1–4]. Though still conjectural, its robustness is evident in several situations,
going far beyond the realm of string theory and supersymmetry [5]. Trying to explore
and understand the conjecture has generated an impressive literature dealing with various
geometrical and physical aspects of (asymptotically) anti-de Sitter (AdS) spacetimes [6]; in
particular, AdS Quantum Field Theory (QFT) has come again to the general attention.

On the AdS side, the conjecture is often checked only at tree-level: Feynman diagrams
on that manifold are difficult already at one loop. Sometimes, loop integrals are evaluated
through the bootstrap, a strategy introduced by G. Chew in the seventies of the last century,
abandoned shortly after the successes of QCD and the Standard Model, and revitalized in
the last fifteen years [7]. Bootstrap is essentially based on the interplay between symmetries,
unitarity and causality. However, it is not completely clear how to implement it outside
the context of conformal field theories and difficulties may arise in presence of anomalies or
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non-invertible symmetries [8]. Combining bootstrap methods in CFT with the AdS/CFT
conjecture has proven to be useful to guess the result of loop integrals in the AdS (bulk)
manifold [9–14]; there are however other possibilities [15, 16].

Generally speaking, the absence of a global linear momentum space renders the calculation
of Feynman or Schwinger-Keldysh diagrams in a curved background more difficult than usual;
to avoid that difficulty, working in position space from scratch is the cleanest and clearest
option that may be tremendously effective also in flat space [17]. That is the strategy that
we adopt here and in a companion paper [18]. By taking into full account the analyticity
properties of the correlation functions in the complexified universal covering of the real AdS
manifold, we show how to compute a class of one and two-loop integrals in a simple and
direct way, avoiding every detour whatsoever.

Let us focus on one-loop integrals first: sometimes, things are rendered more difficult
than they really are by the habit of writing the two-point functions and the propagators
as special instances of the Gaussian hypergeometric function 2F1 instead of using the more
specific expressions in terms Legendre functions of the second kind (Q) for AdS quantum
fields and Legendre functions of the first kind (P ) for dS fields. This might seem just an
irrelevant matter of taste but the contrary happens to be true: the geometrical peculiarities
of either the AdS or the dS manifolds that are well captured by the respective Legendre
functions Q and P remain hidden in the generic hypergeometric expression.

The superiority of using Q instead of 2F1 is evident in our first derivation of the one-
loop diagram which is based on the Wronskian relations between solutions of the Legendre
differential equation: the integration is immediate. In section 6 we present also a second
very simple derivation of the same one-loop diagram as a special instance of a new general
formula which is generally valid in curved Euclidean backgrounds.

The explicit knowledge of the one-loop diagram in turn opens the way to the calculation
of two-loop banana integrals relative to three independent AdS scalar fields having arbitrary
values of their mass parameters. The literature on AdS two-loop integrals is scarce, see
e.g. [13, 16, 19]. In general the relevant articles do not contain explicit formulas: some of them
calculate corrections to the dispersion laws but do so determining only the divergent part [20].

The explicit calculation in the present paper is made possible by the AdS Källén-Lehmann
expansion formula which two of us and collaborators proved sometimes ago [29, eqs. (7.8)
and (7.9)] (eqs. (8.19) and (8.20) in this paper). A formula identical to our own appeared
without an explicit proof in a later paper the same year [30, eq. (53)].1

Remarkably, this beautifully simple formula is not an integral but a discrete sum. One
could have expected this for the uncovered AdS manifold, due to its time periodicity; however,
the discreteness of the formula is not affected by moving to the universal covering. Here we
extend the validity of Källén-Lehmann expansion to more general conditions in theorem 8.3:
the formula remains of course the same as in [29], only the domain of applicability becomes
wider w.r.t. the original proof given in [29]. Then we use it together with our 1-loop calculation
to write explicit formulae for the two-loop banana integral with three independent masses in
arbitrary (complex) dimension d (eqs. (10.2), (10.7) and (10.8)). Obtaining these formulae
would be quite challenging using other methods without further assumptions (for example,

1Numbered as eq. (52) in the first version arXiv:1111.6972v1 of the preprint.
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without assuming the validity of the AdS/CFT conjecture and/or doing suitable guesses
in bootstrap methods). The Källén-Lehmann expansion renders the calculation is next to
elementary by linearization.

We would like to stress also that computing these integrals goes well beyond the aim of
testing the power of the methods used in the present paper: these are exactly the diagrams
necessary to compute the two-loop effective potential for the Standard Model and can be
used to generalize the results in [31] in presence of a negative cosmological constant. The
simple explicit formulas we have found are new and we think that they can lead to some
simplifications also in the flat limit.

The plan of the paper is as follows: in section 2 we recall a few preliminary notions
about the geometry of AdS and about AdS QFT. In section 3 we discuss in more detail
the analyticity properties of the scalar two-point functions and recall how to write the
propagators in terms of Legendre functions of the second kind. A simple application of
this representation is presented in section 4 where we compute the 1-loop banana integral
with two arbitrary masses in any complex dimensions by using the Wronskian associated
with the Legendre differential equation.

In section 5 we apply the results of section 4 to compute the 1-loop effective potential
for an AdS O(N) scalar field model in a four dimensions. We provide an exact expression (at
1-loop) of the potential as a function of the cosmological constant Λ and also an expansion in√
−Λ to order Λ; in the flat limit Λ → 0 the standard flat potential is correctly reproduced.

The latter fact is indeed nontrivial.
The bubble is reconsidered again in section 6 where we prove the general formula (6.8)

valid in any (curved) Euclidean background. In the same vein we determine also a formula
the triangular loop that may be easily generalized to N -line case.

Section 7 contains a curious fact we found on the relation betweeen bulk diagram vs.
Witten diagrams which is worth of further investigation. We show that in at least one possibly
pathological case, Witten diagrams are not the boundary limit of the correspding bulk diagram.

In section 8 we discuss the Källén-Lehmann formula for AdS scalar quantum fields with
two distinct masses and we extend the original proof given in [29] to more general conditions.
We also discuss instructive elementary deductions of the same formula in odd dimensions
d = −1, d = 1, d = 3, d = 5. In sections 9 and 10 we use the KL expansion formula to
compute explicit expressions for the 1-loop tadpole and the one loop sunset and for the 2-loop
banana integral with arbitrary masses and dimensions.

The text is followed by two appendices. In the first we provide some further details
about the usage of Legendre functions of first and second kind in dS and AdS QFT’s and
also clarify some points that have been discussed in the recent literature. In the second we
give the details about the proof of the expansion theorem of [29] in general conditions.

2 Preliminaries

2.1 Geometry

The d-dimensional real AdS spacetime with radius R > 0 may be visualized as the manifold

AdSd = {x ∈ Rd+1 : x2 = x · x = R2} (2.1)
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where the scalar product x · x is intended in the sense of the ambient space Rd+1 with two
timelike directions and metric mostly minus as follows:

x · y = x0y0 − x1y1 − . . .− xd−1yd−1 + xdyd. (2.2)

The complexification of the AdS manifold is defined analogously

AdS
(c)
d = {z = x+ iy ∈ Cd+1 : z2 = R2}; (2.3)

z ∈ AdS(c) if and only if x2 − y2 = R2 and x · y = 0, i.e. the real and imaginary parts of
z are orthogonal w.r.t. the scalar product (2.2). The symmetry group of the anti de Sitter
spacetime is the pseudo-orthogonal group of the ambient space SO(2, d− 1). This group may
also be regarded as the conformal group of transformations of the boundary, represented
as the null cone of the ambient space

Cd = {ξ ∈ Rd+1 : ξ2 = ξ · ξ = 0}. (2.4)

This simple geometrical fact lies at basis of the AdS/CFT correspondence. The null cone
of the ambient space plays also the role of giving a causal order to the AdS spacetime
which is however only local, due to the existence of closed timelike curves; two events are
spacelike separated if

(x1 − x2)2 = 2− 2x1 · x2 < 0. (2.5)

While AdS(c)
d is simply connected,2 the real manifold AdSd is not and admits a nontrivial

universal covering space ÃdSd. The covering manifold is globally causal but remains non-
globally hyperbolic, because of the boundary at spacelike infinity. However, even though
time-loops are not present in the covering space, there remains an unavoidable trace of the
periodicity of the uncovered (otherwise called pure or true) AdS manifold: timelike geodesics
issued at any point of ÃdSd focus infinitely many times every half period, exactly as it
happen on the true AdS manifold. This fact will be conspicuous in section 8 where we
discuss the Källén-Lehmann representation of the product of two scalar two-point functions
with mass parameters λ and ν, in position space with fixed end-points (sometimes called
the bubble diagram).

Coordinates

Except for the considerations regarding the flat limit we shall always take R = 1 throughout
this paper. A concrete way of representing both AdSd and its covering ÃdSd by global
coordinates is to introduce the diffeomorphism χ of S1 × Rd−1 onto AdSd given by

x(t, x⃗) =
(√

1 + x⃗2 cos t, x⃗,
√
1 + x⃗2 sin t

)
(2.6)

where S1 is identified to R/2πZ. The diffeomorphism χ̃, defined by lifting χ on the covering
Rd of S1 × Rd−1 provides a global coordinate system on ÃdSd.

2This may be seen by changing zµ to izµ for µ = 1, . . . , d − 1, the complex AdS manifold becomes the
complex unit sphere in Cd+1, which has the same homotopy type as the real unit sphere Sd. It follows that
for d ≥ 2 the covering space of AdS

(c)
d is AdS

(c)
d itself.
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It is possible to identify in the complex manifold AdS
(c)
d an analog of the Euclidean

subspace of the complex Minkowski spacetime: here we choose the connected real submanifold
Hd of AdS(c)

d — that we call the Euclidean anti de Sitter spacetime — defined by

Hd = {z ∈ AdS
(c)
d : z(y) = (y0, . . . , yd−1, iyd), yµ ∈ R, y0 > 0}. (2.7)

This is indeed a Lobachevsky space modeled as the upper sheet of a two-sheeted hyperboloid
embedded in a (d + 1)-dimensional Minkowski spacetime:

Hd = {y ∈ Rd+1 : y02 − y12 − · · · − yd2 = R2, y0 > 0}. (2.8)

Coordinates for Hd are obtained by changing t into is in eq. (2.6); this yields the following
parametrization:

z(is, x⃗) =
(√

1 + x⃗2 ch s, x⃗, i
√
1 + x⃗2 sh s

)
. (2.9)

There also exists an extension of χ̃ to C × Rd−1, whose image is a partial complexification of
the real covering manifold ÃdSd; the so-obtained complexified covering contains the same
Euclidean spacetime Hd.

We will make use of the following spherical parametrization of Hd:

y(u, ω) =
(
u, ω1

√
u2 − 1, . . . , ωd

√
u2 − 1

)
(2.10)

where u ≥ 1 and ω are coordinates on the sphere Sd−1; in these coordinates the Lorentz-
invariant measure dy is written

√
g dy = (u2 − 1)

d−2
2 dudω (2.11)

where dω denotes the rotation-invariant measure on the sphere Sd−1 normalized as follows

ωd =
∫

Sd−1
dω = 2π

d
2

Γ
(

d
2

) . (2.12)

Quantum fields and the energy spectrum condition

A general approach to AdS QFT has been discussed in [25, 32]. Here we summarize only
the main consequences of the spectral condition; we refer the reader to [25, 32] for more
details and other results.

We focus on a scalar quantum field on ÃdSd which is fully determined by the set of
its n-point vacuum expectation values:

Wn(x1, . . . xn) = ⟨Ω, ϕ(x1) . . . ϕ(xn)Ω⟩. (2.13)

The field can be restricted to the uncovered spacetime AdSd if and only if it 2π-periodic in
the time-parameter t. The properties of AdS-invariance, positive-definiteness and hermiticity
are formulated exactly as for Minkowskian scalar QFT [25, 33] and we do not spell them out.

Even though the AdS manifold is not globally hyperbolic, it is however natural to ask
for local commutativity by requiring that the fields commute at spacelike separation:

W(x1, . . . , xi, xi+1, . . . , xn) = W(x1, . . . , xi+1, xi, . . . , xn)

for all xi, xi+1 space-like separated in the sense of ÃdSd. (2.14)
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For theories well-defined in the uncovered AdSd itself, this amounts at least to commutativity
under the condition (xi − xi+1)2 < 0.

The above properties are more or less obvious but do not select a unique solution
for a given model and some extra criterion is needed. Since the very beginning of AdS
quantum field theory the correlation functions and the propagators have been constructed
and selected by studying the behaviour of the modes at the boundary located at spacelike
infinity [34]. This is very natural from the viewpoint of the Cauchy problem because of
the lack of global hyperbolicity.

On the other hand, the fact that the field equations do not uniquely select the propagators
is not a peculiarity of AdS quantum fields theory. For infinite quantum systems there are
always infinitely many inequivalent representations of the commutation relations and to
select a physically meaningful quantization one always needs to impose some extra physical
requirement. This is normally done in terms of a spectral condition, i.e. a condition on
the energy spectrum of the states of the theory, and we act in this way also in the AdS
case. Whatever is the choice it will also silently select the behaviour at spacelike infinity
of the modes and the correlators.

Since the parameter of the (covering) group of rotations in the (0, d)-plane is interpreted
as a time variable, we require that the corresponding generator M0d be represented in the
Hilbert space of the theory by a self-adjoint operator whose spectrum is bounded from below.
By a standard Laplace transform argument [33] in the corresponding time-variables, this
requirement is equivalent to the following analyticity property of the n-point functions:

Spectral condition. Each tempered distribution

Wn(x1(t1, x⃗1), . . . , xn(tn, x⃗n)) (2.15)

is the boundary value of a holomorphic function Wn(z1, . . . , zn) which is defined in a complex
neighborhood of the set{

z = (z1, . . . , zn); zj ∈ ÃdS
(c)
d ; zj = zj(τj , x⃗j); Im τ1 < Im τ2 < · · · < Im τn

}
. (2.16)

As a by-product, the Schwinger functions

Sn(x1(is1, x⃗1), . . . , xn(isn, x⃗n)) (2.17)

are well-defined and are obtained as the restrictions of the holomorphic functions Wn’s to
the Euclidean submanifold

{z = (z1, . . . , zn), zj ∈ Hd, s1 < s2 < · · · < sn} (2.18)

at non coinciding points. Sometimes natural distributional extensions exist: this is the case
if the singularities of the Wn are weak, for example in lower dimensions or in the presence
of regularization such as dimensional regularization.
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3 The analytic structure of two-point functions

From now on we consider only fields completely determined by their two-point function
W(x1, x2) as we do in perturbation theory i.e. we assume that the truncated n-point func-
tions vanish.

There are two distinguished complex domains [25, 32] of AdS(c)
d , invariant under real AdS

transformations, which are of crucial importance for a full understanding of the structures
associated with two-point functions:

Z1+ = {z = x+ iy ∈ AdS
(c)
d ; y2 > 0, ϵ(z) = +1},

Z1− = {z = x+ iy ∈ AdS
(c)
d ; y2 > 0, ϵ(z) = −1}, (3.1)

where
ϵ(z) = sign(y0xd − x0yd). (3.2)

Z1+ and Z1− are the AdS analogues of the usual forward and backward tubes of complex
Minkowski spacetime, obtained in correspondence with the energy-momentum spectrum
condition [33]. The spaces Z1± and AdSd have the same homotopy type. Their universal
coverings are denoted Z̃1±. The AdS spectral condition implies that a general two-point
function satisfies the following [25]

Normal analyticity condition for two-point functions. W (x1, x2) is the boundary
value of a function W (z1, z2) holomorphic in the domain Z̃1− × Z̃1+

W(x1, x2) = (Ω, ϕ(x1)ϕ(x2) Ω) = lim
z1∈Z̃1−,z2∈Z̃1+

z1→x1,z2→x2

W (z1, z2) . (3.3)

AdS invariance then implies that to W (z1, z2) there corresponds a function w(ζ) of a
single complex variable ζ that can be identified with z1 · z2 when z1 and z2 are both in
AdS

(c)
d+1; the function w(ζ) is called the reduced two-point function. Complex AdS invariance

and normal analyticity imply the following

Maximal analyticity property. The reduced two-point function w(ζ) extends to a function
analytic in the covering ∆̃1 of the cut-plane

∆1 = {C \ [−1, 1]}. (3.4)

For theories periodic in the time coordinate w(ζ) is analytic in ∆1. For later use we
introduce also

∆̂1 = ∆1 ∪ {∞} , (3.5)

Therefore, the two-point function of any field satisfying locality AdS invariance and the
spectral condition enjoys maximal analyticity, as it happens in the Minkowski [33] and de Sitter
cases [24]. Maximal analyticity, in turn, completely determines the two-point functions for
Klein-Gordon fields and, as a consequence, also selects the boundary behaviour of the modes.
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3.1 Klein-Gordon fields

Klein-Gordon fields display the simplest example of the previous analytic structure. For a
given mass m the two-point function W(x1, x2) must satisfy the equation

(□xi +m2)W(x1, x2) = 0, i = 1, 2, (3.6)

w.r.t. both variables, where □xi is the Laplace-Beltrami operator relative to the AdS metric.
Such two-point functions are labelled by the (complex) dimension d and a (complex) parameter
ν as follows

W (AdS)
ν (z1, z2) = wd

ν(ζ) =
1

(2π)
d
2
(ζ2 − 1)−

d−2
4 e−iπ d−2

2 Q
d−2

2
− 1

2 +ν
(ζ) (3.7)

=
Γ
(

d−1
2

)
2π

d+1
2

D
d−1

2
ν− d−1

2
(ζ) (3.8)

=
Γ
(

d−1
2 + ν

)
2π

d−1
2 (2ζ)

d−1
2 +νΓ(ν + 1)

2F1

(
d− 1
4 + ν

2 ,
d+ 1
4 + ν

2 ; ν + 1; 1
ζ2

)
(3.9)

where the various parameters are related as follows:

m2 = ν2 − (d− 1)2

4 . (3.10)

At the r.h.s. of (3.7) Qα
β(ζ) denotes an associated Legendre function of the second kind [35]; at

the r.h.s. of eq. (3.8) Dδ
σ(ζ) is an ultraspherical (Gegenbauer) function of the second kind [36];

they are meromorphic functions of α and β and, respectively, δ and σ [35, 36]. As functions
of the complex variable ζ, they are analytic in the cut-plane

∆2 = {C \ [−∞, 1]}. (3.11)

Their definitions in terms of the Gauss hypergeometric function is provided by the last equal-
ity (3.9). Note in particular that (ζ)σ+2δDδ

σ(ζ) and (ζ)κ+ d−1
2 wd

κ(ζ) are even and analytic in ∆̂1.
Since for each value of the mass squared there are two possible two-point functions,

the question arises whether they are both acceptable or not. The spectral condition gives
the answer (Breitenlohner and Freedmann phenomenon) [38]: the two-point functions give
rise to a representation of M0d having positive spectrum only when ν is real and bigger
than −1. There are two possible cases

1. for ν > 1 the spectrum condition (3.3) uniquely select one field theory for each given
value of mass parameter ν;

2. for |ν| < 1 there are two acceptable theories for each given mass. The difference between
the two theories is in their large distance behavior; more precisely, in view of [35,
eq. (3.3.1.4)] one has that

wd
−ν(ζ) = wd

ν(ζ) +
sin πν Γ

(
d−1

2 − ν
)
Γ
(

d−1
2 + ν

)
2(2π)

d
2

(ζ2 − 1)−
d−2

4 P
− d−2

2
− 1

2−ν
(ζ). (3.12)
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The last term in this relation is regular on the cut ζ ∈ [−1, 1] and therefore does not
contribute to the commutator. By consequence the two theories represent the same algebra
of local observables at short distances. But since the second term at the r.h.s. grows the
faster the larger is |ν| (see [35, eqs. (3.9.2))] the two theories have drastically different long
range behaviors.

The Schwinger function (otherwise called the Euclidean propagator) is the restriction of
the maximally analytic two-point function to the Euclidean Lobachevsky manifold. Choosing
the points in eq. (3.7) as follows

z0 = (1, 0, . . . 0, 0) , z(u, ω) =
(
u, ω1

√
u2 − 1, . . . , ωd−1

√
u2 − 1, iωd

√
u2 − 1

)
, u > 1

(3.13)

so that ζ = z0 · z(u, ω) = u > 1, we write the propagator as

G(AdS)d
ν (z0 · z(u, ω)) = G(AdS)d

ν (u) = Gd
ν(u) = wν(u) =

e−iπ d−2
2

(2π)
d
2

(u2 − 1)−
d−2

4 Q
d−2

2
− 1

2 +ν
(u).

(3.14)

Remark 3.1. We stress again that forgetting, as is frequently done in the literature, that the
two-point function is a Legendre function and not just a much less specific (although equivalent)
hypergeometric function, implicates a significant loss of information and a consequent increase
in the difficulties in solving even simple problems.

This oblivion is even more curious when one thinks that in one of the first (if not the
very first) papers dealing with AdS QFT [37] the correlation functions are written exclusively
in terms of Legendre functions Q.

4 Banana integrals: one-loop

After this preparation we can now write the n-loop banana integral on the Lobachevsky
Euclidean manifold Hd with n + 1 lines:

In+1(ν1, . . . , νn+1, d) =
∫

Hd

Gd
ν1(x · z)Gd

ν2(x · z) . . . Gd
νn+1(x · z)

√
g(z) dz, (4.1)

where y varies on Hd and x is a fixed reference point. The above definition has to be intended
as a dimensional regularization of an expression that in general is divergent.

Using the coordinates (3.13) and integrating over the angles (4.1) reduces to

In+1(ν1, . . . , νn+1, d) =
2π

d
2

Γ
(

d
2

) ∫ ∞

1
Gd

ν1(u)G
d
ν2(u) . . . G

d
νn+1(u)(u

2 − 1)
d−2

2 du. (4.2)

The zero-loop case gives

I1(ν, d) =
2

2−d
2

Γ
(

d
2

) ∫ ∞

1
e−iπ d−2

2 Q
d−2

2
− 1

2 +ν
(u)(u2 − 1)

d−2
4 du. (4.3)
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The value of this integral might be deduced from [35, section 3.12, eq. (29), p. 172] also
reproduced in [45, ET II324(23), p. 809], but, unfortunately, those formulae are flawed by
the same typo; we take this opportunity to write here the correct general formula:∫ ∞

1
Qµ

ν (u)(u2 − 1)λ−1du =
Γ
(

1
2 + ν

2 + µ
2

)
Γ
(
1− λ+ ν

2

)
Γ
(
λ+ µ

2

)
Γ
(
λ− µ

2

)
22−µΓ

(
1 + ν

2 − µ
2

)
Γ
(

1
2 + λ+ ν

2 ,
) , (4.4)

valid for |µ| < 2Reλ < Re ν + 2; this gives the same result as in flat space:

I1(ν, d) =
1

ν2 − (d−1)2

4

= 1
m2 . (4.5)

Let us now focus on the already nontrivial two-line case. The above expression looks
particularly clean when expressed in terms of the Legendre functions Q:

I2(λ, ν, d) =
∫

Hd

Gd
λ(x · z)Gd

ν(x · z)
√
g(z) dz = e−iπ(d−2)

2d−1π
d
2 Γ
(

d
2

) ∫ ∞

1
Q

d−2
2

− 1
2 +λ

(u)Q
d−2

2
− 1

2 +ν
(u)du.

(4.6)
As simple as it may look, the integral at the r.h.s. of eq. (4.6) is not available anywhere
in the literature accessible to us.

Here the advantage of expressing the propagator in terms of Legendre functions is
manifest, as the above integral can be evaluated by using the Wronskian relations associated
with Legendre’s differential equation.

Recall that the function Q is holomorphic in the domain ∆2; the function z 7→ (z2 − 1)
1
2

is also understood as holomorphic in ∆2 and equal to |u2 − 1|
1
2 when z = u > 1. The

known recursion relations

(1− z2)
dQµ

ρ(z)
dz

= −ρzQµ
ρ(z) + (ρ+ µ)Qµ

ρ−1(z) , (4.7)

Qµ
ρ−1(z) = zQµ

ρ(z)− (ρ− µ+ 1)(z2 − 1)
1
2Qµ−1

ρ (z) , (4.8)

(see [35, section 3.8, eqs. (10), (5), p. 161]) give

(1− z2)
dQµ

ρ(z)
dz

= µzQµ
ρ(z)− (ρ+ µ)(ρ− µ+ 1)(z2 − 1)

1
2Qµ−1

ρ (z) . (4.9)

These identities allow us to evaluate the relevant integral over any arc, with extremities
a and b, entirely contained in ∆2:∫ b

a
Qµ

ρ(z)Qµ
σ(z)(ρ− σ)(σ + ρ+ 1)dz =

[
−(z2 − 1)

1
2 (σ + µ)(σ − µ+ 1)Qµ

ρ(z)Qµ−1
σ (z)

+(z2 − 1)
1
2 (ρ+ µ)(ρ− µ+ 1)Qµ−1

ρ (z)Qµ
σ(z)

]b
a
. (4.10)

We need also the asymptotic behaviour of the Legendre function of the second kind at z ∼ 1
and z → ∞ [35, section 3.9.2, eqs. (21), (5), (6), pp. 163–164]:

as z → +∞, Qµ
ρ(z) ∼ const. z−ρ−1 ; (4.11)

as z → 1, if Reµ > 0, Qµ
ρ(z) ∼ eiπµ2

µ
2 −1Γ(µ)(z − 1)−

µ
2 ; (4.12)

as z → 1, if Reµ < 0, Qµ
ρ(z) ∼

eiπµ2−
µ
2 −1Γ(−µ)Γ(ρ+ µ+ 1)(z − 1)

µ
2

Γ(ρ− µ+ 1) . (4.13)
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We deduce that the integral ∫ ∞

1
Qµ

ρ(z)Qµ
σ(z)dz (4.14)

converges if Re(ρ+σ) > −1 and |Reµ| < 1. Let us suppose that 0 < Reµ < 1. It follows that∫ ∞

1
Qµ

ρ(z)Qµ
σ(z) dz =

e2iπµΓ(µ)Γ(1− µ)
2(ρ− σ)(σ + ρ+ 1)

[Γ(ρ+ µ+ 1)
Γ(ρ− µ+ 1) −

Γ(σ + µ+ 1)
Γ(σ − µ+ 1)

]
. (4.15)

This equation remains valid, by analytic continuation, when |Reµ| < 1 and Re(ρ+ σ) > −1
(note that the term in brackets vanishes for µ = 0). Letting ρ tend to σ (4.15) tends to∫ ∞

1
Qµ

σ(z)Qµ
σ(z) dz =

e2iπµΓ(µ)Γ(1− µ)Γ(σ + µ+ 1)
2(2σ + 1)Γ(σ − µ+ 1)

[
ψ(σ + µ+ 1)− ψ(σ − µ+ 1)

]
.

(4.16)

Again this equation is valid when |Reµ| < 1 and Re 2σ > −1 but the r.h.s. can be continued
outside of this region.

In the end, the above argument provides a nice formula for the one-loop banana integral
with two independent masses; here it is:

I2(λ, ν, d) =
Γ
(
1− d

2

)
2dπ

d
2 (λ2 − ν2)

Γ
(

d−1
2 + ν

)
Γ
(

3−d
2 + ν

) −
Γ
(

d−1
2 + λ

)
Γ
(

3−d
2 + λ

)
 . (4.17)

A few remarks are in order:

1. At d = 2 we may extract from the general formula the following finite result:

I2(λ, ν, 2) =
ψ
(
λ+ 1

2

)
− ψ

(
ν + 1

2

)
2πλ2 − 2πν2 . (4.18)

2. In odd spacetime dimension the formula becomes very simple; for instance at d = 1, 3

I2(λ, ν, 1) =
1

2λ2ν + 2λν2 , I2(λ, ν, 3) =
1

4πλ+ 4πν . (4.19)

3. At d = 4 we encounter the first divergence. The Laurent expansion of the formula near
d = 4 gives

I2(λ, ν, d)|d≈4 = − 1
8π2(d− 4) +

1− γ + log(4π)
16π2 − 1

8π2(λ+ ν)

+
(
1− 4λ2)ψ (λ− 1

2

)
−
(
1− 4ν2)ψ (ν − 1

2

)
32π2(λ− ν)(λ+ ν) + O(d− 4). (4.20)

4. In the limit when the two masses are equal the general formula reduces to

I2(ν, ν, d) =
Γ
(
1− d

2

)
Γ
(

d−1
2 + ν

)
2d+1π

d
2 νΓ

(
3−d

2 + ν
) (

ψ

(3− d

2 + ν

)
− ψ

(
d− 1
2 + ν

))
. (4.21)

This expression coincides with a result of [14].
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5 The effective potential for the O(N) model

In this section, as an application of our results, we compute the effective potential for the
O(N) scalar model on anti de Sitter manifold in four dimensions. For generalities about the
model we refer to the companion paper [18]. As shown there, the 1-loop effective potential
has the form Veff(ν0, ν1) = W (ν0) +W (ν1), where here

ν0 =
√
m2

R + 3cgφ2
R + 9

4 , (5.1)

ν1 =
√
m2

R + cgφ2
R + 9

4 , (5.2)

and W (ν) satisfies
d

dν2
d

dν2W (ν) = −1
2I2(ν, ν, d), (5.3)

by definition (notice that differently from the de Sitter case, here I depends on ν2 through
ν, so the derivative in ν2 has to be intended as 1

2ν
d

dν ). Here we have already introduced
the renormalized mass mR and field φR. Integrating twice in dν2 with I given by (4.20),
and d = 4 − 2ε, we get

W (ν) = Cν2 +D − 1
64π2

(1
ε
+ 1− γ + log(4π)

)
ν4 + (ν2 − 1/4)2

32π2 ψ

(
ν − 1

2

)

− 1
32π2

∫ (
ν2 − 1

4

)2
ψ′
(
ν − 1

2

)
dν, (5.4)

where we have also included an integration by part, and C and D are integration constants.
To evaluate the last integral, we use the Abel-Plana formula [46] to write

ψ′
(
ν − 1

2

)
= 1

2
1(

ν − 1
2

)2 + 1
ν − 1

2
+ 4

∫ ∞

0

ν − 1
2((

ν − 1
2

)2
+ t2

)2
tdt

e2πt − 1 , (5.5)

which allows us to write∫ (
ν2 − 1

4

)2
ψ′
(
ν − 1

2

)
dν = ν4

4 + ν3

3 + 5
24ν

2 + ν

4 − 7
48 + 1− 2ν2

12 log
(
ν − 1

2

)2
− B(ν),

(5.6)

where

B(ν) := 2
∫ ∞

0

t3dt

e2πt − 1
t2 − 2ν

t2 +
(
ν − 1

2

)2 + 12
∫ ∞

0

t2dt

e2πt − 1 arctan
ν − 1

2
t

− 2(1− 2ν2)
∫ ∞

0

tdt

e2πt − 1 log

1 + t2(
ν − 1

2

)2

 . (5.7)

Notice that for ν → ∞ we have

B(ν) = 3
2π2 ζ(3) +

1
60 + . . . , (5.8)

where the dots stay for terms that vanish for ν → ∞.
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Adding the three level bare potential finally gives the renormalized potential

VR = m2
R

2 φ2
R + cg

4 φ
4
R + 1

32π2 (m
2
R + 3cgφ

2
R + 2)2ψ

(
ν0 −

1
2

)
+ N − 1

32π2 (m2
R + cgφ

2
R + 2)2ψ

(
ν1 −

1
2

)
+ 1

32π2B(ν0) +
N − 1
32π2 B(ν1)

− 1
32π2

(
ν3

0
3 + 5

24ν
2
0 + ν0

4 − 7
48 + 1− 2ν2

0
12 log

(
ν0 −

1
2

)2
)

− N − 1
32π2

(
ν3

1
3 + 5

24ν
2
1 + ν1

4 − 7
48 + 1− 2ν2

1
12 log

(
ν1 −

1
2

)2
)

− 1
64π2

[
(m2

R + 3cgφ
2
R + 2)2 + (N − 1)(m2

R + cgφ
2
R + 2)2

]
logµ2

R. (5.9)

We can now restore full dimensions by reintroducing the curvature radius R, such that
Λ = − 3

R2 is the cosmological constant and

V = V

R4 , mR = Rm, φR = Rφ, µR = Rµ. (5.10)

This gives for the effective potential in d = 4:

V = m2

2 φ2 + cg

4 φ
4 + 1

32π2

(
m2 + 3cgφ

2 − 2
3Λ
)2
ψ

(
ν0 −

1
2

)

+ N − 1
32π2

(
m2 + cgφ

2 − 2
3Λ
)2
ψ

(
ν1 −

1
2

)
+ Λ2

288π2B(ν0) +
(N − 1)Λ2

288π2 B(ν1)

− Λ2

288π2

(
ν3

0
3 + 5

24ν
2
0 + ν0

4 − 7
48 + 1− 2ν2

0
12 log

(
ν0 −

1
2

)2
)

− (N − 1)Λ2

288π2

(
ν3

1
3 + 5

24ν
2
1 + ν1

4 − 7
48 + 1− 2ν2

1
12 log

(
ν1 −

1
2

)2
)

− 1
64π2

[(
m2 + 3cgφ

2 − 2
3Λ
)2

+ (N − 1)
(
m2 + cgφ

2 − 2
3Λ
)2
]
log 3µ2

|Λ| , (5.11)

with

ν0 = 3

√
1
4 − m2

3Λ − cg
φ

Λ , (5.12)

ν1 = 3

√
1
4 − m2

3Λ − cg
φ

3Λ . (5.13)

For small cosmological constant we get the expansion

V = m2

2 φ2 + cg

4 φ
4 + 1

64π2

(
m2 + 3cgφ

2
)2

log m
2 + 3cgφ

2

µ2

+ N − 1
64π2

(
m2 + cgφ

2
)2

log m
2 + cgφ

2

µ2

– 13 –



J
H
E
P
0
8
(
2
0
2
4
)
1
0
9

− 1
8π2

(
m2 + 3cgφ

2

3

) 3
2 √

−Λ− N − 1
8π2

(
m2 + cgφ

2

3

) 3
2 √

−Λ

− Λ(m2 + 3cgφ
2)

288π2

(
11
8 + 1

2 log 3m2 + 9cgφ
2

−Λ + 6 log m
2 + 3cgφ

2

µ2

)

− Λ(N − 1)(m2 + cgφ
2)

288π2

(
11
8 + 1

2 log 3m2 + 3cgφ
2

−Λ + 6 log m
2 + cgφ

2

µ2

)

+O
(
|Λ|

3
2
)
. (5.14)

Notice that there is an important difference as compared to the effective potential in de Sitter
computed in [18]: here the cosmological function appears as the square root

√
−Λ in place

of Λ. This is due to the symmetry ν → −ν of the Wightman function in the de Sitter
case (that is a symmetry of Legendre functions of the first kind) a symmetry that AdS
quantum fields do not share.

6 Two and three lines (bulk-to-bulk) and a general formula for the bubble
and the triangle in a general Euclidean background

Generalizing eq. (4.6), we now consider the two-line integral where the external points do
not coincide:

Fλ ν(x, y) =
∫

Hd

Gd
λ(x · z)Gd

ν(y · z)
√
g(z) dz. (6.1)

The evaluation of the analogous of eq. (6.1) in flat space is elementary by Fourier transform.
Here we do not have Fourier transform but we may proceed by observing that Fλ ν(x, y)
solves the following equations:

(−∇2
x +m2

λ)Fλ ν(x, y) =
∫
δ(z, x)Gd

ν(z, y)
√
g(z) dz = Gd

ν(x · y), (6.2)

(−∇2
y +m2

ν)Fλ ν(x, y) =
∫
Gd

λ(x · z)δ(y, z)
√
g(z) dz = Gd

λ(x · y). (6.3)

Lorentz invariance implies that Fλ ν(x, y) = Fλ ν(x · y) and therefore

∇2
xFλ ν(x, y) = ∇2

yFλ ν(x, y). (6.4)

Subtracting eq. (6.3) from eq. (6.2) it follows that3

Fλ ν(x, y) = −G
d
λ(x · y)−Gd

ν(x · y)
m2

λ −m2
ν

. (6.5)

3Let us check how this remarkable formula works in the one-dimensional AdS1. Here

G1
ν(ch v) = e−ν|v|

2ν
,

F 1
λ ν(a, b) =

∫ ∞

−∞

e−λ|v−a|

2λ

e−ν|v−b|

2ν
dv.
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It is evident from the above elementary derivation that eq. (6.5) is valid for the Schwinger
propagator of a Klein-Gordon field in a generic curved background Ed with Euclidean
signature whenever eq. (6.4) is verified:

Fm1m2(x, y) =
∫
Ed

G(E)
m1(x, z)G

(E)
m2(z, y)

√
g(z) dz = −G

(E)
m1(x, y)−G

(E)
m2(x, y)

m2
1 −m2

2
. (6.6)

In the limiting case when the two masses coincide this becomes

Fmm(x, y) = − ∂

∂m2G
(E)
m (x, y). (6.7)

Taking the limit y → x we deduce a general formula for the bubble in a curved background
with Euclidean signature (similar remarks apply to the chronological propagator in Lorentzian
signature):

bubble(m1,m2) =
∫
Ed

G(E)
m1(x, z)G

(E)
m2(z, x)

√
g(z) dz = − lim

y→x

G
(E)
m1(x, y)−G

(E)
m2(x, y)

m2
1 −m2

2
.

(6.8)

Let us apply the above formula to flat Euclidean space: here the propagator has the following
short distance behaviour

G(M)
m (r) = 1

(2π)
d
2

(
r

m

)1− d
2
K d

2−1 (mr) ≃
r2−d

4π
d
2
Γ
(
d

2 − 1
)
+ md−2

(4π)
d
2
Γ
(
1− d

2

)
(6.9)

where M stands for Minkowski and r2 = (x1 − x2)2 is the Euclidean distance. Inserting the
expansion (6.9) in eq. (6.6) the diverging terms drop and the standard flat space result [17]
is recovered in the limit without any calculation:

bubbleM (m1,m2) = − lim
r→0

G
(M)
m1 (x, y)−G

(M)
m2 (x, y)

m2
1 −m2

2
= −

Γ
(
1− d

2

)
(4π)

d
2

(m2
1)

d
2−1 − (m2

2)
d
2−1

m2
1 −m2

2
.

(6.10)

Similarly, in the AdS case, we may evaluate (6.6) with the help of eq. (3.9); here y → x

means ζ → 1; with the condition d < 2 at ζ = 1 that formula gives

lim
ζ→1

Γ
(

d−1
2 + ν

)
2F1

(
d−1

4 + ν
2 ,

d+1
4 + ν

2 ; ν + 1; 1
ζ2

)
2π

d−1
2 (2ζ)

d−1
2 +νΓ(ν + 1)

=
Γ
(
1− d

2

)
Γ
(

d−1
2 + ν

)
2dπ

d
2 Γ
(

3−d
2 + ν

) (d < 2).

(6.11)

Suppose to fix the ideas that a < b. It follows that

Fλ ν(a, b) =
∫ ∞

b

e−λ(v−a)

2λ

e−ν(v−b)

2ν
dv +

∫ b

a

e−λ(v−a)

2λ

e−ν(b−v)

2ν
dv +

∫ a

b

e−λ(a−v)

2λ

e−ν(b−v)

2ν
dv

= 1
λ2 − ν2

(
e−ν(b−a)

2ν
− e−λ(b−a)

2λ

)
.
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Inserting this into eq. (6.6) we immediately recover eq. (4.17) again without calculation:

bubbleAdS = Fλ ν(x, x) =
Γ
(
1− d

2

)
(4π)

d
2 (λ2 − ν2)

Γ
(

d+1
2 + ν

)
Γ
(

3−d
2 + ν

) −
Γ
(

d+1
2 + λ

)
Γ
(

3−d
2 + λ

)
 . (6.12)

Removing the restriction d < 2, this formula defines the AdS bubble by analytic continuation
in d as a meromorphic function of d.

Finally, in the de Sitter case (see appendix A) we may use eq. (A.5) at ζ = 1, always
under the condition d < 2:

lim
ζ→−1

Γ
(

d−1
2 + iκ

)
Γ
(

d−1
2 − iκ

)
(4π)

d
2 Γ
(

d
2

) 2F1

(
d− 1
2 + iκ,

d− 1
2 − iκ; d2 ;

1− ζ

2

)

=
Γ
(
1− d

2

)
Γ
(

d−1
2 − iκ

)
Γ
(

d−1
2 + iκ

)
(4π)

d
2 Γ
(

1
2 − iκ

)
Γ
(

1
2 + iκ

) (6.13)

so that

bubbledS =
Γ
(
1− d

2

)
(4π)

d
2 (λ2 − ν2)

Γ
(

d−1
2 − iν

)
Γ
(

d−1
2 + iν

)
Γ
(

1
2 − iν

)
Γ
(

1
2 + iν

) −
Γ
(

d−1
2 − iλ

)
Γ
(

d−1
2 + iλ

)
Γ
(

1
2 − iλ

)
Γ
(

1
2 + iλ

)
 .

(6.14)

Again, this formula defines the AdS bubble by analytic continuation in d as a meromorphic
function of d.

Iterating once the above construction, under the same condition of validity of eq. (6.6) we
may compute the 3-line diagram with two convolutions on a Euclidean manifold as follows:

Fm1m2m3(x, y) =
∫
Ed

G(E)
m1(x,w)G

(E)
m2(w, z)G

(E)
m3(z, y)

√
g(w) dw

√
g(z) dz

= −
∫
Ed

G
(E)
m1(x, z)−G

(E)
m2(x, z)

m2
1 −m2

2
G(E)

m3(z, y)
√
g(z) dz

= G
(E)
m1(x, y)

(m2
1 −m2

2)(m2
1 −m2

3)
+ G

(E)
m2(x, y)

(m2
2 −m2

3)(m2
2 −m2

1)
+ G

(E)
m3(x, y)

(m2
3 −m2

1)(m2
3 −m2

2)
(6.15)

a formula which is readily generalized to the (n+ 1)-line case. In a completely analogous way
we may fully evaluate the triangular loop by taking he limit w → x in eq. (6.15).

In the concrete cases under study here, we do it as before assuming at first that d < 2
and then generalizing the formula by analytic continuation. We get:

TriangleM (m1,m2,m3) = −
Γ
(
1− d

2

)
(4π)

d
2

md−2
1 (m2

2 −m2
3)+md−2

2 (m2
3 −m2

1)+md−2
3 (m2

1 −m2
2)

(m2
1 −m2

2)(m2
2 −m2

3)(m2
3 −m2

1)
,

(6.16)
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TriangleAdS(κ, ν, λ) =
Γ
(
1− d

2

)
(4π)

d
2

 Γ
(

d−1
2 +κ

)
(κ2 − ν2)(κ2 −λ2)Γ

(
3−d

2 +κ
)

+
Γ
(

d−1
2 + ν

)
(ν2 −κ2)(ν2 −λ2)Γ

(
3−d

2 + ν
)

+
Γ
(

d−1
2 +λ

)
(λ2 −κ2)(λ2 − ν2)Γ

(
3−d

2 +λ
)
 . (6.17)

TriangledS(κ, ν, λ) =
Γ
(
1− d

2

)
(4π)

d
2

 Γ
(

d−1
2 − iκ

)
Γ
(

d−1
2 + iκ

)
(κ2 − ν2)(κ2 −λ2)Γ

(
1
2 − iκ

)
Γ
(

1
2 + iκ

)

+
Γ
(

d−1
2 − iν

)
Γ
(

d−1
2 + iν

)
(ν2 −κ2)(ν2 −λ2)Γ

(
1
2 − iν

)
Γ
(

1
2 + iν

)

+
Γ
(

d−1
2 − iλ

)
Γ
(

d−1
2 + iλ

)
(λ2 −κ2)(λ2 − ν2)Γ

(
1
2 − iλ

)
Γ
(

1
2 + iλ

)
 .

(6.18)

The above formulae allow to easily compute the one-loop renormalization of the coupling
constant in a scalar ϕ3 theory. For example, let us consider three massive scalar fields, ϕj

with mass mj , j = 1, 2, 3, with interaction g0ϕ1ϕ2ϕ3. After including a counterterm δg0, at
zero external momenta we get for the physical coupling in D dimensions

g = g0 + δg + g3
0 TriangleM(m1,m2,m3)d∼D (6.19)

where M is the given Euclidean spacetime and d ∼ D means d = D − 2ϵ. In D = 4 the
renormalization of g is finite. In the flat case we get

g = g0 + δg + g3
0
m2

1(m2
2 −m2

3) logm2
1 +m2

2(m2
3 −m2

1) logm2
2 +m2

3(m2
1 −m2

2) logm2
3

(4π)2(m2
1 −m2

2)(m2
2 −m2

3)(m2
3 −m2

1)
.

(6.20)

Notice that the sum of the coefficients of the logarithms is zero, so we can replace logm2
j

with logm2
j/µ

2 for an arbitrary mass scale µ.
For AdS we get

g = g0 + δg + g3
0
(m2

2 −m2
3)(ν1 + (m2

1 + 2)ψ(ν1 − 1/2)) + cyc
2π2(m2

1 −m2
2)(m2

2 −m2
3)(m2

3 −m2
1)

, (6.21)

where νj =
√
m2

j + 9
4 , and f(m1,m2,m3) + cyc = f(m1,m2,m3) + f(m2,m3,m1) + f(m3,m1,m2).

Finally, it is worth to underline a remarkable property of eqs. (6.5) and (6.15): they can
be used also when the Schwinger function is known only approximately. A simple example is
an application to Quantum Field Theory on the Rindler space. We refer to [40–43]. Beyond
the Minkowski vacuum |M⟩ one can consider the Fulling-Rindler vacuum |R⟩. Let us call

– 17 –



J
H
E
P
0
8
(
2
0
2
4
)
1
0
9

Gβ,d
A (x, y;m) the Schwinger function at inverse temperature β in d spacetime dimensions

and for the vacuum state |A⟩, for a scalar field of mass m. In coordinates (τ, ξ, x1, . . . , xd−2)
such that the Euclidean Rindler metric is

ds2 = ξ2dτ2 + dξ2 + δijdx
idxj , (6.22)

it is manifest that the Euclidean Rindler’s wedge has the topology of a cylinder with period
normalized to 2π for the Euclidean time. As it is well known, this leads to the identity

G∞,d
M (x, y;m) = G2π,d

R (x, y;m), (6.23)

which corresponds to the fact that the zero temperature Minkowski vacuum appears as a
thermal state at temperature 1

2π to the Rindler vacuum (see [40], and reference therein). It
is interesting to consider also the Schwinger function G∞,4

R (x, y). Assuming |τx − τy| < π,
one can prove (see [43]) that

G∞,4
R (x, y;m) = G2π,4

R (x, y;m) + m

8π3

∫ ∞

0
du
K1(mR(u))

R(u) F∞(u, τx − τy), (6.24)

R(u)2 = ξ2
x + ξ2

y + 2ξxξy ch u+ (x1 − y1)2 + (x2 − y2)2, (6.25)

F∞(u, v) = −2 v + π

(v + π)2 + u2 + 2 v − π

(v − π)2 + u2 . (6.26)

In this way, the UV divergences are confined in G2π,4
R (x, y;m) = G∞,4

M (x, y;m). At this stage,
an immediate application of the above general strategy shows that

bubbleRindler(m1,m2) = bubbleM (m1,m2). (6.27)

Another possible application, which we don’t include here, could be to compute the bubble in-
tegral (and the effective potential), for a massive scalar field in the far region of a Schwarzschild
black hole of mass M (t.i., for M/R), at the first order in M , starting from the results in [44].

7 A remark about bulk diagrams versus Witten diagrams

Now we want to consider the limit of the expression (6.5) when x and/or y tend to the
boundary. To this aim it is useful to give coordinates to the Lobachevsky space as follows:

x0 = ch v + 1
2e

vr2, xi = evri, xd−1 = sh v − 1
2e

vr2 (7.1)

y0 = ch v′ + 1
2e

v′
r′

2
, yi = ev′

r′, xd−1 = sh v′ − 1
2e

v′
r′

2 (7.2)

so that

x · y = ch(v − v′) + 1
2e

v+v′(r − r′)2. (7.3)

Let v tend to plus infinity while v′ is held fixed:

x · y ≃ ev

2 (e−v′ + ev′(r − r′)2) = ev(ξ · y); (7.4)
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in the second equality we have introduced the lightlike vector

ξ0 = 1 + r2

2 , ξi = ri, ξd−1 = 1− r2

2 . (7.5)

Eq. (3.9) provides the behaviour of the propagator for large values of ζ; at leading order

wd
ν(ζ) ≃

Γ
(

d−1
2 + ν

)
2π

d−1
2 (2ζ)

d−1
2 +νΓ(ν + 1)

. (7.6)

It follows that

Fλ ν(x, y) ≃
Gd

ν(ev(ξ · y))−Gd
λ(ev(ξ · y))

λ2 − ν2

≃ 1
λ2 − ν2

 e−(
d−1

2 +ν)vΓ
(

d−1
2 + ν

)
2π

d−1
2 (2ξ · y)

d−1
2 +νΓ(ν + 1)

−
e−(

d−1
2 +λ)vΓ

(
d−1

2 + λ
)

2π
d−1

2 (2ξ · y)
d−1

2 +λΓ(λ+ 1)

 .
(7.7)

To extract a finite limit we now need to specify something about the masses. Let us suppose
that λ > ν; in this case, a standard rescaling procedure [4, 32] leads us to

e(
d−1

2 +ν)vFλ ν(x, y) → Fλ ν(ξ, y) =
1

λ2 − ν2

 Γ
(

d−1
2 + ν

)
2π

d−1
2 (2ξ · y)

d−1
2 +νΓ(ν + 1)

 . (7.8)

Let now v′ tend to plus infinity:

ξ · y = ev′(ξ · η); (7.9)

where we have introduced the lightlike vector

η0 = 1 + r′2

2 , ξi = r′
i
, ξd−1 = 1− r′2

2 . (7.10)

Proceeding as before we get (λ > ν)

e(
d−1

2 +ν)v′
Fλ ν(ξ, y) → Fλ ν(ξ, η) =

1
λ2 − ν2

 Γ
(

d−1
2 + ν

)
2π

d−1
2 (2ξ · η)

d−1
2 +νΓ(ν + 1)

 . (7.11)

Had we performed the limit in the opposite order or else had we put v = v′ and taken
the limit together, the situation would not have changed: when λ > ν the finite result
extracted from eq. (6.5) is (7.11).

Let us now revert the order of the operations and take the dominant terms in eq. (6.1)
before integration. We are led to the following Witten diagram which is the simplest among
the ones considered in [9]:

F̃λ ν(ξ, η) =
∫

Hd

Γ
(

d−1
2 + λ

)
2π

d−1
2 (2(ξ · z))

d−1
2 +λΓ(λ+ 1)

Γ
(

d−1
2 + ν

)
2π

d−1
2 (2(η · z))

d−1
2 +νΓ(ν + 1)

√
g(z) dz.

(7.12)
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We see that this Witten diagram cannot be finite. Otherwise it should be function of (ξ · η)
homogeneous of degree −d−1

2 − λ and, at same time, of degree −d−1
2 − ν, a thing which

is logically impossible. This is also what happens in [9], eq. (24), where for n = 2 the
integral is proportional to∫ ∞

0

dt1
t1
t∆1
1

∫ ∞

0

dt2
t2
t∆2
2 e−t1t2(x1−x2)2 = Γ(∆2)((x1 − x2)2)2∆2

∫ ∞

0

dt1
t1
t∆1−∆2
1 , (7.13)

which is divergent.
We are led to the conclusion that, at least in this example, this Witten diagram does

not arise as the limit of corresponding diagrams where the endpoints lie in the bulk. This
example may however be pathological.

In the three-line case the Witten diagram is completely determined by Lorentz invariance
and by the homogeneity in the conical variables ξ1, ξ2 and ξ3; its simple formula that the
structure of a star-triangle relation [27]:

G̃ν1ν2ν3(ξ1, ξ2, ξ3) = c0(ν1, ν2, ν3)
∫

Hd

1
(ξ1 · z)

d−1
2 +ν1(ξ2 · z)

d−1
2 +ν2(ξ3 · z)

d−1
2 +ν2

√
g(z) dz

= c(ν1, ν2, ν3)(ξ1 · ξ2)
1−d

4 + ν3
2 − ν1

2 − ν2
2 (ξ2 · ξ3)

1−d
4 + ν1

2 − ν2
2 − ν3

2 (ξ1 · ξ3)
1−d

4 + ν2
2 − ν1

2 − ν3
2

(7.14)
where

c(ν1, ν2, ν3) =
Γ
(

d−1+2ν1+2ν2−2ν3
4

)
Γ
(

d−1+2ν1−2ν2+2ν3
4

)
Γ
(

d−1−2ν1+2ν2+2ν3
4

)
Γ
(

d−1+2ν1+2ν2+2ν3
4

)
2

3d+2ν1+2ν2+2ν3+13
4 πd−1Γ(ν1 +1)Γ(ν2 +1)Γ(ν3 +1)

.

(7.15)
This also coincides with formula (24) in [9] once expanded by using the formula

∫ ∞

0

dt1
t1
t∆1
1

∫ ∞

0

dt2
t2
t∆2
2

∫ ∞

0

dt3
t3
t∆3
3 e−t1t2a2

3−t1t3a2
2−t2t3a2

1 = 1
2

3∏
j=1

Γ(−σj)a
2σj

j (7.16)

with σj = ∆j − ∆1+∆2+∆3
2 .

The corresponding 3-line bulk diagram is given by

Gλ ν κ(x, y, w) =
∫

Hd

Gd
λ(x · z)Gd

ν(y · z)Gd
κ(w · z)

√
g(z) dz = Gλ ν κ(a, b, c). (7.17)

a = x · y, b = y · w, c = w · x. (7.18)

At the moment we are unable to determine whether, contrary to what happens in the two-line
case, the Witten diagram (7.14) may be obtained as boundary limit of (7.17) or not.

8 The Källén-Lehmann expansion of the bubble with two independent
masses

In this section we come back and elaborate on the AdS Källén-Lehmann expansion formula
which we found and proved in [29] and that appeared also in a later paper [30].
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Recall that for any given analytic two-point function W (z1, z2) of a local quantum field
in Minkowski space satisfying the Wightman axioms [33] there exists a tempered weight ρ
with support in the positive real axis such that

W (z1, z2) =
∫ ∞

0
ρ(m2)Wm(z1, z2)dm2; (8.1)

here
Wm(z1, z2) =

1
(2π)d

∫
e−ik(z1−z2)θ(k0)δ(k2 −m2)dk (8.2)

is the analytic continuation of the two-point function of a Klein-Gordon field with mass m;
z1 belongs to the past tube and z2 to the forward tube if the complex Minkowski space [33].
The Källén-Lehmann weight ρ(m2) is a positive measure if and only if the boundary value
W (x1, x2) is a distribution of positive type.

In particular, for any two given masses m1 and m2 the weight for the bubble

Wm1(z1, z2)Wm2(z1, z2) =
∫ ∞

(m1+m2)2
ρ(m2 : m1,m2)Wm(z1, z2)dm2 (8.3)

is easily obtained by Fourier transform. The above relation can be extended to Schwinger
functions at non-coincident Euclidean points. A distributional extension to coincident
Euclidean points is also possible if no renormalization is necessary, e.g. for low dimension.

As regards the general case of AdS fields on the covering manifold ÃdSd, it is of course
possible to consider a general superposition à la Källén-Lehmann as follows:

w(ζ) =
∫ ∞

−1
ρ1(κ)wd

ν(ζ)dν +
∫ 1

−1
ρ2(κ)wd

−ν(ζ)dν. (8.4)

We expressed the above relation using the reduced maximally analytic two-point function;
under suitable condition this implies the same representation for the Euclidean propagator:

G(u) =
∫ ∞

−1
ρ1(κ)Gd

ν(u)dν +
∫ 1

−1
ρ2(κ)Gd

−ν(u)dν. (8.5)

However, when we restrict our attention to the bubble, we do not expect an integral as in
flat space; even though we consider fields with non integer masses that are well-defined only
on the covering manifold, their correlation functions are quasi-periodic. This calls for a
Källén-Lehmann series: the weight has to be a series of pure point measures.

Before addressing the general case, discussing two concrete examples will clarify the point.

8.1 An almost trivial example: ÃdS3

In odd spacetime dimension the Schwinger function can be written in terms of elementary
functions. To this aim, it is useful to parametrize the invariant variable by an hyperbolic
angle: u = ch v. In d = 3 this gives the following expressions: [35, eq. (12), p. 150]:

Q
1
2
κ− 1

2
(ch v) = e

iπ
2 −νv

√
π

2 sh v , (8.6)

G3
κ(ch v) =

e−
iπ
2 Q

1
2
κ− 1

2
(ch v)

2π
√
2π sh v

= e−νv

4π sh v . (8.7)
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The bubble with two independent mass parameters λ and ν is readily decomposed into its
Källén-Lehmann series by an elementary manipulation:

G3
λ(ch v)G3

ν(ch v) =
e−(λ+ν)v

16π2 sh2 v
= e−(λ+ν+1)v

8π2 sh v(1− e−2v) =
∞∑

k=0

e−(λ+ν+1+2k)v

8π2 sh v

= 1
2π

∞∑
k=0

G3
2k+1+λ+ν(ch v). (8.8)

So, we get a Källén-Lehmann series as opposed to an integral, with a weight that in this
simple case is just a constant.

8.2 A less elementary example: ÃdS5

In view of its importance in the AdS/CFT correspondence, let us discuss now the less trivial
five-dimensional case: here

G5
ν(ch v) =

1
(2π)

5
2
(sh v)−

3
2 e−

3πi
2 Q

3
2
κ− 1

2
(ch v) = (ν + 1)e−(ν−1)v − (ν − 1)e−(ν+1)v

16π2 sh3 v
; (8.9)

to derive the above formula we used eq. (8.6) and the recurrence relation [35, eq. (4), p. 160]

Qµ+1
ρ (z) = (z2 − 1)−

1
2

(ρ− µ+ 1)
(
(ρ− µ)(2ρ+ 1)Qµ

ρ+1(z)− (ρ+ µ)(ρ+ µ+ 1)Qµ
ρ−1(z)

)
. (8.10)

Now, taking into account the identity

1
4 sh3 v

=
∞∑

k=0
k(k − 1)e−(2k−1)v, Re v > 0 (8.11)

we get a series expansion which is not yet a Källén-Lehmann expansion:

G5
λ(ch v)G5

ν(ch v) =
∞∑

k=0

(λ+ 1)(ν + 1) + 2k2 + 2k(λ+ ν + 1)
8π4 sh3 v

e−(2k+λ+ν+1)v. (8.12)

For λ, ν and λ+ ν greater than −1 all the terms at the r.h.s. are positive. We may therefore
rearrange the series as it is absolutely convergent.

The construction goes as follows: in the first term of the series (k = 0) we replace
the exponential e−(λ+ν+1)v with the Schwinger function G5

λ+ν+2(ch v) and subtract the
corresponding term proportional to e−(λ+ν+3)v from the second term (k = 1). Then we iterate
the procedure. It results the following Källén-Lehmann series for the bubble in ÃdS5:

G5
λ(ch v)G5

ν(ch v) =
∞∑

k=0

(k + 1)(λ+ k + 1)(ν + k + 1)(λ+ ν + k + 1)
2π2(λ+ ν + 2k + 1)(λ+ ν + 2k + 3) G5

λ+ν+2k+2(ch v).

(8.13)

Now let us consider the general problem. The following two theorems were proved in [29]
and solve the general problem of finding the weight for the Källén-Lehmann series of the
bubble in ÃdSd. The first theorem concern the ultraspherical Gegenbauer functions; it holds
for integer values of the parameters:
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Theorem 8.1 ([29]). Let cδ(m,n|l) be given by

cδ(m,n|l) =
παδ

(
l+m−n

2

)
αδ

(
l−m+n

2

)
αδ

(
l+m+n

2 + δ
)
αδ

(
l−m−n

2 − δ
)

αδ(l)αδ (l + δ) , (8.14)

where
αδ(s) =

Γ(s+ δ)
Γ(δ)Γ(s+ 1) , (8.15)

(i) Let m and n be non-negative integers and suppose that one of the two following conditions
is satisfied

(a) δ = 1
2 − r, r ≥ 1 is an integer such that m ≥ 2r and n ≥ 2r;

(b) 2δ is a strictly positive integer;

then
Dδ

m(z)Dδ
n(z) =

∑
l=m+n+2δ+2k

k∈Z,k≥0

cδ(m,n|l)Dδ
l (z) (8.16)

holds with uniform convergence for z in any compact subset of C \ [−1, 1].

(ii) If m, n and 2δ are not necessarily integers but the following conditions are satisfied:

δ > 0, m+2δ > 0, n+2δ > 0, m+δ+1 > 0, n+δ+1 > 0, m+n+2δ+1 ≥ 0 ,
(8.17)

then (8.16) holds with uniform convergence for z in any compact subset of C \ (−∞, 1].

The proof of this theorem can be found in [29]; it actually holds in the sense of functions
with tempered behavior in ∆̃1, so that the conclusion also holds for the boundary values
of both sides in (8.16).

Remark 8.1. If in eq. (8.16) both sides are multiplied by zm+n+4δ, both sides become formal
power series in z−2 (with coefficients meromorphic in the parameters). It is proved in [29] that
these two formal power series are equal without any restriction on the parameters. Moreover
the series converges for |z2| > 1, as the l.h.s. is holomorphic there. This does not prove that
the series (in k) on the r.h.s. converges: the theorem gives sufficient conditions for that.

The second theorem gives the Källén-Lehmann expansion for AdS quantum fields on the
covering manifold with two distinct mass parameters. It was shown under rather restricitive
conditions but it holds for continuous values of the real mass parameters.

Theorem 8.2 ([29]). Let δ = d−1
2 . Under the conditions

δ > 0, λ+ δ > 0, ν + δ > 0, λ+ 1 > 0, ν + 1 > 0, λ+ ν + 1 ≥ 0, (8.18)

wd
λ(ζ)wd

ν(ζ) =
∞∑

k=0
ρd(k;λ, ν)wd

δ+2k+λ+ν(ζ) , ζ ∈ ∆̃1 (8.19)
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where the weight is given by

ρd(k;λ, ν) =
(2δ + 4k + 2λ+ 2ν)Γ(1 + 2k + λ+ ν)

4πδΓ(δ)Γ(2δ + 2k + λ+ ν)

× Γ(δ + k)Γ(δ + λ+ k)Γ(δ + ν + k)Γ(δ + λ+ ν + k)
Γ(1 + k)Γ(1 + λ+ k)Γ(1 + ν + k)Γ(1 + λ+ ν + k) . (8.20)

Remark 8.2. As anticipated, for any given two masses λ and ν the KL expansion of the
bubble wd

λ(ζ)wd
ν(ζ) is a series and not an integral. This is a leftover of the periodicity of the

true AdS manifold.
In fact the statement of the theorem holds under much weaker conditions as we explicitly

show in the following examples. Theorem 8.3 below gives weaker sufficient conditions for the
validity of the statement of theorem 8.2.

8.3 Cases of ÃdS1 and ÃdS−1

The proof of the above formula is valid only for d > 1. This does not mean that there is
no Källén-Lehmann expansion for d ≤ 1. Let us consider indeed the simplest case d = 1;
the Schwinger function now is really elementary:

G1
ν(ch v) =

e−ν|v|

2ν (8.21)

and the Källén-Lehmann series has only one nonzero term:

G1
λ(ch v)G1

ν(ch v) =
e−(λ+ν)|v|

4λν = λ+ ν

2λν G1
λ+ν(ch v). (8.22)

This is perfectly coherent with the above formula (8.20); indeed, only the first coefficient
has a non zero limit at d = 1:

lim
d→1

ρd(0;λ, ν) =
λ+ ν

2λν , lim
d→1

ρd(k ̸= 0;λ, ν) = 0. (8.23)

The above feature is shared by every odd negative spacetime dimension. Let us consider as a
further example ÃdS−1: the general formula for the propagator (3.14) here gives

G−1
ν (ch v) = (2π)

1
2 (sh v)

3
2 eiπ 3

2Q
− 3

2
− 1

2 +κ
(ch v). (8.24)

Taking into account eq. (8.9) and the relation [35, section 3.2, eq. (2), p. 140]

eiπµΓ(ρ+ µ+ 1)Q−µ
ρ (z) = e−iπµΓ(ρ− µ+ 1)Qµ

ρ(z) (8.25)

we get

G−1
ν (ch v) = π

2
Γ(ν − 1)
Γ(ν + 2)

(
(ν + 1)e−(ν−1)v − (ν − 1)e−(ν+1)v

)
. (8.26)

A direct verification shows that the Källén-Lehmann series here consists only of two terms

G−1
λ (ch v)G−1

ν (ch v) = π(λ+ ν − 2)(λ+ ν − 1)
2λν(λ− 1)(ν − 1) G−1

λ+ν−1(ch v)

− π(λ+ ν + 1)(λ+ ν + 2)
2λν(λ+ 1)(ν + 1) G−1

λ+ν+1(ch v) (8.27)

in accordance with our general result (8.20).

– 24 –



J
H
E
P
0
8
(
2
0
2
4
)
1
0
9

Theorem 8.3. Let δ = d−1
2 . Let V be the open complex set:4

V = {(δ, λ, ν) ∈ C3 : δ + λ /∈ Z− , δ + ν /∈ Z− , δ + λ+ ν /∈ Z− , λ+ ν /∈ Z−}. (8.28)

For (δ, λ, ν) ∈ V , ζ ∈ ∆̂1 and any integer k ≥ 0 let

Sk(δ, λ, ν, ζ) = ρd(k;λ, ν) ζ2δ+λ+νwd
δ+λ+ν+2k(ζ) , (8.29)

where ρd(k;λ, ν) is given by (8.20). Then for all (δ, λ, ν) ∈ V and ζ ∈ ∆̂1,

ζ2δ+λ+νwd
λ(ζ)wd

ν(ζ) =
∞∑

k=0
Sk(δ, λ, ν, ζ) . (8.30)

Here the series on the r.h.s. converges absolutely and uniformly on every compact subset of
V × ∆̂1. Moreover (8.30) also holds for the boundary values of both sides from Z1− ×Z1+ in
the sense of tempered distributions.

Recall that (see (3.9)), for any integer p ≥ 0, ζ 7→ ζδ+ν−2pwd
ν(ζ) is even and holomorphic

in ∆̂1. This makes it possible to express the result (8.30) as an equality of functions
analytic in ∆̂1.

The proof of this theorem is given in appendix B.

9 The tadpole and the sunset

The tadpole (in a trilinear interaction or cubic self-interaction) is readily evaluated using
the Källén-Lehmann expansion (8.19):

Fλ, κσ(x) =
∫

Hd

Gd
λ(x · z)Gd

κ(z · w)Gd
σ(z · w)

√
g(w) dw

√
g(z) dz

=
∞∑

k=0
ρ(k;κ, σ)

∫
Hd

Gd
λ(x · z)Gδ+2k+κ+σ(z · w)

√
g(w) dw

√
g(z) dz. (9.1)

By using eqs. (4.5) and (6.5) this becomes

Fλ, κσ(x) = −
∞∑

k=0

ρ(k;κ, σ)
λ2 − (δ + 2k + κ+ σ)2

∫
Hd

(
Gd

λ(x · w)−Gδ+2k+κ+σ(x · w)
)√

g(w) dw

= f(λ, κ, σ)
δ2 − λ2 + g(λ, κ, σ), (9.2)

where

f(λ, κ, σ) =
∞∑

k=0

(
ρ(k;κ, σ)

2λ(2k + δ + κ+ λ+ σ) −
ρ(k;κ, σ)

2λ(2k + δ + κ− λ+ σ)

)
(9.3)

g(λ, κ, σ) =
∞∑

k=0

(
− ρ(k;κ, σ)
2δ(δ2 − λ2)(2k + κ+ σ) +

ρ(k;κ, σ)
2δ(δ2 − λ2)(2k + 2δ + κ+ σ)

+ ρ(k;κ, σ)
2λ(δ2 − λ2)(2k + δ + κ− λ+ σ) −

ρ(k;κ, σ)
2λ(δ2 − λ2)(2k + δ + κ+ λ+ σ)

)
.

(9.4)
4Recall that Z− is the set of non-positive integers and Z+ is the set of non-negative integers.
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Defining

Ftad(x) =
∞∑

k=0

ρ(k;κ, σ)
2k + x

= π−δδ(2 + κ+ σ)Γ(1 + δ + κ)Γ(1 + δ + σ)Γ(1 + δ + κ+ σ)
(2 + x)Γ(2 + κ)Γ(2 + σ)Γ(2 + 2δ + κ+ σ)

× 7F6

 1 + x
2 , 1 + δ, 1 + δ + κ, 3

2 + κ
2 + σ

2 , 2 +
κ
2 + σ

2 , 1 + δ + σ, 1 + δ + κ+ σ

2 + x
2 , 2 + κ, 1 + δ + κ

2 + σ
2 ,

3
2 + δ + κ

2 + σ
2 , 2 + σ, 2 + κ+ σ

; 1


+ π−δΓ(δ + κ)Γ(δ + σ)Γ(1 + δ + κ+ σ)

2xΓ(1 + κ)Γ(1 + σ)Γ(2δ + κ+ σ)

× 7F6

 x
2 , δ, δ + κ, 1

2 + κ
2 + σ

2 , 1 +
κ
2 + σ

2 , δ + σ, δ + κ+ σ

1 + x
2 , 1 + κ, δ + κ

2 + σ
2 ,

1
2 + δ + κ

2 + σ
2 , 1 + σ, 1 + κ+ σ

; 1

 (9.5)

we get

Fλ, κσ(x) =
Ftad(2δ + κ+ σ)− Ftad(κ+ σ)

2δ(δ2 − λ2) (9.6)

which corresponds to (4.5) with a multiplicative renormalization of the mass.
We may also compute in a similar way the general one-loop correction to the (bulk-to-

bulk) diagram (6.1) for arbitrary masses in the loop:

F
(1)
λ ν (x, y) =

∫
Hd

Gd
λ(x · z)Gd

κ(z · w)Gd
σ(z · w)Gd

ν(w · y)
√
g(w) dw

√
g(z) dz. (9.7)

First, we linearize (9.7) using the Källén-Lehmann expansion (8.19):

F
(1)
λ ν (x, y) =

∞∑
k=0

ρ(k;κ, σ)
∫

Hd

Gd
λ(x · z)Gδ+2k+κ+σ(z · w)Gd

ν(w · y)
√
g(w) dw

√
g(z) dz.

(9.8)

Next, to perform the integrals we use eq. (6.15):

F
(1)
λ ν (x, y) = f(ν, κ, σ)Gd

ν(x · y)
(ν2 − λ2) + f(λ, κ, σ)Gd

λ(x · y)
(λ2 − ν2)

+
∞∑

k=0

ρ(k;κ, σ)Gd
δ+2k+κ+σ(x · y)

((δ + 2k + κ+ σ)2 − ν2)((δ + 2k + κ+ σ)2 − λ2) , (9.9)

where

f(λ, κ, σ) = 1
2λ(Ftad(δ + κ+ σ + λ)− Ftad(δ + κ+ σ − λ)). (9.10)

10 Two-loop banana integrals: the watermelon

Here we provide a general formula for the watermelon with three lines and three independent
mass parameters

I3(λ, ν, κ, d) =
2π

d
2

Γ
(

d
2

) ∫ ∞

1
Gd

λ(u)Gd
ν(u)Gd

κ(u)(u2 − 1)
d−2

2 du. (10.1)
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The evaluation is made possible and actually rendered elementary by the Källén-Lehmann
formula (8.20); we use it to replace the first two factors in the integral with a series (10.1):

I3(λ, ν, κ, d) =
∞∑

k=0
ρ(k;λ, ν) 2π

d
2

Γ
(

d
2

) ∫ ∞

1
Gd

δ+2k+λ+ν(u)Gd
κ(u)du

=
∞∑

k=0
ρ(k;λ, ν) I2 ((δ + 2k + λ+ ν) , κ, d)

= I
(1)
3 (λ, ν, κ, d)− I

(2)
3 (λ, ν, κ, d), (10.2)

where we used again the notation δ = d−1
2 . By inserting the 1-loop integral (4.17) I(1)

3 and
I

(2)
3 are determined by summing the relevant hypergeometric series:

I
(1)
3 (λ, ν, κ, d) =

Γ
(
1− d

2

)
2dπ

d
2

Γ
(

d−1
2 +κ

)
Γ
(

3−d
2 +κ

) ∞∑
k=0

ρ(k;λ, ν)((
d−1

2 +2k+λ+ ν
)2

−κ2
)

=
2−2δ−3π−2δ− 1

2Γ
(

1
2 − δ

)
Γ(δ+κ)Γ(δ+λ)Γ(δ+ ν)Γ(δ+λ+ ν)Γ(2(δ+λ+ ν)+ 1)

Γ(λ+1)Γ(ν+1)Γ(1− δ+κ)((δ+λ+ ν)2 −κ2)Γ(2(δ+λ+ ν))Γ(2δ+λ+ ν)

× 9F8

 δ, δ+λ, δ+ ν, δ+λ+ ν, 1+λ+ν
2 , 2+λ+ν

2 , 2+δ+λ+ν
2 , δ−κ+λ+ν

2 , δ+κ+λ+ν
2

1+λ, 1+ ν, 1+λ+ ν, δ+λ+ν
2 , 2δ+λ+ν

2 , 1+2δ+λ+ν
2 , 2+δ−κ+λ+ν

2 , 2+δ+κ+λ+ν
2

; 1

 ,
(10.3)

and

I
(2)
3 (λ, ν, κ, d) =

Γ
(
1− d

2

)
2dπ

d
2

∞∑
k=0

ρ(k;λ, ν)((
d−1

2 + 2k + λ+ ν
)2

− κ2
) Γ (d− 1 + 2k + λ+ ν)

Γ (1 + 2k + λ+ ν)

=
4−δ−1π−2δ− 1

2Γ
(

1
2 − δ

)
Γ(δ + λ)Γ(δ + ν)Γ(δ + λ+ ν + 1)

Γ(λ+ 1)Γ(ν + 1)Γ(λ+ ν + 1)(δ − κ+ λ+ ν)(δ + κ+ λ+ ν)

× 7F6

 δ, δ + λ, δ + ν, δ + λ+ ν, 2+δ+λ+ν
2 , δ−κ+λ+ν

2 , δ+κ+λ+ν
2

1 + λ, 1 + ν, 1 + λ+ ν, δ+λ+ν
2 , 2+δ−κ+λ+ν

2 , 2+δ+κ+λ+ν
2

; 1

 .
(10.4)

These expressions can be simplified by using a simple hypergeometric identity which,
however, does not seem not to appear in the literature; we provide a derivation here. By
using the following identity for Pochhammer symbols

(a)n(b)n((a+ b)/2 + 1)n

(a+ 1)n(b+ 1)n((a+ b)/2)n
= ab

a+ b

( 1
a+ n

+ 1
b+ n

)
, (10.5)
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we can write

p+1Fp

 a1 . . . , ap−2,
a+b

2 + 1, a, b
b1, . . . , bp−3,

a+b
2 , a+ 1, b+ 1

; 1



=
∞∑

n=0

(a1)n · · · (ap−2)n

(b1)n · · · (ap−3)n

1
n!

(a)n(b)n((a+ b)/2 + 1)n

(a+ 1)n(b+ 1)n((a+ b)/2)n

=
∞∑

n=0

(a1)n · · · (ap−2)n

(b1)n · · · (ap−3)n

1
n!

ab

a+ b

( 1
a+ n

+ 1
b+ n

)

=
∞∑

n=0

(a1)n · · · (ap−2)n

(b1)n · · · (ap−3)n

1
n!

1
a+ b

(
b

(a)n

(a+ 1)n
+ a

(b)n

(b+ 1)n

)
,

which gives the identity

p+1Fp

 a1 . . . , ap−2,
a+b

2 + 1, a, b
b1, . . . , bp−3,

a+b
2 , a+ 1, b+ 1

; 1

 = b

a+ b
p−1Fp−2

(
a1 . . . , ap−2, a

b1, . . . , bp−3, a+ 1
; 1
)

+ a

a+ b
p−1Fp−2

(
a1 . . . , ap−2, b

b1, . . . , bp−3, b+ 1
; 1
)
.

(10.6)

By using (10.6) with a = δ+λ+ν−κ
2 and b = δ+λ+ν+κ

2 we get

I
(1)
3 (λ, ν, κ, d) =

2−2δ−3π−2δ− 1
2Γ
(

1
2 − δ

)
Γ(δ + κ)Γ(δ + λ)Γ(δ + ν)Γ(δ + λ+ ν)

Γ(λ+ 1)Γ(ν + 1)Γ(1− δ + κ)Γ(2δ + λ+ ν)

×
∑
ϵ=±

1
δ + λ+ ν + ϵκ

7F6

 δ, δ + λ, δ + ν, δ + λ+ ν, 1+λ+ν
2 , 2+λ+ν

2 , δ+ϵκ+λ+ν
2

1 + λ, 1 + ν, 1 + λ+ ν, 2δ+λ+ν
2 , 1+2δ+λ+ν

2 , 2+δ+ϵκ+λ+ν
2

; 1

 ,
(10.7)

and

I
(2)
3 (λ, ν, κ, d) =

4−δ−1π−2δ− 1
2Γ
(

1
2 − δ

)
Γ(δ + λ)Γ(δ + ν)Γ(δ + λ+ ν)

Γ(λ+ 1)Γ(ν + 1)Γ(λ+ ν + 1)

×
∑
ϵ=±

1
δ + ϵκ+ λ+ ν

5F4

 δ, δ + λ, δ + ν, δ + λ+ ν, δ+ϵκ+λ+ν
2

1 + λ, 1 + ν, 1 + λ+ ν, 2+δ+ϵκ+λ+ν
2

; 1

 .
(10.8)

In the one-dimensional case (and, in general, in odd negative dimension) the above formulae
become extremely simple: for example

I
(1)
3 (λ, ν, κ, 1) = λ+ ν

4κλν(λ+ ν − κ)(λ+ ν + κ) ,

I
(2)
3 (λ, ν, κ, 1) = 1

4λν(λ+ ν − κ)(λ+ ν + κ) ,

I3(λ, ν, κ, 1) =
∫ ∞

0

e−tλe−tνe−tκ

(2λ)(2ν)(2κ) dt = I
(1)
3 − I

(2)
3 = 1

4κλν(κ+ λ+ ν) . (10.9)
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The watermelon diverges, as in flat space, starting at d = 3. Actually, I(2)
3 diverges at d = 3

while the first divergence of I(1)
3 is at d = 4. At d = 2 the difference I(1)

3 −I(2)
3 has a finite limit.

11 Conclusions

In the present paper, we have revisited methods and tools for quantum field theory on the
anti de Sitter spacetime already available in the literature [25, 29] but whose potential seems
to have gone unnoticed. In particular, we have shown here their power in computing loop
integrals directly, showing no need of bootstrapping at this level.

We have also shown the technical superiority of conceiving the correlation functions of
anti de Sitter quantum fields as Legendre functions of the second kind rather than the less
specific, altough equivalent, hypergeometric functions.

The methods used in this paper include theorems that render almost elementary the
computation of certain integrals which otherwise quite complicated even in flat Minkowski
spacetime: one example is the two-loop banana integral, the watermelon, with three arbitrary
masses. The study of the watermelon where it diverges at d = 3, 4, 5 dimensions has been
left for future study where we will also show how to deal with loop Witten diagrams, i.e.
loop integrals with external legs going to spacelike infinity.
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A Remarks on the various spectral representations of dS and AdS
propagators

In this section we would like to discuss some points on the ongoing literature on harmonic
analysis on dS and AdS, which, in our opinion, need clarification.

In section 3 we have shown that Legendre’s associate functions of the second kind5 have
analyticity properties that are tailor-made for the geometry of the anti de Sitter manifold and
its covering: the maximal analyticity property of the two-point functions (3.7) in the covering
cut-plane ∆̃1 is a consequence of AdS invariance, local commutativity and the positivity
of the spectrum of the energy operator M0d; points of the cut of ∆̃1 correspond to pair of
timelike separated events on the real manifold ÃdSd.

On the other hand Legendre’s functions of the first kind6 have analyticity properties
that are tailor-made for the geometry of the de Sitter manifold. A short summary will
help in making clear what follows. The complex de Sitter universe may be represented as
the one-sheeted hyperboloid

dS
(c)
d = {z ∈M

(c)
d+1 : z · z = −R2 = −1} , (A.1)

5More precisely, Legendre’s functions of the second kind multiplied by the factor (ζ2 − 1)−
d−2

4 .
6See footnote 5.
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immersed in a (d+ 1)-dimensional complex Minkowski spacetime. The same letter ζ used
before here denotes the complex de Sitter invariant variable

ζ = z1 · z2 = z0
1z

0
2 − z1

1z
1
2 − . . .− zd

1z
d
2 , (A.2)

i.e. the scalar product in the ambient spacetime sense of two complex events z1, z2 ∈ dS
(c)
d .

Two real events x1 and x2 are timelike separated if and only if

(x1 − x2)2 = −2− 2x1 · x2 > 0. (A.3)

The canonically normalized (Bunch-Davis) maximally analytic two-point function of a de Sitter
Klein-Gordon field is given by

W (dS)
κ (z1, z2) = w(dS)

κ (ζ) =
Γ
(

d−1
2 + iκ

)
Γ
(

d−1
2 − iκ

)
2(2π)d/2 (ζ2 − 1)−

d−2
4 P

− d−2
2

− 1
2 +iκ

(ζ) (A.4)

=
Γ
(

d−1
2 + iκ

)
Γ
(

d−1
2 − iκ

)
(4π)d/2Γ

(
d
2

) 2F1

(
d− 1
2 + iκ,

d− 1
2 − iκ; d2 ;

1− ζ

2

)
(A.5)

where the (complex) mass squared is related to the parameter κ and the spacetime dimension
d as follows (we set R = 1):

m2 = (d− 1)2

4 + κ2. (A.6)

The Legendre function [35] of the first kind Pα
β (ζ) is holomorphic in the cut-plane

∆2 — the same as Qα
β(ζ) — but the reduced two-point function w

(dS)
κ (ζ) is holomorphic

in the larger domain

ζ = z1 · z2 ∈ ∆ = C \ (−∞,−1], (A.7)

i.e. everywhere except on the causality cut (A.3) cut (maximal analyticity property, [24]).
The factor (ζ2 − 1)−

d−2
4 exactly compensates the singularity of P− d−2

2
− 1

2 +iν
(ζ) at ζ = 1 making

the reduced two-point function regular there.
All the above being said and having specified the differences between the de Sitter and the

anti-de Sitter two-point functions, let us focus now on the mathematical possibility to express
the anti-de Sitter reduced two-point function (3.7) as a superposition of reduced de Sitter
two-point functions (A.4) i.e. as a superposition of Legendre functions of the first kind.

The first thing we would like to recall here is that a Fourier-like representation of the
two-point function (A.4) (equivalently (A.5)) in terms of plane waves is available since
1994 [23, 24]:

W (dS)
ν (z1, z2) =

Γ
(

d−1
2 + iκ

)
Γ
(

d−1
2 − iκ

)
eπκ

2d+1πd

∫
γ
(ξ · z1)−

d−1
2 −iκ(ξ · z2)−

d−1
2 +iκ α(ξ).

(A.8)

Here ξ ∈ C+ = ∂V + = {ξ ∈ Md+1, ξ
2 = 0, ξ0 > 0} is a forward light-like vector in the

ambient spacetime; it can be also thought as a point of the boundary of the de Sitter manifold
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at timelike infinity. A natural physical interpretation for such a ξ is that of the asymptotic
direction of the momentum of a particle [39].

The plane waves ψλ(z, ξ) = (ξ · z)λ composing the above formula solve individually the
Klein-Gordon equation in the respective tuboids:

□dSψ(z) +m2ψ(z) = 0, (A.9)

where
m2 = −λ(λ+ d− 1) = (d− 1)2

4 + κ2, λ = −d− 1
2 + iκ, (A.10)

(d is the spacetime dimension).
The complex de Sitter events z1 and z2 belong to the backward and, respectively, the

forward de Sitter tuboids T− ands T+; these are the intersections of the ambient tubes T−
ands T+ (which are related to the positivity of the energy momentum operator [33]) with
the complex de Sitter manifold:

T± = {x+ iy ∈ X
(c)
d : x · y = 0, y2 > 0, sign y0 = ±} . (A.11)

In standard coordinates, the (d − 1)-form α(ξ) in eq. (A.8) is written

α(ξ) = (ξ0)−1
d∑

j=1
(−1)j+1ξj dξ1 . . . d̂ξj . . . dξd; (A.12)

γ denotes any (d − 1)-cycle in the forward light-cone C+; the integrand in eq. (A.8) is a
closed differential form and therefore the result does not depend on the choice of the manifold
γ. In particular we may choose the unit spherical section of the cone Sd−1 (equipped with
its canonical orientation):

γ0 = Sd−1 = C+ ∩ {ξ : ξ0 = 1} = {ξ ∈ C+ : ξ12 + . . .+ ξd2 = 1}. (A.13)

With this choice α(ξ) coincides with the rotation invariant measure dξ on Sd−1 normalized
as usual:

ωd =
∫

γ0
α(ξ) = 2π

d
2

Γ
(

d
2

) . (A.14)

Eq. (A.8) is very flexible and may be used to produce many distinct integral representation
of the Legendre function of the first kind. One possible construction goes as follows: the
tubes T− and T+ are bordered by two Riemannian (as opposed to Euclidean) manifolds H−
and H+ whose points are purely imaginary:

H± = {x+ iy ∈ X
(c)
d : x = 0, y2 = R2 = 1, signy0 = ±} . (A.15)

Both H− and H+ are equivalent to the d-dimensional Lobachevsky space Hd which is also
equivalent to the Euclidean AdS manifold Hd, see eq. (2.7).

We now choose the two points in eqs. (A.8) to be purely imaginary: z1 = −iY1 ∈ H−
and z2 = iY2 ∈ H+; we choose to integrate over the parabolic basis of the cone

γp = C+ ∩ {ξ : ξ0 + ξd = 1}, (A.16)
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which we parametrize as follows:

ξ0 = P 0 = 1
2 + x2, ξi = P i = xi, ξd = P d = 1

2 − x2, dP = dx (A.17)

and the result is7

Ωκ(Y1, Y2) =W (dS)
κ (−iY1, iY2) = N(κ)

∫
γ
(P · Y1)−

d−1
2 −iκ(P · Y2)−

d−1
2 +iκ dP (A.18)

(see [9, eq. (113)]).
Even though it is a stretch, we might now insist in identifying both H− and H+ with the

same copy of a Euclidean AdS manifold; in the same vein we may also, identify the light-cone
C+ with the boundary of the Euclidean AdS manifold; with the these premises Ωκ(Y1, Y2)
may be taken as a basis of harmonic functions (proportional to Legendre functions of the
first kind, see eq. (A.4)) that can be used to develop the AdS propagators. While this may
be a useful technical tool, as for instance in the calculations of Witten diagrams in [9], it
is somehow an unnatural move as we try to explain now.

Expressing the dS two-point function in as a superposition of AdS correlators we already
did in eq. (3.12) which we now rewrite in a more suggestive way:

wAdS
−ν (ζ)− wAdS

ν (ζ) = sin πνwdS
iν (ζ). (A.19)

Expressing the scalar AdS propagator (which is a Legendre functions of the second
kind) as a superposition of Legendre functions of the first kind is also simple; it can be
done in a one-line calculation by taking a generalized Mehler-Fock inverse transform [35,
eq. (3.15.8)]. In the two-dimensional case d = 2 the formula we are looking for is in books
since a very long time [45, eq. (7.213)]:

Q− 1
2 +ν(u) =

∫ ∞

0
κ th(πκ)P− 1

2 +iκ
(u) (x2 + ν2)−1dx, Reκ > 0, u ∈ ∆2 ; (A.20)

the above identity holds in particular for real u > 1. It is however clear that something
goes wrong for −1 < u < 1: the integrand is holomorphic for u ∈ ∆ while the Legendre
function at the l.h.s. is defined only for u ∈ ∆2 ⊂ ∆; the cut of Q is longer and the integral
ill-defined on the cut.

To find the extension of the above formula to general dimension d, let us take the
Riemann-Liouville transform of both sides of eq. (A.20):∫ ∞

z
(u− z)µ−1P− 1

2 +iκ(u)du

= 1
π
ch(πx)Γ(µ)Γ

(1
2 − µ− iκ

)
Γ
(1
2 − µ+ iκ

)(
z2 − 1

)µ/2
Pµ

− 1
2 +iκ

(z),

7In a portion of the recent literature concerning harmonic analysis on the anti-de Sitter manifold a
formula like (A.18) is called a “split representation” (see e.g. [28] and reference therein). The name has been
introduced to denote “bulk-to-bulk propagators” that are represented as integrals of products of two scalar
“bulk-to-boundary propagators”. Our simple construction shows that “bulk-to-boundary propagators” are
nothing but plane waves and a split representation is a special instance of the general analytic formula (A.8).
This remains true also in the more complicated tensorial cases treated in [28]. We believe that our old
denomination [24] “Fourier-like” or “plane-waves representation” makes more justice to eq. (A.8) and to any
other split representation.
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∫ ∞

z
(u− z)µ−1Q− 1

2 +ν(u)du =

= 1
π
e−iπµ cos(πµ+ πν)Γ(µ)Γ

(1
2 − µ− ν

)
Γ
(1
2 − µ+ ν

)(
z2 − 1

)µ/2
Qµ

− 1
2 +ν

(z).

(A.21)

The sought extension immediately follows:

Qµ

− 1
2 +ν

(z) = eiπµ
∫ ∞

0

κ sh(πκ)
(κ2 + ν2)

Γ
(

1
2 − µ− iκ

)
Γ
(

1
2 − µ+ iκ

)
cos(πµ+ πν)Γ

(
1
2 − µ− ν

)
Γ
(

1
2 − µ+ ν

)Pµ

− 1
2 +iκ

(z)dκ.

(A.22)

Taking into account the identity (8.25) we get our final formula generalizing (A.20):

e−iπ d−2
2 Q

d−2
2

− 1
2 +ν

(z) =
∫ ∞

0

κ sh(πκ)
π(κ2 + ν2)Γ

(
d− 1
2 − iκ

)
Γ
(
d− 1
2 + iκ

)
P

− d−2
2

− 1
2 +iκ

(z)dκ. (A.23)

Eqs. (3.7) and (A.4) allow to rewrite the above identity (A.23) in a suggestive way:

w(AdS)
ν (ζ) = 2

π

∫ ∞

0

x sh(πκ)
(κ2 + ν2)w

(dS)
κ (ζ)dκ, ζ ∈ ∆2. (A.24)

One should never forget that w(AdS)
ν (ζ) and w

(dS)
κ (ζ) have different domains of analyticity.

Even the variable ζ has different meanings at the r.h.s. and at the l.h.s. In particular the locus
of AdS coincident Euclidean points projects on ζ = 1 while the coincident dS Euclidean points
project on ζ = −1. In these respective places the Schwinger functions have distributional
singularities that in integer dimensions cause the appearance of a δ source at the r.h.s. of
the Klein-Gordon equation.

Inserting eq. (A.18) into eq. (A.24) one gets the so-called “split representation” [28]
of the AdS Schwinger function:

w(AdS)
κ (Y1 · Y2) =

2
π

∫ ∞

0

κ sh(πκ)
(κ2 + ν2)N(κ)

∫
γ
(P · Y1)−

d−1
2 −iκ(P · Y2)−

d−1
2 +iκ dP. (A.25)

This representation has proven to be useful in computing Witten diagrams on the Euclidean
anti de Sitter space [9]. However, it cannot be extended to the real anti de Sitter manifold.

Finally we may use eq. (3.12) and write

w(AdS)
ν (ζ) = i

π

∫ ∞

0

κ

(κ2 + ν2)
(
w

(AdS)
iκ (ζ)− w

(AdS)
−iκ (ζ)

)
dκ. (A.26)

But the important formula is eq. (A.23). The equivalent expressions (A.24) and (A.26)
are just ornamental.

The idea of expanding the AdS time-ordered propagator in Legendre functions of the first
kind has been introduced long ago by Düsedau and Freedman [47] as an intermediate step in
computing the Källén-Lehmann expansion of a propagator. Even in the title of their paper,
Düsedau and Freedman reserve the name of spectral representation to the Källén-Lehmann
expansion, the spectral parameter being the mass of the two-point functions entering in there.
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Their eq. (31) corresponds to our eq. (A.23) specialized to d = 4 and is described as a special
instance of an integral transform of Gelfand and Graev [47].

The possibility of representing AdS propagators in terms of Legendre functions of the
first kind has been recently rediscovered and exploited. In this recent literature this is no
more intended as an intermediate step towards a true Källén-Lehmann representation of the
propagator but as a “spectral representation” per se.

Eq. (A.24) is called in [9, appendix B.1] “the harmonic space representation of the bulk
to bulk propagator”. Eq. (A.26) in [14, appendix B.2] is the “spectral representation” of
the propagator. These denominations are, in our opinion, rather misleading because the
Legendre functions of the first and second kind (obviously) solve the same Legendre differential
equation (the delta terms arising only at coincident Euclidean points) and also because that
representation has already a name: generalized inverse Mehler-Fock transformation (A.23).

The “spectral representation” is sometimes rather inconvenient: a key result of [14]
consists in determining (through a quite involved bootstrappism and a certain amount of
clever guesswork) the “spectral representation” of the bubble wλ(ζ)wν(ζ) in the particular
case of equal mass parameters λ = ν.

It is indeed quite elementary to compute such “spectral representation” knowing the
Källén-Lehmann representation (8.19) and the Mehler-Fock antitransform of the propaga-
tor (A.24); here we perform the calculation in the general case of two different masses λ and
ν and for the maximally analytic functions which include as a special case the Schwinger
function at non-coinciding points:

w
(AdS)
λ (ζ)w(AdS)

ν (ζ) = 2
π

∫ ∞

0

∞∑
k=0

ρ(k;λ, ν)(
κ2 +

(
d−1

2 + 2k + λ+ ν
)2
)κ sh(πκ)w(dS)

κ (ζ)dκ.

(A.27)

By taking the series first, the weight is written as a generalized hypergeometric series:

Bd(λ, ν, κ) =
∞∑

k=0

ρ(k;λ, ν)(
κ2 +

(
2k + d−1

2 + λ+ ν
)2
) . (A.28)

We have already encountered this series when computing the watermelon in section 10 (see
eq. (10.3)):

Bd(λ, ν, x) =
π−δΓ(δ + λ)Γ(δ + ν)Γ(δ + λ+ ν + 1)

2Γ(λ+ 1)Γ(ν + 1)Γ(2δ + λ+ ν) ((δ + λ+ ν)2 + κ2)

× 9F8

 δ, δ + λ, δ + ν, δ + λ+ ν, 1+λ+ν
2 , 2+λ+ν

2 , 2+δ+λ+ν
2 , δ−iκ+λ+ν

2 , δ+iκ+λ+ν
2

1 + λ, 1 + ν, 1 + λ+ ν, δ+λ+ν
2 , 2δ+λ+ν

2 , 1+2δ+λ+ν
2 , 2+δ−iκ+λ+ν

2 , 2+δ+iκ+λ+ν
2

; 1

 .
(A.29)
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In the simplest case where the two masses are equal the above formula reduces to

Bd(ν, ν, κ) =
π−δΓ(δ + ν)2Γ(δ + 2ν + 1)

2Γ(ν + 1)2Γ(2(δ + ν)) ((δ + 2ν)2 + κ2)

× 7F6

 δ, ν + 1
2 ,

δ
2 + ν + 1, δ

2 + ν − iκ
2 ,

δ
2 + ν + iκ

2 , δ + ν, δ + 2ν
ν + 1, δ

2 + ν, δ
2 + ν − iκ

2 + 1, δ
2 + ν + iκ

2 + 1, δ + ν + 1
2 , 2ν + 1

; 1

 .
(A.30)

By using formula (10.6) to simplify eq. (A.30) (with a = δ+2ν−iκ
2 and b = δ+2ν+iκ

2 ) we see
that eq. (4.7) of [14] is an immediate consequence of the Källén-Lehmann formula.

The weight Bd(λ, ν, κ) of the “spectral representation” is proportional to I(1)
3 (λ, ν, iκ, d)

which is one of the two terms of the 2-loop vacuum diagram studied in section 10: this explains
why Bd(λ, ν, x) may diverge at d = 3, 4 . . . ; actually, Bd(λ, ν, κ) does not diverge at d = 3
because the divergences in I

(1)
3 (λ, ν, iκ, d) are milder than the divergences in I

(2)
3 (λ, ν, iκ, d);

the latter does diverge also at d = 3.
Whatever is the case, Bd(λ, ν, κ) is to be compared with the Källén-Lehmann weight (8.20),

which is splendidly regular at d = 3, 4 . . .
In our opinion, this is already a sufficient reason to avoid the use of the so-called “spectral

representation” and keep using the good old Källén-Lehmann representation.
Note also that in the “spectral representation” the bubble is expanded as an integral of

Legendre functions of the first kind as opposed to the series of Legendre functions of the
second kind exhibited at the r.h.s. of eq. (8.19). The quasi-periodical character of the bubble
is now completely hidden in a weird representation.

From a mathematical viewpoint, the Mehler-Fock representation (A.23) of the Legendre
functions may however be useful in other situations, as for the calculation of Euclidean
Witten diagrams in [9]. For example, using the known integral of three Legendre functions
of the first kind [27]

hd(λ, ν, κ) =
∫ ∞

1
P

− d−2
2

− 1
2 +iλ

(u)P− d−2
2

− 1
2 +iν

(u)P− d−2
2

− 1
2 +iκ

(u) (u2 − 1)−
d−2

4 du

= 2
d
2

(4π)
3
2Γ
(

d−1
2

) ∏
ϵ,ϵ′,ϵ′′=±1 Γ

(
d−1

4 + iϵλ+iϵ′ν+iϵ′′κ
2

)
∏

ϵ,ϵ′ϵ′′=±1 Γ
(

d−1
2 + iϵλ

)
Γ
(

d−1
2 + iϵ′ν

)
Γ
(

d−1
2 + iϵ′′κ

)
(A.31)

we may compute the following related integral that may play a role in either dS or AdS
two-loop calculations (details are omitted):∫ ∞

1
Q

− d−2
2

− 1
2 +a

(u)P− d−2
2

− 1
2 +iν

(u)P− d−2
2

− 1
2 +iκ

(u) (u2 − 1)−
d−2

4 du

=

π3/2G5,5
8,8

1
∣∣∣∣∣∣ 1− a

2 ,
5−d

4 + iκ−iν
2 , 5−d

4 − iκ−iν
2 , 5−d

4 + iκ+iν
2 , 5−d

4 − iκ+iν
2 , 0, 1

2 , 1 +
a
2

a
2 ,

d−1
4 + iκ

2 − iν
2 ,

d−1
4 − iκ

2 + iν
2 ,

d−1
4 + iκ

2 + iν
2 ,

d−1
4 − iκ

2 − iν
2 ,

1
2 , 1,−

a
2


22− d

2 e
1
2 idπ cos

(
πa− πd

2

)
Γ
(

d−1
2

)∏
ϵ=± Γ

(
d−1

2 + iϵκ
)
Γ
(

d−1
2 + iϵν

)
Γ
(

d−1
2 + ϵa

)
(A.32)
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where G is Meijer’s function. The limit a → iλ may be expressed as a combination of
hypergeometric series 7F6 which we do not reproduce here.

B Proof of theorem 8.3

Let (δ, λ, ν) ∈ V , ζ ∈ ∆̂1, k ∈ Z+. Using (3.7) and [35, section 3.3, eq. (44), pp. 136–
137], we get

Sk(δ, λ, ν, ζ) = Ak(δ, λ, ν)Bk(δ, λ, ν, ζ), (B.1)

Ak(δ, λ, ν) =
Γ(δ + k)

2δ+2π2δΓ(δ)(δ + λ+ ν + 2k)

× Γ(1 + λ+ ν + 2k)Γ(δ + λ+ k)Γ(δ + ν + k)Γ(δ + λ+ ν + k)
Γ(1 + k)Γ(1 + λ+ k)Γ(1 + ν + k)Γ(1 + λ+ ν + k)Γ(1 + δ + λ+ ν + 2k) ,

(B.2)

Bk(δ, λ, ν, ζ) = (1− ζ−2)−
δ
2
[
1 + (1− ζ−2)

1
2
]−δ−λ−ν [

ζ + (ζ2 − 1)
1
2
]−2k

× F

(
δ, 1− δ ; δ + 1 + σ ; −ζ + (ζ2 − 1)

1
2

2(ζ2 − 1)
1
2

)
, σ = λ+ ν + 2k . (B.3)

The conditions (δ, λ, ν) ∈ V , ζ ∈ ∆̂1, ensure that Sk is well-defined for every k ∈ Z+. The
main point of the proof is the convergence of

∑
k Sk. Once this is established the analytic

functions on both sides of (8.30) are known to coincide on U0 ×∆2, where U0 is defined by
the conditions (8.18), hence they coincide wherever they are both defined.

For any κ, ζ 7→ (1 − ζ−2)κ is even and analytic in ∆̂1. For ζ ∈ ∆1, (ζ2 − 1)
1
2 =

ζ(1 − ζ−2)
1
2 . Let

z = −ζ + (ζ2 − 1)
1
2

2(ζ2 − 1)
1
2

= −1 + (1− ζ−2)
1
2

2(1− ζ−2)
1
2

. (B.4)

The map ζ 7→ z is even and holomorphic in ∆̂1, and it maps ∆̂1 onto
{
u ∈ C : Reu < 1

2

}
.

For ζ ∈ ∆1, we set

ζ = ch(ω), ω = τ + iθ, τ > 0, |θ| ≤ π. (B.5)

Then[
ζ + (ζ2 − 1)

1
2
]
= eω , (B.6)

z = 1
1− e2ω

, |z| ≤ 1
e2τ − 1 , 1 + |z| ≤ 1

1− e−2τ
, (B.7)

(1− ζ−2)
1
2 = sh(ω)

ch(ω) , sh(τ) ≤ | sh(ω)| ≤ ch(τ), sh(τ) ≤ | ch(ω)| ≤ ch(τ) . (B.8)

In order to estimate the hypergeometric function appearing in (B.3), we use [35, section 2.3.2,
pp. 76–77].8 This provides the following estimate. Let a = α+ iα′, b = β + iβ′, c = γ + iγ′,

8We use formula (11), p. 76 (as corrected in the Errata) in the case n = 0.
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w ∈ C, and suppose:

β ≥ 1
2 , γ − β ≥ 1

2 , |1− w| > ε, | arg(1− w)| < π(1− ε) for some ε > 0.

(B.9)

Then
|F (a, b, ; c ;w)| ≤ 1 + |a||w|M(w)|β|

√
ch(πβ′) ch π(γ′ − β′)
γ

, (B.10)

with
M(w) = sup

0≤u≤1
|(1− uw)−a−1|. (B.11)

To apply this to the hypergeometric function appearing in (B.3), we treat separately the
cases Re δ ≥ 1

2 and Re δ ≤ 1
2 .

(1) Case Re δ ≥ 1
2 . In this case we set a = 1−δ, b = δ, c = δ+1+σ = δ+1+λ+ν+2k, and

w = z defined as above, and satisfying (B.7) as well as Re z < 1
2 . For sufficiently large k,

the conditions (B.9) are satisfied and γ > 1. We have −α−1−iα′ = Re δ−2+i Im δ and

M(z) ≤

e2π| Im δ|22−Re δ if Re δ − 2 < 0 ,
e2π| Im δ|(1 + |z|)Re δ−2 if Re δ − 2 ≥ 0 .

(B.12)

Hence, with (B.5) and (B.7),

|z|M(z) ≤ 4e2π| Im δ|(e2τ − 1)−1(1− e−2τ )−(Re δ−2)+ , (B.13)

|Bk(δ, λ, ν, ζ)| ≤ e2π| Im δ|
(ch(τ)
sh(τ)

)Re δ

× e2π| Im(δ+λ+ν)|
(

eτ

sh(τ)

)−Re(δ+λ+ν)− ( eτ

ch(τ)

)−Re(δ+λ+ν)+

×
[
1 + 4|1− δ|e2π| Im δ|(e2τ − 1)−1(1− e−2τ )−(Re δ−2)+

× ch(π Im δ)
1
2 ch(π Im σ)

1
2
]

× e−2kτ . (B.14)

(2) Case δ ≤ 1
2 . In this case we set a = δ, b = 1− δ, c = δ + 1 + σ = δ + 1 + λ+ ν + 2k,

and w = z defined as above. For sufficiently large k, the conditions (B.9) are satisfied
and γ > 1. We have −α− 1− iα′ = −Re δ − 1− i Im δ and

|z|M(z) ≤ 4e2π| Im δ|(e2τ − 1)−1(1− e−2τ )(Re δ+1)− , (B.15)

|Bk(δ, λ, ν, ζ)| ≤ e2π| Im δ|
(ch(τ)
sh(τ)

)|Re δ|

× e2π| Im(δ+λ+ν)|
(

eτ

sh(τ)

)−Re(δ+λ+ν)− ( eτ

ch(τ)

)−Re(δ+λ+ν)+

×
[
1 + 4|δ|e2π| Im δ|(e2τ − 1)−1(1− e−2τ )(Re δ+1)−

× ch(π Im δ)
1
2 ch(π Im(σ + 2δ))

1
2
]

× e−2kτ . (B.16)
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The estimates (B.14) and (B.16) hold when (δ, λ, ν) remains in a compact subset K of
V intersected with

{
Re δ ≥ 1

2

}
or
{
Re δ ≤ 1

2

}
respectively, and for all k ≥ k0(K). With the

same restrictions on (δ, λ, ν), we can estimate Ak(δ, λ, ν) by the Erdélyi-Tricomi theorem
([48, eq. (5.11.13)], [49], [50, pp. 118 ff]) and we find that there is a k1(K) > k0(K) such
that, for every k ≥ k1(K),

|Sk| ≤ H ch(τ)P τ−QkNe−2τk , (B.17)

where H > 0, P > 0, Q > 0 and N > 0 may depend on K (but not on τ). Therefore
∑

k Sk

(resp.
∑∞

k=k1 Sk) converges absolutely and uniformly, when all the parameters remain in
K × {ζ = ch(τ + iθ) : ε < τ < ε−1}, (ε > 0), to a function h(δ, λ, ν, ζ) (resp. hk1(δ, λ, ν, ζ))
holomorphic in these variables. Since

∑L
k=0 Sk is holomorphic in ∆̂1 it follows, by the

maximum principle, that the convergence extends to K × {ζ = ch(τ + iθ) : ε < τ} ∪ {∞},
i.e. the functions h and hk1 are holomorphic there.

For any function f holomorphic in ∆1, and P > 0, Q > 0, let

∥f∥P,Q = sup
ζ∈∆2

e−P ττQ|f(ζ)|, ζ = ch(τ + iθ), τ > 0, |θ| < π . (B.18)

It then follows from our estimates that if (δ, λ, ν) remains in the compact K, there exist
constants P > 0, Q > 0, and M > 0 such that∥∥∥∥∥∥

L∑
k=k1

Sk

∥∥∥∥∥∥
P,Q

≤M ∀L > 0, (B.19)

for any ε > 0 there is an L > 0 such that∥∥∥∥∥
∞∑

k=L

Sk

∥∥∥∥∥
P,Q

< ε , (B.20)

∥hk1∥P,Q ≤M . (B.21)

(The functions appearing in the l.h.s. of these inequalities are considered as functions of
ζ ∈ ∆2 at fixed δ, λ, ν.) Restricting these estimates to the tuboid Z1− ×Z1+ it is possible to
show that (8.30) remains true for the boundary values of both sides in the sense of tempered
distributions. We omit the lengthy but straightforward details.

Open Access. This article is distributed under the terms of the Creative Commons Attri-
bution License (CC-BY4.0), which permits any use, distribution and reproduction in any
medium, provided the original author(s) and source are credited.
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