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Abstract: We discuss general one and two-loop banana diagrams and one-loop diagrams

with external lines with arbitrary masses on the anti de Sitter spacetime by using methods

of AdS quantum field theory in the dimensional regularization approach. The banana

diagrams explicitly computed in this paper are indeed the necessary ingredients for the

evaluation of the two-loop effective potential of the Standard Model and can be used to

extend the flat space results in in presence of a negative cosmological constant. In the one-

loop case we also compute the effective potential for an O(N) model in d = 4 dimension

as an explicit function of the cosmological constant Λ, both exactly and perturbatively up

to order Λ. In the two-loop case we show the explicit calculation is possible thanks to a

remarkable discrete Källén-Lehmann formula which we found and proved sometimes ago

and whose domain of applicability we extend in the present paper.
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1 Introduction

The outcome of string theory having the largest impact in science is probably the AdS/CFT

correspondence [1–4]. Though still conjectural, its robustness is evident in several situa-

tions, going far beyond the realm of string theory and supersymmetry [5]. Trying to explore

and understand the conjecture has generated an impressive literature dealing with various
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geometrical and physical aspects of (asymptotically) anti-de Sitter (AdS) spacetimes [6];

in particular, AdS Quantum Field Theory (QFT) has come again to the general attention.

On the AdS side, the conjecture is often checked only at tree-level: Feynman diagrams

on that manifold are difficult already at one loop. Sometimes, loop integrals are evaluated

through the bootstrap, a strategy introduced by G. Chew in the seventies of the last century,

abandoned shortly after the successes of QCD and the Standard Model, and revitalized in

the last fifteen years [7]. Bootstrap is essentially based on the interplay between symmetries,

unitarity and causality. However, it is not completely clear how to implement it outside

the context of conformal field theories and difficulties may arise in presence of anomalies or

non-invertible symmetries [8]. Combining bootstrap methods in CFT with the AdS/CFT

conjecture has proven to be useful to guess the result of loop integrals in the AdS (bulk)

manifold [9–14]; there are however other possibilities [15, 16].

Generally speaking, the absence of a global linear momentum space renders the calcu-

lation of Feynman or Schwinger-Keldysh diagrams in a curved background more difficult

than usual; to avoid that difficulty, working in position space from scratch is the cleanest

and clearest option that may be tremendously effective also in flat space [17]. That is the

strategy that we adopt here and in a companion paper [18]. By taking into full account the

analyticity properties of the correlation functions in the complexified universal covering of

the real AdS manifold, we show how to compute certain one and two-loop integrals in a

simple and direct way, avoiding every detour whatsoever.

Let us focus on one loop integral first: sometimes things are rendered more difficult

than they really are by the habit of writing the two-point functions and the propagators

as special instances of the Gaussian hypergeometric function 2F1 instead of using the more

specific expression in terms Legendre functions of the second kind (Q) for AdS quantum

fields and Legendre functions of the first kind (P ) for dS fields. This might look just as an

irrelevant matter of taste but the contrary happens to be true: the geometrical peculiarities

of either the AdS or the dS manifolds that are well captured by Legendre functions remain

hidden in the generic hypergeometric expression. The superiority of using Q instead of 2F1

is evident in our first computation of the 1-loop diagram resulting in Eq. (4.17). This result

in turn opens the way to the calculation of two-loop banana integrals for three independent

AdS scalar fields having different values of their respective mass parameters. We present

also a second derivation of Eq. (4.17) as a special instance of the new formula (5.12) which

is generally valid in any curved Euclidean background.

The literature on AdS two-loop integrals is scarce, see e.g. [13, 16, 19]. In general the

relevant articles do not contain explicit formulas: some of them calculate corrections to the

dispersion laws but do so determining only the divergent part [20].

The explicit calculation in the present paper is made possible by the AdS Källén-

Lehmann expansion formula which two of us and collaborators proved sometimes ago [29,

Eqs 7.8 and 7.9] (Eqs. (7.19) and (7.20) in this paper). A formula identical to our own

appeared without an explicit proof in a later paper the same year [30, Eq. 53]1.

Remarkably, this beautifully simple formula is not an integral but a discrete sum. One

1Numbered as Eq. 52 in the first version arXiv:1111.6972v1 of the preprint.
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could have expected this for the uncovered AdS manifold, due to its time periodicity; how-

ever, the discreteness of the formula is not affected by moving to the universal covering.

Here we extend the validity of Källén-Lehmann expansion to more general conditions in

Theorem 7.3 : the formula remains of course the same as in [29], only the domain of ap-

plicability becomes wider w.r.t. the original proof given in [29]. Then we use it together

with our 1-loop calculation to write explicit formulae for the two-loop banana integral

with three independent masses in arbitrary (complex) dimension d (Eqs. (9.2), (9.7) and

(9.8)). Obtaining these formulae would be quite challenging using other methods without

further assumptions (for example, without assuming the validity of the AdS/CFT conjec-

ture and/or doing suitable guesses in bootstrap methods). The Källén-Lehmann expansion

renders the calculation is next to elementary by linearization.

We would like to stress also that computing these integrals goes well beyond the aim of

testing the power of the methods used in the present paper: these are exactly the diagrams

necessary to compute the two-loop effective potential for the Standard Model and can be

used to generalize the results in [31] in presence of a negative cosmological constant. The

simple explicit formulas we have found are new and we think that they can lead to some

simplifications also in the flat limit.

The plan of the paper is as follows: in Sect. 2 we recall a few preliminary notions

about the geometry of AdS and about AdS QFT. In Sect. 3 we discuss in more detail

the analyticity properties of the scalar two-point functions and recall how to write the

propagators in terms of Legendre functions of the second kind. A simple application of

this representation is presented in Sect. 4 where we compute the 1-loop banana integral

with two arbitrary masses in any complex dimensions by using the Wronskian associated

to the Legendre differential equation.

The bubble is reconsidered again in Sect. 5 where we prove the general formula (5.12)

valid in any (curved) Euclidean background. In the same vein we determine also a formula

the triangular loop that may be easily generalized to N -line case.

Sect. 6 contains a curious fact we found on the relation betweeen bulk diagram vs

Witten diagrams which is worth of further investigation. We show that in at least one

possibly pathological case, Witten diagrams are not the boundary limit of the correspding

bulk diagram.

In Sect. 7 we discuss the Källén-Lehmann formula for AdS scalar quantum fields

with two distinct masses and we extend the original proof given in [29] to more general

conditions. We also discuss instructive elementary deductions of the same formula in odd

dimensions d = −1, d = 1, d = 3, d = 5. In Sects. 8 and 9 we use the KL expansion

formula to compute explicit expressions for the 1-loop tadpole and the one loop sunset and

for the 2-loop banana integral with arbitrary masses and dimensions.

In the final Sect. 10 we apply the results of Sect. 4 to compute the 1-loop effective

potential for an AdS O(N) scalar field model in a four dimensions. We provide an exact

expression (at 1-loop) of the potential as a function of the cosmological constant Λ and

also an expansion in
√
−Λ to order Λ; in the flat limit Λ → 0 the standard flat potential

is correctly reproduced. The latter fact is indeed nontrivial. The text is followed by two

Appendices. In the first we provide some further details about the usage of Legendre
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functions of first and second kind in dS and AdS QFT’s and also clarify some points that

have been discussed in the recent literature. In the second we give the details about the

proof of the expansion theorem of [29] in general conditions.

2 Preliminaries

2.1 Geometry

The d-dimensional real AdS spacetime with radius R > 0 may be visualized as the manifold

AdSd = {x ∈ Rd+1 : x2 = x · x = R2} (2.1)

where the scalar product x · x is intended in the sense of the ambient space Rd+1 with two

timelike directions and metric mostly minus as follows:

x · y = x0y0 − x1y1 − . . .− xd−1yd−1 + xdyd. (2.2)

The complexification of the AdS manifold is defined analogously

AdS
(c)
d = {z = x+ iy ∈ Cd+1 : z2 = R2}; (2.3)

z ∈ AdS(c) if and only if x2 − y2 = R2 and x · y = 0, i.e. the real and imaginary parts

of z are orthogonal w.r.t. the scalar product (2.2). The symmetry group of the anti de

Sitter spacetime is is the pseudo-orthogonal group of the ambient space SO(2, d− 1). This

group may also be regarded as the the conformal group of transformations of the boundary,

represented as the null cone of the ambient space

Cd = {ξ ∈ Rd+1 : ξ2 = ξ · ξ = 0}. (2.4)

This simple geometrical fact lies at basis of the AdS/CFT correspondence. The null cone

of the ambient space plays also the role of giving a causal order to the AdS spacetime

which is however only local, due to the existence of closed timelike curves; two events are

spacelike separated if

(x1 − x2)
2 = 2− 2x1 · x2 < 0. (2.5)

While AdS
(c)
d is simply connected2, the real manifold AdSd is not and admits a nontriv-

ial universal covering space ÃdSd. The covering manifold is globally causal but remains

non-globally hyperbolic, because of the boundary at spacelike infinity. However, even

though time-loops are not present in the covering space, there remains an unavoidable

trace of the periodicity of the uncovered (otherwise called pure or true) AdS manifold:

timelike geodesics issued at any point of ÃdSd focus infinitely many times every half pe-

riod, exactly as it happen on the true AdS manifold. This fact will be conspicuous in

Sect. 7 where we discuss the Källén-Lehmann representation of the product of two scalar

two-point functions with mass parameters λ and ν, in position space with fixed end-points

(sometimes called the bubble diagram).

2This may be seen by changing zµ to izµ for µ = 1, . . . , d − 1, the complex AdS manifold becomes the

complex unit sphere in C
d+1, which has the same homotopy type as the real unit sphere Sd. It follows that

for d ≥ 2 the covering space of AdS
(c)
d is AdS

(c)
d itself.
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Coordinates

Except for the considerations regarding the flat limit we shall always take R = 1 throughout

this paper. A concrete way of representing both AdSd and its covering ÃdSd by global

coordinates is to introduce the diffeomorphism χ of S1 ×Rd−1 onto AdSd given by

x(t, ~x) = (
√

1 + ~x2 cos t, ~x,
√
1 + ~x2 sin t) (2.6)

where S1 is identified toR/2πZ. The diffeomorphism χ̃, defined by lifting χ on the covering

Rd of S1 ×Rd−1 provides a global coordinate system on ÃdSd.

It is possible to identify in the complex manifold AdS
(c)
d an analog of the Euclidean

subspace of the complex Minkowski spacetime: here we choose the connected real sub-

manifold Hd of AdS
(c)
d – that we call the Euclidean anti de Sitter spacetime – defined

by

Hd = {z ∈ AdS
(c)
d z(y) = (y0, . . . , yd−1, iyd), yµ ∈ R, y0 > 0}. (2.7)

This is indeed a Lobachevsky space modeled as the upper sheet of a two-sheeted hyperboloid

embedded in a (d+ 1)-dimensional Minkowski spacetime:

Hd = {y ∈ Rd+1 : y0
2 − y1

2 − · · · − yd
2
= R2, y0 > 0}. (2.8)

Coordinates for Hd are obtained by changing t into is in Eq. (2.6); this yields the following

parametrization:

z(is, ~x) = (
√

1 + ~x2 ch s, ~x, i
√

1 + ~x2 sh s) (2.9)

There also exists an extension of χ̃ to C×Rd−1, whose image is a partial complexification

of the real covering manifold ÃdSd; the so-obtained complexified covering contains the

same Euclidean spacetime Hd.

We will make use of the following spherical parametrization of Hd:

y(u, ω) = (u, ω1
√
u2 − 1, . . . , ωd

√
u2 − 1) (2.10)

where u ≥ 1 and ω are coordinates on the sphere Sd−1; in these coordinates the Lorentz-

invariant measure dy is written

√
g dy = (u2 − 1)

d−2
2 dudω (2.11)

where dω denotes the rotation-invariant measure on the sphere Sd−1 normalized as follows

ωd =

∫

Sd−1

dω =
2π

d
2

Γ
(
d
2

) . (2.12)

Quantum fields and the energy spectrum condition

A general approach to AdS QFT has been discussed in [25, 32]. Here we summarize only

the main consequences of the spectral condition; we refer the reader to [25, 32] for more

details and other results.
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We focus on a scalar quantum field on ÃdSd which is fully determined by the set of

its n-point vacuum expectation values:

Wn(x1, . . . xn) = 〈Ω, φ(x1) . . . φ(xn)Ω〉. (2.13)

The field can be restricted to the uncovered spacetime AdSd if and only if it 2π−periodic

in the time-parameter t. The properties of AdS-invariance, positive-definiteness and her-

miticity are formulated exactly as for Minkowskian scalar QFT [25, 33] and we do not spell

them out.

Even though the AdS manifold is not globally hyperbolic, it is however natural to ask

for local commutativity by requiring that the fields commute at spacelike separation:

W(x1, . . . , xi, xi+1, . . . , xn) = W(x1, . . . , xi+1, xi, . . . , xn)

for all xi, xi+1 space-like separated in the sense of ÃdSd. (2.14)

For theories well-defined in the uncovered AdSd itself, this amounts at least to commuta-

tivity under the condition (xi − xi+1)
2 < 0.

The above properties are more or less obvious but do not select a unique solution

for a given model and some extra criterion is needed. Since the very beginning of AdS

quantum field theory the correlation functions and the propagators have been constructed

and selected by studying the behaviour of the modes at the boundary located at spacelike

infinity [34]. This is very natural from the viewpoint of the Cauchy problem because of

the lack of global hyperbolicity.

On the other hand, the fact that the field equations do not uniquely select the prop-

agators is not a peculiarity of AdS quantum fields theory. For infinite quantum systems

there are always infinitely many inequivalent representations of the commutation relations

and to select a physically meaningful quantization one always needs to impose some extra

physical requirement. This is normally done in terms of a spectral condition, i.e. a con-

dition on the energy spectrum of the states of the theory, and we act in this way also in

the AdS case. Whatever is the choice it will also silently select the behaviour at spacelike

infinity of the modes and the correlators.

Since the parameter of the (covering) group of rotations in the (0, d)−plane is inter-

preted as a time variable, we require that the corresponding generator M0d be represented

in the Hilbert space of the theory by a self-adjoint operator whose spectrum is bounded

from below. By a standard Laplace transform argument [33] in the corresponding time-

variables, this requirement is equivalent to the following analyticity property of the n-point

functions:

Spectral condition: Each tempered distribution

Wn(x1(t1, ~x1), ..., xn(tn, ~xn)) (2.15)

is the boundary value of a holomorphic functionWn(z1, ..., zn) which is defined in a complex

neighborhood of the set
{
z = (z1, ..., zn); zj ∈ ÃdS

(c)

d ; zj = zj(τj , ~xj); Im τ1 < Im τ2 < · · · < Im τn

}
. (2.16)
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As a by-product, the Schwinger functions

Sn(x1(is1, ~x1), ..., xn(isn, ~xn)) (2.17)

are well-defined and are obtained as the restrictions of the holomorphic functions Wn’s to

the Euclidean submanifold

{z = (z1, ..., zn), zj ∈ Hd, s1 < s2 < · · · < sn} (2.18)

at non coinciding points. Sometimes natural distributional extensions exist: this is the case

if the singularities of the Wn are weak, for example in lower dimensions or in the presence

of regularization such as dimensional regularization.

3 The analytic structure of two-point functions

From now on we consider only fields completely determined by their two-point function

W(x1, x2) as we do in perturbation theory i.e. we assume that the truncated n-point

functions vanish.

There are two distinguished complex domains [25, 32] of AdS
(c)
d , invariant under real

AdS transformations, which are of crucial importance for a full understanding of the struc-

tures associated with two-point functions:

Z1+ = {z = x+ iy ∈ AdS
(c)
d ; y2 > 0, ǫ(z) = +1},

Z1− = {z = x+ iy ∈ AdS
(c)
d ; y2 > 0, ǫ(z) = −1}, (3.1)

where

ǫ(z) = sign(y0xd − x0yd). (3.2)

Z1+ and Z1− are the AdS analogues of the usual forward and backward tubes of complex

Minkowski spacetime, obtained in correspondence with the energy-momentum spectrum

condition [33]. The spaces Z1± and AdSd have the same homotopy type. Their universal

coverings are denoted Z̃1±. The AdS spectral condition implies that a general two-point

function satisfies the following [25]

Normal analyticity condition for two-point functions: W (x1, x2) is the boundary

value of a function W (z1, z2) holomorphic in the domain Z̃1− × Z̃1+

W(x1, x2) = (Ω, φ(x1)φ(x2)Ω) = lim
z1∈Z̃1−, z2∈Z̃1+

z1→x1, z2→x2

W (z1, z2) , (3.3)

AdS invariance then implies that toW (z1, z2) there corresponds a function w(ζ) of a single

complex variable ζ that can be identified with z1 · z2 when z1 and z2 are both in AdS
(c)
d+1;

the function w(ζ) is called the reduced two-point function. Complex AdS invariance and

normal analyticity imply the following

– 7 –



Maximal analyticity property: the reduced two-point function w(ζ) extends to a func-

tion analytic in the covering ∆̃1 of the cut-plane

∆1 = {C \ [−1, 1]}. (3.4)

For theories periodic in the time coordinate w(ζ) is analytic in ∆1. For later use we

introduce also

∆̂1 = ∆1 ∪ {∞} , (3.5)

Therefore, the two-point function of any field satisfying locality AdS invariance and the

spectral condition enjoys maximal analyticity, as it happens in the Minkowski [33] and

de Sitter cases [24]. Maximal analyticity, in turn, completely determines the two-point

functions for Klein-Gordon fields and, as a consequence, also selects the boundary behaviour

of the modes.

3.1 Klein-Gordon fields

Klein-Gordon fields display the simplest example of the previous analytic structure. For a

given mass m the two-point function W(x1, x2) must satisfy the equation

(�xi
+m2)W(x1, x2) = 0, i = 1, 2, (3.6)

w.r.t. both variables, where �xi
is the Laplace-Beltrami operator relative to the AdS

metric. Such two-point functions are labelled by the (complex) dimension d and a (complex)

parameter ν as follows

W (AdS)
ν (z1, z2) = wd

ν(ζ) =
1

(2π)
d
2

(ζ2 − 1)−
d−2
4 e−iπ d−2

2 Q
d−2
2

− 1
2
+ν

(ζ) = (3.7)

=
Γ
(
d−1
2

)

2π
d+1
2

D
d−1
2

ν− d−1
2

(ζ) = (3.8)

=
Γ
(
d−1
2 + ν

)

2π
d−1
2 (2ζ)

d−1
2

+νΓ(ν + 1)
2F1

(
d− 1

4
+
ν

2
,
d+ 1

4
+
ν

2
; ν + 1;

1

ζ2

)
(3.9)

where the various parameters are related as follows:

m2 = ν2 − (d− 1)2

4
. (3.10)

At the r.h.s. of (3.7) Qα
β(ζ) denotes an associated Legendre function of the second kind

[35]; at the r.h.s. of Eq. (3.8) Dδ
σ(ζ) is an ultraspherical (Gegenbauer) function of the

second kind [36]; they are meromorphic functions of α and β and, respectively, δ and σ

[35, 36]. As functions of the complex variable ζ, they are analytic in the cut-plane

∆2 = {C \ [−∞, 1]}. (3.11)

Their definitions in terms of the Gauss hypergeometric function is provided by the last

equality (3.9). Note in particular that (ζ)σ+2δDδ
σ(ζ) and (ζ)κ+

d−1
2 wd

κ(ζ) are even and

analytic in ∆̂1.
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Since for each value of the mass squared there are two possible two-point functions,

the question arises whether they are both acceptable or not. The spectral condition gives

the answer (Breitenlohner and Freedmann phenomenon) [38]: the two-point functions give

rise to a representation of of M0d having positive spectrum only when ν is real and bigger

than −1. There are two possible cases

1. for ν > 1 the spectrum condition (3.3) uniquely select one field theory for each

given value of mass parameter ν;

2. for |ν| < 1 there are two acceptable theories for each given mass. The difference

between the two theories is in their large distance behavior; more precisely, in view of [35,

Eq. (3.3.1.4)] one has that

wd
−ν(ζ) = wd

ν(ζ) +
sinπν Γ

(
d−1
2 − ν

)
Γ
(
d−1
2 + ν

)

2(2π)
d
2

(ζ2 − 1)−
d−2
4 P

− d−2
2

− 1
2
−ν

(ζ). (3.12)

The last term in this relation is regular on the cut ζ ∈ [−1, 1] and therefore does not

contribute to the commutator. By consequence the two theories represent the same algebra

of local observables at short distances. But since the second term at the r.h.s. grows the

faster the larger is |ν| (see [35, Eqs. (3.9.2))] the two theories have drastically different

long range behaviors.

The Schwinger function (otherwise called the Euclidean propagator) is the restric-

tion of the maximally analytic two-point function to the Euclidean Lobachevsky manifold.

Choosing the points in Eq. (3.7) as follows

z0 = (1, 0, . . . 0, 0) , z(u, ω) =
(
u, ω1

√
u2 − 1, . . . , ωd−1

√
u2 − 1, iωd

√
u2 − 1

)
, u > 1

(3.13)

so that ζ = z0 · z(u, ω) = u > 1, we write the propagator as

G(AdS)d
ν (z0 · z(u, ω)) = G(AdS)d

ν (u) = Gd
ν(u) = wν(u) =

e−iπ d−2
2

(2π)
d
2

(u2 − 1)−
d−2
4 Q

d−2
2

− 1
2
+ν

(u).

(3.14)

Remark 3.1 We stress again that forgetting, as is frequently done in the literature, that

the two-point function is a Legendre function and not just a much less specific (although

equivalent) hypergeometric function, implicates a significant loss of information and a

consequent increase in the difficulties in solving even simple problems.

This oblivion is even more curious when one thinks that in one of the first (if not

the very first) papers dealing with AdS QFT [37] the correlation functions are written

exclusively in terms of Legendre functions Q.
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4 Banana integrals: 1-loop

After this preparation we can now write the n-loop banana integral on the Lobachevsky

Euclidean manifold Hd with n+ 1 lines:

In+1(ν1, . . . , νn+1, d) =

∫

Hd

Gd
ν1(x · z)Gd

ν2(x · z) . . . Gd
νn+1

(x · z)
√
g(z) dz, (4.1)

where y varies on Hd and x is a fixed reference point. The above definition has to be

intended as a dimensional regularization of an expression that in general is divergent.

Using the coordinates (3.13) and integrating over the angles (5.10) reduces to

In+1(ν1, . . . , νn+1, d) =
2π

d
2

Γ
(
d
2

)
∫ ∞

1
Gd

ν1(u)G
d
ν2(u) . . . G

d
νn+1

(u)(u2 − 1)
d−2
2 du. (4.2)

The zero-loop case gives

I1(ν, d) =
2

2−d
2

Γ
(
d
2

)
∫ ∞

1
e−iπ d−2

2 Q
d−2
2

− 1
2
+ν

(u)(u2 − 1)
d−2
4 du.) (4.3)

The value of this integral might be deduced from [35, 3.12 (29), p. 172] also reproduced

in [45, ET II324 (23) p. 809], but, unfortunately, those formulae are flawed by the same

typo; we take this opportunity to write here the correct general formula:

∫ ∞

1
Qµ

ν (u)(u
2 − 1)λ−1du =

Γ
(
1
2 + ν

2 + µ
2

)
Γ
(
1− λ+ ν

2

)
Γ
(
λ+ µ

2

)
Γ
(
λ− µ

2

)

22−µΓ
(
1 + ν

2 − µ
2

)
Γ
(
1
2 + λ+ ν

2 ,
) , (4.4)

valid for |µ| < 2Reλ < Re ν + 2; this gives the same result as in flat space:

I1(ν, d) =
1

ν2 − (d−1)2

4

=
1

m2
. (4.5)

Let us now focus on the the already nontrivial two-line case. The above expression

looks particularly clean when expressed in terms of the Legendre functions Q:

I2(λ, ν, d) =

∫

Hd

Gd
λ(x · z)Gd

ν(x · z)
√
g(z) dz =

e−iπ(d−2)

2d−1π
d
2Γ
(
d
2

)
∫ ∞

1
Q

d−2
2

− 1
2
+λ

(u)Q
d−2
2

− 1
2
+ν

(u)du.

(4.6)

As simple as it it may look, the integral at the r.h.s. of Eq. (4.6) is not available anywhere

in the literature accessible to us.

Here the advantage of expressing the propagator in terms of Legendre functions is

manifest, as the above integral can be evaluated by using the Wronskian relations associated

with Legendre’s differential equation.

Recall that the function Q is holomorphic in the domain ∆2; the function z 7→ (z2−1)
1
2

is also understood as holomorphic in ∆2 and equal to |u2−1| 12 when z = u > 1. The known

recursion relations

(1− z2)
dQµ

ρ (z)

dz
= −ρzQµ

ρ (z) + (ρ+ µ)Qµ
ρ−1(z) , (4.7)

Qµ
ρ−1(z) = zQµ

ρ(z) − (ρ− µ+ 1)(z2 − 1)
1
2Qµ−1

ρ (z) , (4.8)
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(see [35, 3.8 (10), (5) p. 161]) give

(1− z2)
dQµ

ρ (z)

dz
= µzQµ

ρ (z)− (ρ+ µ)(ρ− µ+ 1)(z2 − 1)
1
2Qµ−1

ρ (z)] . (4.9)

These identities allow us to evaluate the relevant integral over any arc, with extremities a

and b, entirely contained in ∆2:

∫ b

a
Qµ

ρ (z)Q
µ
σ(z)(ρ− σ)(σ + ρ+ 1)dz =

[
− (z2 − 1)

1
2 (σ + µ)(σ − µ+ 1)Qµ

ρ (z)Q
µ−1
σ (z)

+ (z2 − 1)
1
2 (ρ+ µ)(ρ− µ+ 1)Qµ−1

ρ (z)Qµ
σ(z)

]b
a
.

(4.10)

We need also the asymptotic behaviour of the Legendre function of the second kind at

z ∼ 1 and z → ∞ [35, 3.9.2 (21), (5), (6) pp 163-164]:

as z → +∞, Qµ
ρ(z) ∼ const. z−ρ−1 ; (4.11)

as z → 1, if Reµ > 0, Qµ
ρ(z) ∼ eiπµ2

µ
2
−1Γ(µ)(z − 1)−

µ
2 ; (4.12)

as z → 1, if Reµ < 0, Qµ
ρ(z) ∼

eiπµ2−
µ
2
−1Γ(−µ)Γ(ρ+ µ+ 1)(z − 1)

µ
2

Γ(ρ− µ+ 1)
. (4.13)

We deduce that the integral ∫ ∞

1
Qµ

ρ (z)Q
µ
σ(z)dz (4.14)

converges if Re(ρ+ σ) > −1 and |Reµ| < 1. Let us suppose that 0 < Reµ < 1. It follows

that

∫ ∞

1
Qµ

ρ(z)Q
µ
σ(z) dz =

e2iπµΓ(µ)Γ(1− µ)

2(ρ− σ)(σ + ρ+ 1)

[
Γ(ρ+ µ+ 1)

Γ(ρ− µ+ 1)
− Γ(σ + µ+ 1)

Γ(σ − µ+ 1)

]
. (4.15)

This equation remains valid, by analytic continuation, when |Reµ| < 1 and Re(ρ+σ) > −1

(note that the term in brackets vanishes for µ = 0). Letting ρ tend to σ (4.15) tends to

∫ ∞

1
Qµ

σ(z)Q
µ
σ(z) dz =

e2iπµΓ(µ)Γ(1− µ)Γ(σ + µ+ 1)

2(2σ + 1)Γ(σ − µ+ 1)

[
ψ(σ + µ+ 1)− ψ(σ − µ+ 1)

]
.

(4.16)

Again this equation is valid when |Reµ| < 1 and Re 2σ > −1 but the r.h.s. can be

continued outside of this region.

In the end, the above argument provides a nice formula for the 1-loop banana integral

with two independent masses; here it is:

I2(λ, ν, d) =
Γ
(
1− d

2

)

2dπ
d
2 (λ2 − ν2)

(
Γ
(
d−1
2 + ν

)

Γ
(
3−d
2 + ν

) − Γ
(
d−1
2 + λ

)

Γ
(
3−d
2 + λ

)
)
. (4.17)

A few remarks are in order:
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1. At d = 2 we may extract from the general formula the following finite result:

I2(λ, ν, 2) =
ψ
(
λ+ 1

2

)
− ψ

(
ν + 1

2

)

2πλ2 − 2πν2
. (4.18)

2. In odd spacetime dimension the formula becomes very simple; for instance at d = 1, 3

I2(λ, ν, 1) =
1

2λ2ν + 2λν2
, I2(λ, ν, 3) =

1

4πλ+ 4πν
. (4.19)

3. At d = 4 we encounter the first divergence. The Laurent expansion of the formula

near d = 4 gives

I2(λ, ν, d)|d≈4 = − 1

8π2(d− 4)
+

1− γ + log(4π)

16π2
− 1

8π2(λ+ ν)

+

(
1− 4λ2

)
ψ
(
λ− 1

2

)
−
(
1− 4ν2

)
ψ
(
ν − 1

2

)

32π2(λ− ν)(λ+ ν)
+ O(d− 4). (4.20)

4. In the limit when the two masses are equal the general formula reduces to

I2(ν, ν, d) =
Γ
(
1− d

2

)
Γ
(
d−1
2 + ν

)

2d+1π
d
2 ν Γ

(
3−d
2 + ν

)
(
ψ

(
3− d

2
+ ν

)
− ψ

(
d− 1

2
+ ν

))
. (4.21)

This expression coincides with a result of [14].

5 Two and three lines (bulk-to-bulk) and a general formula for the bub-

ble in any background geometry

Generalizing Eq. (4.6), we now consider the two-line integral where the external points do

not coincide:

Fλ ν(x, y) =

∫

Hd

Gd
λ(x · z)Gd

ν(y · z)
√
g(z) dz. (5.1)

Fλ ν(x, y) solves the following equations:

(−∇2
x +m2

λ)Fλ ν(x, y) =

∫
δ(z, x)Gd

ν (z, y)
√
g dz = Gd

ν(x · y), (5.2)

(−∇2
y +m2

ν)Fλ ν(x, y) =

∫
Gd

λ(x · z)δ(y, z)√g dz = Gd
λ(x · y). (5.3)

Lorentz invariance implies that Fλ ν(x, y) = Fλ ν(x · y) and therefore

∇2
xFλ ν(x, y) = ∇2

yFλ ν(x, y). (5.4)

Subtracting Eq. (5.3) from Eq. (5.2) it follows that

Fλ ν(x, y) = −G
d
λ(x · y)−Gd

ν(x · y)
m2

λ −m2
ν

. (5.5)
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Let us check how this remarkable formula works in the one-dimensional case AdS1. Here

G1
ν(ch v) =

e−ν|v|

2ν
(5.6)

F 1
λ ν(a, b),=

∫ ∞

−∞

e−λ|v−a|

2λ

e−ν|v−b|

2ν
dv. (5.7)

Suppose to fix the ideas that a < b. It follows that

Fλ ν(a, b) =

∫ ∞

b

e−λ(v−a)

2λ

e−ν(v−b)

2ν
dv +

∫ b

a

e−λ(v−a)

2λ

e−ν(b−v)

2ν
dv +

∫ a

b

e−λ(a−v)

2λ

e−ν(b−v)

2ν
dv =

=
1

λ2 − ν2

(
e−ν(b−a)

2ν
− e−λ(b−a)

2λ

)
. (5.8)

Iterating once the above construction we may compute the 3-line diagram with two convo-

lutions:

Fλ ν κ(x,w) =

∫

Hd×Hd

Gd
λ(x · y)Gd

ν(y · z)Gd
κ(z · w)

√
g(y) dy

√
g(z) dz =

=
1

λ2 − ν2

∫

Hd

(Gd
ν(x · z)−Gd

λ(x · z))Gd
κ(z · w)

√
g(z) dz =

=
Gd

κ(x · w)
(κ2 − ν2)(κ2 − λ2)

+
Gd

ν(x · w)
(ν2 − λ2)(ν2 − κ2)

+
Gd

λ(x · w)
(λ2 − ν2)(λ2 − κ2)

(5.9)

a formula which is readily generalized to the n+ 1-line case.

Remark 5.1 Note that the analogous of Eq. (5.5) in flat space is made very simple by

working in Fourier space. Actually, it is evident from the above elementary derivation that

Eq. (5.5) is valid for the Schwinger propagator of a Klein-Gordon field in a generic curved

background Ed with Euclidean signature:

Fm1m2(x, y) =

∫

Ed

G(E)
m1

(x, z)G(E)
m2

(z, y)
√
g(z) dz = −G

(E)
m1(x, y)−G

(E)
m2(x, y)

m2
1 −m2

2

.

(5.10)

In the limiting case when the two masses coincide this becomes

Fmm(x, y) = − ∂

∂m2
G(E)

m (x, y). (5.11)

Taking the limit y → x we deduce a general formula for the bubble in a generic curved

background with Euclidean signature (similar remarks apply to the chronological propagator

in Lorentzian signature):

bubble(m1,m2) =

∫

Ed

G(E)
m1

(x, z)G(E)
m2

(z, x)
√
g(z) dz = − lim

y→x

G
(E)
m1(x, y)−G

(E)
m2(x, y)

m2
1 −m2

2

.

(5.12)
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In particular, in flat Euclidean space the propagator has the following short distance be-

haviour

G(M)
m (r) =

1

(2π)
d
2

( r
m

)1− d
2
K d

2
−1 (mr) ≃

r2−d

4π
d
2

Γ

(
d

2
− 1

)
+
md−2

(4π)
d
2

Γ

(
1− d

2

)
; (5.13)

here M stands for Minkowski and r = (x1 − x2)
2 is the Euclidean distance. Inserting the

expansion (5.13) in Eq. (5.10) the diverging terms drop and the standard flat space result

[17] is recovered without any calculation:

bubbleM (m1,m2) = − lim
r→0

G
(M)
m1 (x, y)−G

(M)
m2 (x, y)

m2
1 −m2

2

= −Γ
(
1− d

2

)

(4π)
d
2

(m1)
d
2
−1 − (m2

2)
d
2
−1

m2
1 −m2

2

.

(5.14)

Similarly, in the AdS case, we may evaluate (5.10) with the help of Eq. (3.9); here y → x

means ζ → 1; at ζ = 1 and with the condition d < 2 that formula gives

lim
ζ→1

Γ
(
d−1
2 + ν

)
2F1

(
d−1
4 + ν

2 ,
d+1
4 + ν

2 ; ν + 1; 1
ζ2

)

2π
d−1
2 (2ζ)

d−1
2

+νΓ(ν + 1)
=

Γ
(
1− d

2

)
Γ
(
d−1
2 + ν

)

2dπ
d
2Γ
(
3−d
2 + ν

) . (5.15)

Inserting this into Eq. (5.10) we immediately recover Eq. (4.17) again without calculation:

bubbleAdS = Fλ ν(x, x) =
Γ
(
1− d

2

)

2dπ
d
2 (λ2 − ν2)

(
Γ
(
d+1
2 + ν

)

Γ
(
3−d
2 + ν

) − Γ
(
d+1
2 + λ

)

Γ
(
3−d
2 + λ

)
)
. (5.16)

This formula defines the bubble by analytic continuation as a meromorphic function of d.

Finally, in the de Sitter case (see Appendix 11) we may use Eq. (A.5) at ζ = 1, always

restricting the spacetime dimension d < 2:

lim
ζ→−1

Γ
(
d−1
2 + iκ

)
Γ
(
d−1
2 − iκ

)

(4π)
d
2Γ
(
d
2

) 2F1

(
d− 1

2
+ iκ,

d− 1

2
− iκ;

d

2
;
1− ζ

2

)
=

=
Γ
(
1− d

2

)
Γ
(
d−1
2 − iκ

)
Γ
(
d−1
2 + iκ

)

2dπ
d
2Γ
(
1
2 − iκ

)
Γ
(
1
2 + iκ

) (5.17)

so that

bubbledS =
Γ
(
1− d

2

)

2dπ
d
2 (λ2 − ν2)

(
Γ
(
d−1
2 − iν

)
Γ
(
d−1
2 + iν

)

Γ
(
1
2 − iν

)
Γ
(
1
2 + iν

) − Γ
(
d−1
2 − iλ

)
Γ
(
d−1
2 + iλ

)

Γ
(
1
2 − iλ

)
Γ
(
1
2 + iλ

)
)
.

(5.18)

In a completely analogous way we may fully evaluate the triangular loop by setting

w → x in Eq. (5.9); as before we do it at first assuming that d < 2 and then generalizing

the formula by analytic continuation:

TriangleAdS =

∫

Hd

Gd
λ(x · y)Gd

ν(y · z)Gd
κ(z · x)

√
g(y) dy

√
g(z) dz

=
Γ
(
1− d

2

)

2dπ
d
2

(
Γ
(
d−1
2 + κ

)

(κ2 − ν2)(κ2 − λ2)Γ
(
3−d
2 + κ

) + Γ
(
d−1
2 + ν

)

(ν2 − κ2)(ν2 − λ2)Γ
(
3−d
2 + ν

)

+
Γ
(
d−1
2 + λ

)

(λ2 − κ2)(λ2 − ν2)Γ
(
3−d
2 + λ

)
)
. (5.19)
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Finally, it is worth to underline a remarkable property of Eq. (5.5): it can be used also when

the Schwinger function is known only approximately. A simple example is an application to

Quantum Field Theory on the Rindler space. We refer to [40–43]. Beyond the Minkowski

vacuum |M〉 one can consider the Fulling-Rindler vacuum |R〉. Let us call Gβ,d
A (x, y;m)

the Schwinger function at inverse temperature β in d spacetime dimensions and for the

vacuum state |A〉, for a scalar field of mass m. In coordinates (τ, ξ, x1, . . . , xd−2) such that

the Euclidean Rindler metric is

ds2 = ξ2dτ2 + dξ2 + δijdx
idxj , (5.20)

it is manifest that the Euclidean Rindler’s wedge has the topology of a cylinder with period

normalized to 2π for the Euclidean time. As it is well known, this leads to the identity

G∞,d
M (x, y;m) = G2π,d

R (x, y;m), (5.21)

which corresponds to the fact that the zero temperature Minkowski vacuum appears as a

thermal state at temperature 1
2π to the Rindler vacuum (see [40], and reference therein). It

is interesting to consider also the Schwinger function G∞,4
R (x, y). Assuming |τx − τy| < π,

one can prove (see [43]) that

G∞,4
R (x, y;m) =G2π,4

R (x, y;m) +
m

8π3

∫ ∞

0
du
K1(mR(u))

R(u)
F∞(u, τx − τy), (5.22)

R(u)2 =ξ2x + ξ2y + 2ξxξy ch u+ (x1 − y1)
2 + (x2 − y2)

2, (5.23)

F∞(u, v) =− 2
v + π

(v + π)2 + u2
+ 2

v − π

(v − π)2 + u2
. (5.24)

In this way, the UV divergences are confined in G2π,4
R (x, y;m) = G∞,4

M (x, y;m). At this

stage, an immediate application of the above general strategy shows that

bubbleRindler(m1,m2) = bubbleM (m1,m2). (5.25)

Another possible application, which we don’t include here, could be to compute the bub-

ble integral (and the effective potential), for a massive scalar field in the far region of a

Schwarzschild black hole of mass M (t.i., for M/R), at the first order in M , starting from

the results in [44].

6 A remark about bulk diagrams versus Witten diagrams

Now we want to consider the limit of the expression (5.5) when x and/or y tend to the

boundary. To this aim it is useful to give coordinates to the Lobachevsky space as follows:

x0 = ch v +
1

2
evr2, xi = evri, xd−1 = sh v − 1

2
evr2 (6.1)

y0 = ch v′ +
1

2
ev

′

r′
2
, yi = ev

′

r′, xd−1 = sh v′ − 1

2
ev

′

r′
2

(6.2)

so that

x · y = ch(v − v′) +
1

2
ev+v′(r − r′)2. (6.3)
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Let v tend to plus infinity while v′ is held fixed:

x · y ≃ ev

2
(e−v′ + ev

′

(r − r′)2) = ev(ξ · y); (6.4)

in the second equality we have introduced the lightlike vector

ξ0 =
1 + r2

2
, ξi = ri, ξd−1 =

1− r2

2
. (6.5)

Eq. (3.9) provides the behaviour of the propagator for large values of ζ; at leading order

wd
ν(ζ) ≃

Γ
(
d−1
2 + ν

)

2π
d−1
2 (2ζ)

d−1
2

+νΓ(ν + 1)
. (6.6)

It follows that

Fλ ν(x, y) ≃
Gd

ν(e
v(ξ · y))−Gd

λ(e
v(ξ · y))

λ2 − ν2
≃

≃ 1

λ2 − ν2

(
e−(

d−1
2

+ν)vΓ
(
d−1
2 + ν

)

2π
d−1
2 (2ξ · y) d−1

2
+νΓ(ν + 1)

− e−(
d−1
2

+λ)vΓ
(
d−1
2 + λ

)

2π
d−1
2 (2ξ · y) d−1

2
+λΓ(λ+ 1)

)
. (6.7)

To extract a finite limit we now need to specify something about the masses. Let us suppose

that λ > ν; in this case standard procedure [4, 32], using the we get that

e(
d−1
2

+ν)vFλ ν(x, y) → Fλ ν(ξ, y) =
1

λ2 − ν2

(
Γ
(
d−1
2 + ν

)

2π
d−1
2 (2ξ · y) d−1

2
+νΓ(ν + 1)

)
. (6.8)

Let now v′ tend to plus infinity:

ξ · y = ev
′

(ξ · η); (6.9)

where we have introduced the lightlike vector

η0 =
1 + r′2

2
, ξi = r′

i
, ξd−1 =

1− r′2

2
. (6.10)

Proceeding as before we get (λ > ν)

e(
d−1
2

+ν)v′Fλ ν(ξ, y) → Fλ ν(ξ, η) =
1

λ2 − ν2

(
Γ
(
d−1
2 + ν

)

2π
d−1
2 (2ξ · η) d−1

2
+νΓ(ν + 1)

)
(6.11)

Had we performed the limit in the opposite order or else had we put v = v′ and taken

the limit together, the situation would not have changed: when λ > ν the finite result

extracted from Eq. (5.5) is (6.11).

Let us now revert the order of the operations and take the dominant terms in Eq.

(5.10) before integration. We are led to the following Witten diagram which is the simplest

among the ones considered in [9]:

F̃λ ν(ξ, η) =

∫

Hd

Γ
(
d−1
2 + λ

)

2π
d−1
2 (2(ξ · z)) d−1

2
+λΓ(λ+ 1)

Γ
(
d−1
2 + ν

)

2π
d−1
2 (2(η · z)) d−1

2
+νΓ(ν + 1)

√
g(z) dz
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(6.12)

We see that this Witten diagram cannot be finite. Otherwise it should be function of (ξ ·η)
homogeneous of degree −d−1

2 − λ and, at same time, of degree −d−1
2 − ν, a thing which is

logically impossible. This is also what happens in [9], eq.(24), where for n = 2 the integral

is proportional to

∫ ∞

0

dt1
t1
t∆1
1

∫ ∞

0

dt2
t2
t∆2
2 e−t1t2(x1−x2)2 = Γ(∆2)((x1 − x2)

2)2∆2

∫ ∞

0

dt1
t1
t∆1−∆2
1 , (6.13)

which is divergent.

We are led to the conclusion that, at least in this example, this Witten diagram does

not arise as the limit of corresponding diagrams where the endpoints lie in the bulk. This

example may however be pathological.

In the three-line case the Witten diagram is completely determined by Lorentz invari-

ance and by the homogeneity in the conical variables ξ1, ξ2 and ξ3; its simple formula that

the structure of a star-triangle relation [27]:

G̃ν1ν2ν3(ξ1, ξ2, ξ3) = c0(ν1, ν2, ν3)

∫

Hd

1

(ξ1 · z)
d−1
2

+ν1(ξ2 · z)
d−1
2

+ν2(ξ3 · z)
d−1
2

+ν2

√
g(z) dz

= c(ν1, ν2, ν3)(ξ1 · ξ2)
1−d
4

+
ν3
2
−

ν1
2
−

ν2
2 (ξ2 · ξ3)

1−d
4

+
ν1
2
−

ν2
2
−

ν3
2 (ξ1 · ξ3)

1−d
4

+
ν2
2
−

ν1
2
−

ν3
2 (6.14)

where

c(ν1, ν2, ν3) =

=
Γ
(
d−1+2ν1+2ν2−2ν3

4

)
Γ
(
d−1+2ν1−2ν2+2ν3

4

)
Γ
(
d−1−2ν1+2ν2+2ν3

4

)
Γ
(
d−1+2ν1+2ν2+2ν3

4

)

2
3d+2ν1+2ν2+2ν3+13

4 πd−1Γ(ν1 + 1)Γ(ν2 + 1)Γ(ν3 + 1)
.

(6.15)

This also coincides with formula (24) in [9] once expanded by using the formula

∫ ∞

0

dt1
t1
t∆1
1

∫ ∞

0

dt2
t2
t∆2
2

∫ ∞

0

dt3
t3
t∆3
3 e−t1t2a23−t1t3a22−t2t3a21 =

1

2

3∏

j=1

Γ(−σj)a2σj

j (6.16)

with σj = ∆j − ∆1+∆2+∆3
2 .

The corresponding 3-line bulk diagram is given by

Gλ ν κ(x, y, w) =

∫

Hd

Gd
λ(x · z)Gd

ν(y · z)Gd
κ(w · z)

√
g(z) dz = Gλ ν κ(a, b, c). (6.17)

a = x · y, b = y · w, c = w · x (6.18)

At the moment we are unable to determine whether, contrary to what happens in the

two-line case, the Witten diagram (6.14) may be obtained as boundary limit of (6.17) or

not.
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7 The Källén-Lehmann expansion of the bubble with two independent

masses

In this section we come back and elaborate on the AdS Källén-Lehmann expansion formula

which we found and proved in [29] and that appeared also in a later paper [30].

Recall that for any given analytic two-point functionW (z1, z2) of a local quantum field

in Minkowski space satisfying the Wightman axioms [33] there exists a tempered weight ρ

with support in the positive real axis such that

W (z1, z2) =

∫ ∞

0
ρ(m2)Wm(z1, z2)dm

2; (7.1)

here

Wm(z1, z2) =
1

(2π)d

∫
e−ik(z1−z2)θ(k0)δ(k2 −m2)dk (7.2)

is the analytic continuation of the two-point function of a Klein-Gordon field with mass

m; z1 belongs to the past tube and z2 to the forward tube if the complex Minkowski space

[33]. The Källén-Lehmann weight ρ(m2) is a positive measure if and only if the boundary

value W (x1, x2) is a distribution of positive type.

In particular, for any two given masses m1 and m2 the weight for the bubble

Wm1(z1, z2)Wm2(z1, z2) =

∫ ∞

(m1+m2)2
ρ(m2 : m1,m2)Wm(z1, z2)dm

2 (7.3)

is easily obtained by Fourier transform. The above relation can be extended to Schwinger

functions at non-coincident Euclidean points. A distributional extension to coincident

Euclidean points is also possible if no renormalization is necessary, e.g. for low dimension.

As regards the general case of AdS fields on the covering manifold ÃdSd, it is of course

possible to consider a general superposition à la Källén-Lehmann as follows:

w(ζ) =

∫ ∞

−1
ρ1(κ)w

d
ν(ζ)dν +

∫ 1

−1
ρ2(κ)w

d
−ν(ζ)dν. (7.4)

We expressed the above relation using the reduced maximally analytic two-point function;

under suitable condition this implies the same representation for the Euclidean propagator:

G(u) =

∫ ∞

−1
ρ1(κ)G

d
ν(u)dν +

∫ 1

−1
ρ2(κ)G

d
−ν(u)dν. (7.5)

However, when we restrict our attention to the bubble, we do not expect an integral as

in flat space; even though we consider fields with non integer masses that are well-defined

only on the covering manifold, their correlation functions are quasi-periodic. This calls for

a Källén-Lehmann series: the weight has to be a series of pure point measures.

Before addressing the general case, discussing two concrete examples will clarify the

point.
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7.1 An almost trivial example: ÃdS3

In odd spacetime dimension the Schwinger function can be written in terms of elementary

functions. To this aim, it is useful to parametrize the invariant variable by an hyperbolic

angle: u = ch v. In d = 3 this gives the following expressions: [35, Eq. 12, p 150]:

Q
1
2

κ− 1
2

(ch v) = e
iπ
2
−νv

√
π

2 sh v
, (7.6)

G3
κ(ch v) =

e−
iπ
2 Q

1
2

κ− 1
2

(ch v)

2π
√
2π sh v

=
e−νv

4π sh v
. (7.7)

The bubble with two independent mass parameters λ and ν is readily decomposed into its

Källén-Lehmann series by an elementary manipulation:

G3
λ(ch v)G

3
ν(ch v) =

e−(λ+ν)v

16π2 sh2 v
=

e−(λ+ν+1)v

8π2 sh v(1− e−2v)
=

∞∑

k=0

e−(λ+ν+1+2k)v

8π2 sh v
=

=
1

2π

∞∑

k=0

G3
2k+1+λ+ν(ch v). (7.8)

So, we get a Källén-Lehmann series as opposed to an integral, with a weight that in this

simple case is just a constant.

7.2 A less elementary example: ÃdS5

In view of its importance in the AdS/CFT correspondence, let us discuss now the less

trivial five-dimensional case: here

G5
ν(ch v) =

1

(2π)
5
2

(sh v)−
3
2 e−

3πi
2 Q

3
2

κ− 1
2

(ch v) =
(ν + 1)e−(ν−1)v − (ν − 1)e−(ν+1)v

16π2 sh3 v
; (7.9)

to derive the above formula we used Eq. (7.6) and the recurrence relation [35, Eq. 4, p

160]

Qµ+1
ρ (z) =

(z2 − 1)−
1
2

(ρ− µ+ 1)

(
(ρ− µ)(2ρ + 1)Qµ

ρ+1(z)− (ρ+ µ)(ρ+ µ+ 1))Qµ
ρ−1(z)

)
. (7.10)

Now, taking into account the identity

1

4 sh3 v
=

∞∑

k=0

k(k − 1)e−(2k−1)v , Re v > 0 (7.11)

we get a series expansion which is not yet a Källén-Lehmann expansion:

G5
λ(ch v)G

5
ν(ch v) =

∞∑

k=0

(λ+ 1)(ν + 1) + 2k2 + 2k(λ+ ν + 1)

8π4 sh3 v
e−(2k+λ+ν+1)v . (7.12)

For λ, ν and λ + ν greater than −1 all the terms at the r.h.s. are positive. We may

therefore rearrange the series as it is absolutely convergent.
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The construction goes as follows: in the first term of the series (k = 0) we replace

the exponential e−(λ+ν+1)v with the Schwinger function G5
λ+ν+2(ch v) and subtract the

corresponding term proportional to e−(λ+ν+3)v from the second term (k = 1). Then we

iterate the procedure. It results the following Källén-Lehmann series for the bubble in

ÃdS5:

G5
λ(ch v)G

5
ν(ch v) =

=

∞∑

k=0

(k + 1)(λ+ k + 1)(ν + k + 1)(λ+ ν + k + 1)

2π2(λ+ ν + 2k + 1)(λ + ν + 2k + 3)
G5

λ+ν+2k+2(ch v). (7.13)

Now let us consider the general problem. The following two theorems were proved in

[29] and solve the general problem of finding the weight for the Källén-Lehmann series of

the bubble in ÃdSd. The first theorem concern the ultraspherical Gegenbauer functions; it

holds for integer values of the parameters:

Theorem 7.1 ([29]) Let cδ(m,n|l) be given by

cδ(m,n|l) =
παδ

(
l+m−n

2

)
αδ

(
l−m+n

2

)
αδ

(
l+m+n

2 + δ
)
αδ

(
l−m−n

2 − δ
)

αδ(l)αδ (l + δ)
. (7.14)

where

αδ(s) =
Γ(s+ δ)

Γ(δ)Γ(s + 1)
, (7.15)

(i) Let m and n be non-negative integers and suppose that one of the two following condi-

tions is satisfied

(a) δ = 1
2
− r, r ≥ 1 is an integer such that m ≥ 2r and n ≥ 2r;

(b) 2δ is a strictly positive integer;

then

Dδ
m(z)Dδ

n(z) =
∑

l=m+n+2δ+2k

k∈Z, k≥0

cδ(m,n|l)Dδ
l (z) (7.16)

holds with uniform convergence for z in any compact subset of C \ [−1, 1].

(ii) If m, n and 2δ are not necessarily integers but the following conditions are satisfied:

δ > 0, m+2δ > 0, n+2δ > 0, m+δ+1 > 0, n+δ+1 > 0, m+n+2δ+1 ≥ 0 , (7.17)

then (7.16) holds with uniform convergence for z in any compact subset of C \ (−∞, 1],

The proof of this theorem can be found in [29]; it actually holds in the sense of functions

with tempered behavior in ∆̃1, so that the conclusion also holds for the boundary values

of both sides in (7.16).

Remark 7.1 If in Eq. (7.16) both sides are multiplied by zm+n+4δ , both sides become

formal power series in z−2 (with coefficients meromorphic in the parameters). It is proved in
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[29] that these two formal power series are equal without any restriction on the parameters.

Moreover the series converges for |z2| > 1, as the l.h.s. is holomorphic there. This does not

prove that the series (in k) on the r.h.s. converges: the theorem gives sufficient conditions

for that.

The second theorem gives the Källén-Lehmann expansion for AdS quantum fields on

the covering manifold with two distinct mass parameters. It was shown under rather

restricitive conditions but it holds for continuous values of the real mass parameters.

Theorem 7.2 ([29]) Let δ = d−1
2 . Under the conditions

δ > 0, λ+ δ > 0, ν + δ > 0, λ+ 1 > 0, ν + 1 > 0, λ+ ν + 1 ≥ 0, (7.18)

wd
λ(ζ)w

d
ν(ζ) =

∞∑

k=0

ρd(k;λ, ν)w
d
δ+2k+λ+ν(ζ) , ζ ∈ ∆̃1 (7.19)

where the weight is given by

ρd(k;λ, ν) =
(2δ + 4k + 2λ+ 2ν)Γ(1 + 2k + λ+ ν)

4πδΓ(δ)Γ(2δ + 2k + λ+ ν)
×

× Γ(δ + k)Γ(δ + λ+ k)Γ(δ + ν + k)Γ(δ + λ+ ν + k)

Γ(1 + k)Γ(1 + λ+ k)Γ(1 + ν + k)Γ(1 + λ+ ν + k)
. (7.20)

Remark 7.2 As anticipated, for any given two masses λ and ν the KL expansion of the

bubble wd
λ(ζ)w

d
ν(ζ) is a series and not an integral. This is a leftover of the periodicity of

the true AdS manifold.

In fact the statement of the theorem holds under much weaker conditions as we explic-

itly show in the following examples. Theorem 7.3 below gives weaker sufficient conditions

for the validity of the statement of Theorem 7.2

7.3 Cases of ÃdS1 and ÃdS−1

The proof of the above formula is valid only for d > 1. This does not mean that there is

no Källén-Lehmann expansion for d ≤ 1. Let us consider indeed the simplest case d = 1;

the Schwinger function now is really elementary:

G1
ν(ch v) =

e−ν|v|

2ν
(7.21)

and the Källén-Lehmann series has only one nonzero term:

G1
λ(ch v)G

1
ν(ch v) =

e−(λ+ν)|v|

4λν
=
λ+ ν

2λν
G1

λ+ν(ch v) (7.22)

This is perfectly coherent with the above formula (7.20); indeed, only the first coefficient

has a non zero limit at d = 1:

lim
d→1

ρd(0;λ, ν) =
λ+ ν

2λν
, lim

d→1
ρd(k 6= 0;λ, ν) = 0. (7.23)
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The above feature is shared by every odd negative spacetime dimension. Let us consider

as a further example ÃdS−1 : the general formula for the propagator (3.14) here gives

G−1
ν (ch v) = (2π)

1
2 (sh v)

3
2 eiπ

3
2Q

− 3
2

− 1
2
+κ

(ch v). (7.24)

Taking into account Eq. (7.9) and the relation [35, 3.2 (2) p. 140]

eiπµΓ(ρ+ µ+ 1)Q−µ
ρ (z) = e−iπµΓ(ρ− µ+ 1)Qµ

ρ (z) (7.25)

we get

G−1
ν (ch v) =

π

2

Γ(ν − 1)

Γ(ν + 2)

(
(ν + 1)e−(ν−1)v − (ν − 1)e−(ν+1)v

)
. (7.26)

A direct verification shows that the Källén-Lehmann series here consists only of two terms

G−1
λ (ch v)G−1

ν (ch v) =
π(λ+ ν − 2)(λ + ν − 1)

2λν(λ− 1)(ν − 1)
G−1

λ+ν−1(ch v)+

− π(λ+ ν + 1)(λ + ν + 2)

2λν(λ+ 1)(ν + 1)
G−1

λ+ν+1(ch v) (7.27)

in accordance with our general result (7.20).

Theorem 7.3 Let δ = d−1
2 . Let V be the open complex set3:

V = {(δ, λ, ν) ∈ C3 : δ+ λ /∈ Z− , δ+ ν /∈ Z− , δ+λ+ ν /∈ Z− , λ+ ν /∈ Z−} (7.28)

For (δ, λ, ν) ∈ V , ζ ∈ ∆̂1 and any integer k ≥ 0 let

Sk(δ, λ, ν, ζ) = ρd(k;λ, ν) ζ
2δ+λ+νwd

δ+λ+ν+2k(ζ) , (7.29)

where ρd(k;λ, ν) is given by (7.20). Then for all (δ, λ, ν) ∈ V and ζ ∈ ∆̂1,

ζ2δ+λ+νwd
λ(ζ)w

d
ν(ζ) =

∞∑

k=0

Sk(δ, λ, ν, ζ) . (7.30)

Here the series on the rhs converges absolutely and uniformly on every compact subset of

V × ∆̂1. Moreover (7.30) also holds for the boundary values of both sides from Z1− ×Z1+

in the sense of tempered distributions.

Recall that (see (3.9)), for any integer p ≥ 0, ζ 7→ ζδ+ν−2pwd
ν(ζ) is even and holomorphic in

∆̂1. This makes it possible to express the result (7.30) as an equality of functions analytic

in ∆̂1.

The proof of this theorem is given in Appendix B.

3Recall that Z− is the set of non-positive integers and Z+ is the set of non-negative integers.
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8 The Tadpole and the Sunset

The tadpole (in a trilinear interaction or cubic self-interaction) is readily evaluated using

the Källén-Lehmann expansion (7.19):

Fλ, κσ(x) =

∫

Hd

Gd
λ(x · z)Gd

κ(z · w)Gd
σ(z · w)

√
g(w) dw

√
g(z) dz =

=
∞∑

k=0

ρ(k;κ, σ)

∫

Hd

Gd
λ(x · z)Gδ+2k+κ+σ(z · w)

√
g(w) dw

√
g(z) dz. (8.1)

By using Eqs. (4.5) and (5.5) this becomes

Fλ, κσ(x) =−
∞∑

k=0

ρ(k;κ, σ)

λ2 − (δ + 2k + κ+ σ)2

∫

Hd

(
Gd

λ(x · w) −Gδ+2k+κ+σ(x · w)
)√

g(w) dw

=
f(λ, κ, σ)

δ2 − λ2
+ g(λ, κ, σ),

(8.2)

where

f(λ, κ, σ) =

∞∑

k=0

(
ρ(k;κ, σ)

2λ(2k + δ + κ+ λ+ σ)
− ρ(k;κ, σ)

2λ(2k + δ + κ− λ+ σ)

)
(8.3)

g(λ, κ, σ) =

∞∑

k=0

(
− ρ(k;κ, σ)

2δ(δ2 − λ2)(2k + κ+ σ)
+

ρ(k;κ, σ)

2δ(δ2 − λ2)(2k + 2δ + κ+ σ)

+
ρ(k;κ, σ)

2λ(δ2 − λ2)(2k + δ + κ− λ+ σ)
− ρ(k;κ, σ)

2λ(δ2 − λ2)(2k + δ + κ+ λ+ σ)

)
(8.4)

Defining

Ftad(x) =

∞∑

k=0

ρ(k;κ, σ)

2k + x
=

=
π−δδ(2 + κ+ σ)Γ(1 + δ + κ)Γ(1 + δ + σ)Γ(1 + δ + κ+ σ)

(2 + x)Γ(2 + κ)Γ(2 + σ)Γ(2 + 2δ + κ+ σ)
×

× 7F6

(
1 + x

2 , 1 + δ, 1 + δ + κ, 32 + κ
2 + σ

2 , 2 +
κ
2 + σ

2 , 1 + δ + σ, 1 + δ + κ+ σ

2 + x
2 , 2 + κ, 1 + δ + κ

2 + σ
2 ,

3
2 + δ + κ

2 + σ
2 , 2 + σ, 2 + κ+ σ

; 1

)
+

+
π−δΓ(δ + κ)Γ(δ + σ)Γ(1 + δ + κ+ σ)

2xΓ(1 + κ)Γ(1 + σ)Γ(2δ + κ+ σ)

× 7F6

(
x
2 , δ, δ + κ, 12 +

κ
2 + σ

2 , 1 +
κ
2 + σ

2 , δ + σ, δ + κ+ σ

1 + x
2 , 1 + κ, δ + κ

2 + σ
2 ,

1
2 + δ + κ

2 + σ
2 , 1 + σ, 1 + κ+ σ

; 1

)
(8.5)

we get

Fλ, κσ(x) =
Ftad(2δ + κ+ σ)− Ftad(κ+ σ)

2δ(δ2 − λ2)
(8.6)
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which corresponds to (4.5) with a multiplicative renormalization of the mass.

We may also compute in a similar way the general one-loop correction to the (bulk-

to-bulk) diagram (5.10) for arbitrary masses in the loop:

F
(1)
λ ν (x, y) =

∫

Hd

Gd
λ(x · z)Gd

κ(z · w)Gd
σ(z · w)Gd

ν(w · y)
√
g(w) dw

√
g(z) dz. (8.7)

First, we linearize (8.7) using the Källén-Lehmann expansion (7.19):

F
(1)
λ ν (x, y) =

∞∑

k=0

ρ(k;κ, σ)

∫

Hd

Gd
λ(x · z)Gδ+2k+κ+σ(z · w)Gd

ν(w · y)
√
g(w) dw

√
g(z) dz.

(8.8)

Next, to perform the integrals we use Eq. (5.9):

F
(1)
λ ν (x, y) =

f(ν, κ, σ)Gd
ν(x · y)

(ν2 − λ2)
+
f(λ, κ, σ)Gd

λ(x · y)
(λ2 − ν2)

+

∞∑

k=0

ρ(k;κ, σ)Gd
δ+2k+κ+σ(x · y)

((δ + 2k + κ+ σ)2 − ν2)(δ + 2k + κ+ σ)2 − λ2)
, (8.9)

where

f(λ, κ, σ) =
1

2λ
(Ftad(δ + κ+ σ + λ)− Ftad(δ + κ+ σ − λ)). (8.10)

9 Two-loop banana integrals: the watermelon

Here we provide a general formula for the watermelon with three lines and three indepen-

dent mass parameters

I3(λ, ν, κ, d) =
2π

d
2

Γ
(
d
2

)
∫ ∞

1
Gd

λ(u)G
d
ν(u)G

d
κ(u)(u

2 − 1)
d−2
2 du. (9.1)

The evaluation is made possible and actually rendered elementary by the Källén-Lehmann

formula (7.20); we use it to replace the first two factors in the integral with a series (9.1):

I3(λ, ν, κ, d) =
∞∑

k=0

ρ(k;λ, ν)
2π

d
2

Γ
(
d
2

)
∫ ∞

1
Gd

δ+2k+λ+ν(u)G
d
κ(u)du

=

∞∑

k=0

ρ(k;λ, ν) I2 ((δ + 2k + λ+ ν) , κ, d)

= I
(1)
3 (λ, ν, κ, d) − I

(2)
3 (λ, ν, κ, d). (9.2)
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where we used again the notation δ = d−1
2 . By inserting the 1-loop integral (4.17) I

(1)
3 and

I
(2)
3 are determined by summing the relevant hypergeometric series:

I
(1)
3 (λ, ν, κ, d) =

Γ
(
1− d

2

)

2dπ
d
2

Γ
(
d−1
2 + κ

)

Γ
(
3−d
2 + κ

)
∞∑

k=0

ρ(k;λ, ν)

((d−1
2 + 2k + λ+ ν)2 − κ2)

=
2−2δ−3π−2δ− 1

2Γ
(
1
2 − δ

)
Γ(δ + κ)Γ(δ + λ)Γ(δ + ν)Γ(δ + λ+ ν)Γ(2(δ + λ+ ν) + 1)

Γ(λ+ 1)Γ(ν + 1)Γ(1 − δ + κ)((δ + λ+ ν)2 − κ2)Γ(2(δ + λ+ ν))Γ(2δ + λ+ ν)
×

× 9F8

(
δ, δ + λ, δ + ν, δ + λ+ ν, 1+λ+ν

2 , 2+λ+ν
2 , 2+δ+λ+ν

2 , δ−κ+λ+ν
2 , δ+κ+λ+ν

2

1 + λ, 1 + ν, 1 + λ+ ν, δ+λ+ν
2 , 2δ+λ+ν

2 , 1+2δ+λ+ν
2 , 2+δ−κ+λ+ν

2 , 2+δ+κ+λ+ν
2

; 1

)
,

(9.3)

and

I
(2)
3 (λ, ν, κ, d) =

Γ
(
1− d

2

)

2dπ
d
2

∞∑

k=0

ρ(k;λ, ν)

((d−1
2 + 2k + λ+ ν)2 − κ2)

Γ (d− 1 + 2k + λ+ ν)

Γ (1 + 2k + λ+ ν).)

=
4−δ−1π−2δ− 1

2Γ
(
1
2 − δ

)
Γ(δ + λ)Γ(δ + ν)Γ(δ + λ+ ν + 1)

Γ(λ+ 1)Γ(ν + 1)Γ(λ + ν + 1)(δ − κ+ λ+ ν)(δ + κ+ λ+ ν)
×

× 7F6

(
δ, δ + λ, δ + ν, δ + λ+ ν, 2+δ+λ+ν

2 , δ−κ+λ+ν
2 , δ+κ+λ+ν

2

1 + λ, 1 + ν, 1 + λ+ ν, δ+λ+ν
2 , 2+δ−κ+λ+ν

2 , 2+δ+κ+λ+ν
2

; 1

)
, (9.4)

These expressions can be simplified by using a simple hypergeometric identity which,

however, does not seem not to appear in the literature; we provide a derivation here. By

using the following identity for Pochhammer symbols

(a)n(b)n((a+ b)/2 + 1)n
(a+ 1)n(b+ 1)n((a+ b)/2)n

=
ab

a+ b

(
1

a+ n
+

1

b+ n

)
, (9.5)

we can write

p+1Fp

(
a1 . . . , ap−2,

a+b
2 + 1, a, b

b1, . . . , bp−3,
a+b
2 , a+ 1, b+ 1

; 1

)
=

=

∞∑

n=0

(a1)n · · · (ap−2)n
(b1)n · · · (ap−3)n

1

n!

(a)n(b)n((a+ b)/2 + 1)n
(a+ 1)n(b+ 1)n((a+ b)/2)n

=

∞∑

n=0

(a1)n · · · (ap−2)n
(b1)n · · · (ap−3)n

1

n!

ab

a+ b

(
1

a+ n
+

1

b+ n

)

=

∞∑

n=0

(a1)n · · · (ap−2)n
(b1)n · · · (ap−3)n

1

n!

1

a+ b

(
b

(a)n
(a+ 1)n

+ a
(b)n

(b+ 1)n

)
,

which gives the identity

p+1Fp

(
a1 . . . , ap−2,

a+b
2 + 1, a, b

b1, . . . , bp−3,
a+b
2 , a+ 1, b+ 1

; 1

)
=

b

a+ b
p−1Fp−2

(
a1 . . . , ap−2, a

b1, . . . , bp−3, a+ 1
; 1

)

+
a

a+ b
p−1Fp−2

(
a1 . . . , ap−2, b

b1, . . . , bp−3, b+ 1
; 1

)
. (9.6)
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By using (9.6) with a = δ+λ+ν−κ
2 and b = δ+λ+ν+κ

2 we get

I
(1)
3 (λ, ν, κ, d) =

2−2δ−3π−2δ− 1
2Γ
(
1
2 − δ

)
Γ(δ + κ)Γ(δ + λ)Γ(δ + ν)Γ(δ + λ+ ν)

Γ(λ+ 1)Γ(ν + 1)Γ(1− δ + κ)Γ(2δ + λ+ ν)
×

×
∑

ǫ=±

1

δ + λ+ ν + ǫκ
7F6

(
δ, δ + λ, δ + ν, δ + λ+ ν, 1+λ+ν

2 , 2+λ+ν
2 , δ+ǫκ+λ+ν

2

1 + λ, 1 + ν, 1 + λ+ ν, 2δ+λ+ν
2 , 1+2δ+λ+ν

2 , 2+δ+ǫκ+λ+ν
2

; 1

)
,

(9.7)

and

I
(2)
3 (λ, ν, κ, d) =

4−δ−1π−2δ− 1
2Γ
(
1
2 − δ

)
Γ(δ + λ)Γ(δ + ν)Γ(δ + λ+ ν)

Γ(λ+ 1)Γ(ν + 1)Γ(λ+ ν + 1)
×

×
∑

ǫ=±

1

δ + ǫκ+ λ+ ν
5F4

(
δ, δ + λ, δ + ν, δ + λ+ ν, δ+ǫκ+λ+ν

2

1 + λ, 1 + ν, 1 + λ+ ν, 2+δ+ǫκ+λ+ν
2

; 1

)
. (9.8)

In the one-dimensional case (and, in general, in odd negative dimension) the above formulae

become extremely simple: for example

I
(1)
3 (λ, ν, κ, 1) =

λ+ ν

4κλν(λ + ν − κ)(λ + ν + κ)
,

I
(2)
3 (λ, ν, κ, 1) =

1

4λν(λ+ ν − κ)(λ+ ν + κ)
,

I3(λ, ν, κ, 1) =

∫ ∞

0

e−tλe−tνe−tκ

(2λ)(2ν)(2κ)
dt = I

(1)
3 − I

(2)
3 =

1

4κλν(κ + λ+ ν)
. (9.9)

The watermelon diverges, as in flat space, starting at d = 3. Actually, I
(2)
3 diverges at

d = 3 while the first divergence of I
(1)
3 is at d = 4. At d = 2 the difference I

(1)
3 − I

(2)
3 has a

finite limit.

10 The effective potential for the O(N) model

In this final section, as an application of our results, we compute the effective potential

for the O(N) scalar model on Anti de Sitter manifold in four dimensions. For generalities

about the model we refer to the companion paper [18]. As shown there, the 1-loop effective

potential has the form Veff(ν0, ν1) =W (ν0) +W (ν1), where here

ν0 =

√
m2

R + 3cgϕ2
R +

9

4
, (10.1)

ν1 =

√
m2

R + cgϕ2
R +

9

4
, (10.2)

and W (ν) satisfies

d

dν2
d

dν2
W (ν) = −1

2
I2(ν, ν, d), (10.3)
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by definition (notice that differently from the de Sitter case, here I depends on ν2 through

ν, so the derivative in ν2 has to be intended as 1
2ν

d
dν ). Here we have already introduced

the renormalized mass mR and field ϕR. Integrating twice in dν2 with I given by (4.20),

and d = 4− 2ε, we get

W (ν) =Cν2 +D − 1

64π2

(
1

ε
+ 1− γ + log(4π)

)
ν4 +

(ν2 − 1/4)2

32π2
ψ
(
ν − 1

2

)

− 1

32π2

∫ (
ν2 − 1

4

)2
ψ′
(
ν − 1

2

)
dν, (10.4)

where we have also included an integration by part, and C and D are integration constants.

To evaluate the last integral, we use the Abel-Plana formula [46] to write

ψ′
(
ν − 1

2

)
=

1

2

1
(
ν − 1

2

)2 +
1

ν − 1
2

+ 4

∫ ∞

0

ν − 1
2((

ν − 1
2

)2
+ t2

)2
tdt

e2πt − 1
, (10.5)

which allows us to write
∫ (

ν2 − 1

4

)2
ψ′
(
ν − 1

2

)
dν =

ν4

4
+
ν3

3
+

5

24
ν2 +

ν

4
− 7

48
+

1− 2ν2

12
log
(
ν − 1

2

)2

− B(ν), (10.6)

where

B(ν) :=2

∫ ∞

0

t3dt

e2πt − 1

t2 − 2ν

t2 +
(
ν − 1

2

)2 + 12

∫ ∞

0

t2dt

e2πt − 1
arctan

ν − 1
2

t

− 2(1 − 2ν2)

∫ ∞

0

tdt

e2πt − 1
log


1 +

t2
(
ν − 1

2

)2


 . (10.7)

Notice that for ν → ∞ we have

B(ν) = 3

2π2
ζ(3) +

1

60
+ . . . , (10.8)

where the dots stay for terms that vanish for ν → ∞.

Adding the three level bare potential finally gives the renormalized potential

VR =
m2

R

2
ϕ2
R +

cg
4
ϕ4
R +

1

32π2
(m2

R + 3cgϕ
2
R + 2)2ψ

(
ν0 −

1

2

)

+
N − 1

32π2
(m2

R + cgϕ
2
R + 2)2ψ

(
ν1 −

1

2

)
+

1

32π2
B(ν0) +

N − 1

32π2
B(ν1)

− 1

32π2

(ν30
3

+
5

24
ν20 +

ν0
4

− 7

48
+

1− 2ν20
12

log
(
ν0 −

1

2

)2)

− N − 1

32π2

(ν31
3

+
5

24
ν21 +

ν1
4

− 7

48
+

1− 2ν21
12

log
(
ν1 −

1

2

)2)

− 1

64π2
[
(m2

R + 3cgϕ
2
R + 2)2 + (N − 1)(m2

R + cgϕ
2
R + 2)2

]
log µ2R. (10.9)
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We can now restore full dimensions by reintroducing the curvature radius R, such that

Λ = − 3
R2 is the cosmological constant and

V =
V

R4
, mR = Rm, ϕR = Rϕ, µR = Rµ. (10.10)

This gives for the effective potential in d = 4:

V =
m2

2
ϕ2 +

cg
4
ϕ4 +

1

32π2

(
m2 + 3cgϕ

2 − 2

3
Λ
)2
ψ

(
ν0 −

1

2

)

+
N − 1

32π2

(
m2 + cgϕ

2 − 2

3
Λ
)2
ψ

(
ν1 −

1

2

)
+

Λ2

288π2
B(ν0) +

(N − 1)Λ2

288π2
B(ν1)

− Λ2

288π2

(ν30
3

+
5

24
ν20 +

ν0
4

− 7

48
+

1− 2ν20
12

log
(
ν0 −

1

2

)2)

− (N − 1)Λ2

288π2

(ν31
3

+
5

24
ν21 +

ν1
4

− 7

48
+

1− 2ν21
12

log
(
ν1 −

1

2

)2)

− 1

64π2

[(
m2 + 3cgϕ

2 − 2

3
Λ
)2

+ (N − 1)
(
m2 + cgϕ

2 − 2

3
Λ
)2]

log
3µ2

|Λ| , (10.11)

with

ν0 =3

√
1

4
− m2

3Λ
− cg

ϕ

Λ
, (10.12)

ν1 =3

√
1

4
− m2

3Λ
− cg

ϕ

3Λ
. (10.13)

For small cosmological constant we get the expansion

V =
m2

2
ϕ2 +

cg
4
ϕ4 +

1

64π2

(
m2 + 3cgϕ

2
)2

log
m2 + 3cgϕ

2

µ2

+
N − 1

64π2

(
m2 + cgϕ

2
)2

log
m2 + cgϕ

2

µ2

− 1

8π2

(
m2 + 3cgϕ

2

3

) 3
2 √

−Λ− N − 1

8π2

(
m2 + cgϕ

2

3

) 3
2 √

−Λ

− Λ(m2 + 3cgϕ
2)

288π2

(
11

8
+

1

2
log

3m2 + 9cgϕ
2

−Λ
+ 6 log

m2 + 3cgϕ
2

µ2

)

− Λ(N − 1)(m2 + cgϕ
2)

288π2

(
11

8
+

1

2
log

3m2 + 3cgϕ
2

−Λ
+ 6 log

m2 + cgϕ
2

µ2

)

+O(|Λ| 32 ). (10.14)

Notice that there is an important difference as compared to the effective potential in de

Sitter computed in [18]: here the cosmological function appears as the square root
√
−Λ

in place of Λ. This is due to the symmetry ν → −ν of the Wightman function in the de

Sitter case (that is a symmetry of Legendre functions of the first kind) a symmetry that

AdS quantum fields do not share.
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11 Conclusions

In the present paper, we have revisited methods and tools for quantum field theory on

the anti de Sitter spacetime already available in the literature [25, 29] but whose potential

seems to have gone unnoticed. In particular, we have shown here their power in computing

loop integrals directly, showing no need of bootstrapping at this level.

We have also shown the technical superiority of conceiving the correlation functions of

anti de Sitter quantum fields as Legendre functions of the second kind rather than the less

specific, altough equivalent, hypergeometric functions.

The methods used in this paper include theorems that render almost elementary the

computation of certain integrals which otherwise quite complicated even in flat Minkowski

spacetime: one example is the two-loop banana integral, the watermelon, with three arbi-

trary masses. The study of the watermelon where it diverges at d = 3, 4, 5 dimensions has

been left for future study where we will also show how to deal with loop Witten diagrams,

i.e. loop integrals with external legs going to spacelike infinity.
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A Remarks on the various spectral representations of dS and AdS prop-

agators

In this section we would like to discuss some points on the ongoing literature on harmonic

analysis on dS and AdS, which, in our opinion, need clarification.

In section 3 we have shown that Legendre’s associate functions of the second

kind4 have analyticity properties that are tailor-made for the geometry of the anti de Sitter

manifold and its covering: the maximal analyticity property of the two-point functions

(3.7) in the covering cut-plane ∆̃1 is a consequence of AdS invariance, local commutativity

and the positivity of the spectrum of the energy operator M0d; points of the cut of ∆̃1

correspond to pair of timelike separated events on the real manifold ÃdSd.

On the other hand Legendre’s functions of the first kind5 have analyticity prop-

erties that are tailor-made for the geometry of the de Sitter manifold. A short summary

will help in making clear what follows. The complex de Sitter universe may be represented

as the one-sheeted hyperboloid

dS
(c)
d = {z ∈M

(c)
d+1 : z · z = −R2 = −1} . (A.1)

immersed in a (d+ 1)-dimensional complex Minkowski spacetime. The same letter ζ used

before here denotes the complex de Sitter invariant variable

ζ = z1 · z2 = z01z
0
2 − z11z

1
2 − . . .− zd1z

d
2 , (A.2)

i.e. the scalar product in the ambient spacetime sense of two complex events z1, z2 ∈ dS
(c)
d .

Two real events x1 and x2 are timelike separated if and only if

(x1 − x2)
2 = −2− 2x1 · x2 > 0. (A.3)

The canonically normalized (Bunch-Davis) maximally analytic two-point function of a de

Sitter Klein-Gordon field is given by

W (dS)
κ (z1, z2) = w(dS)

κ (ζ) =
Γ
(
d−1
2 + iκ

)
Γ
(
d−1
2 − iκ

)

2(2π)d/2
(ζ2 − 1)−

d−2
4 P

− d−2
2

− 1
2
+iκ

(ζ) = (A.4)

=
Γ
(
d−1
2 + iκ

)
Γ
(
d−1
2 − iκ

)

(4π)d/2Γ
(
d
2

) 2F1

(
d− 1

2
+ iκ,

d− 1

2
− iκ;

d

2
;
1− ζ

2

)
(A.5)

where the (complex) mass squared is related to the parameter κ and the spacetime dimen-

sion d as follows (we set R = 1):

m2 =
(d− 1)2

4
+ κ2. (A.6)

The Legendre function [35] of the first kind Pα
β (ζ) is holomorphic in the cut-plane ∆2

– the same as Qα
β(ζ) – but the reduced two-point function w

(dS)
κ (ζ) is holomorphic in the

larger domain

ζ = z1 · z2 ∈ ∆ = C \ (−∞, −1], (A.7)

4More precisely, Legendre’s functions of the second kind multiplied by the factor (ζ2 − 1)−
d−2

4 .
5See footnote 4.
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i.e. everywhere except on the causality cut (A.3) cut (maximal analyticity property, [24]).

The factor (ζ2− 1)−
d−2
4 exactly compensates the singularity of P

− d−2
2

− 1
2
+iν

(ζ) at ζ = 1 making

the reduced two-point function regular there.

All the above being said and having specified the differences between the de Sitter and

the anti-de Sitter two-point functions, let us focus now on the mathematical possibility to

express the anti-de Sitter reduced two-point function (3.7) as a superposition of reduced de

Sitter two-point functions (A.4) i.e. as a superposition of Legendre functions of the first

kind.

The first thing we would like to recall here is that a Fourier-like representation of the

two-point function (A.4) (equivalently (A.5)) in terms of plane waves is available since 1994

[23, 24]:

W (dS)
ν (z1, z2) =

Γ
(
d−1
2 + iκ

)
Γ
(
d−1
2 − iκ

)
eπκ

2d+1πd

∫

γ
(ξ · z1)−

d−1
2

−iκ(ξ · z2)−
d−1
2

+iκ α(ξ).

(A.8)

Here ξ ∈ C+ = ∂V + = {ξ ∈ Md+1, ξ
2 = 0, ξ0 > 0} is a forward light-like vector in

the ambient spacetime; it can be also thought as a point of the boundary of the de Sitter

manifold at timelike infinity. A natural physical interpretation for such a ξ is that of the

asymptotic direction of the momentum of a particle [39].

The plane waves ψλ(z, ξ) = (ξ · z)λ composing the above formula solve individually

the Klein-Gordon equation in the respective tuboids:

�dSψ(z) +m2ψ(z) = 0, (A.9)

where

m2 = −λ(λ+ d− 1) =
(d− 1)2

4
+ κ2, λ = −d− 1

2
+ iκ, (A.10)

(d is the spacetime dimension).

The complex de Sitter events z1 and z2 belong to the backward and, respectively, the

forward de Sitter tuboids T− ands T+; these are the intersections of the ambient tubes T−
ands T+ (which are related to the positivity of the energy momentum operator [33]) with

the complex de Sitter manifold:

T± = {x+ iy ∈ X
(c)
d : x · y = 0, y2 > 0, sign y0 = ±} . (A.11)

In standard coordinates, the (d− 1)-form α(ξ) in Eq. (A.8) is written

α(ξ) = (ξ0)−1
d∑

j=1

(−1)j+1ξj dξ1 . . . d̂ξj . . . dξd; (A.12)

γ denotes any (d − 1)-cycle in the forward light-cone C+; the integrand in Eq. (A.8)

is a closed differential form and therefore the result does not depend on the choice of
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the manifold γ. In particular we may choose the unit spherical section of the cone Sd−1

(equipped with its canonical orientation):

γ0 = Sd−1 = C+ ∩ {ξ : ξ0 = 1} = {ξ ∈ C+ : ξ1
2
+ . . .+ ξd

2
= 1}. (A.13)

With this choice α(ξ) coincides with the rotation invariant measure dξ on Sd−1 normalized

as usual:

ωd =

∫

γ0

α(ξ) =
2π

d
2

Γ
(
d
2

) . (A.14)

Eq. (A.8) is very flexible and may be used to produce many distinct integral representation

of the Legendre function of the first kind. One possible construction goes as follows: the

tubes T− and T+ are bordered by two Riemannian (as opposed to Euclidean) manifolds

H− and H+ whose points are purely imaginary:

H± = {x+ iy ∈ X
(c)
d : x = 0, y2 = R2 = 1, sign y0 = ±} . (A.15)

Both H− and H+ are equivalent to the d-dimensional Lobachevsky space Hd which is also

equivalent to the Euclidean AdS manifold, see Eq. Hd (2.7).

We now choose the two points in Eqs. (A.8) to be purely imaginary: z1 = −iY1 ∈ H−

and z2 = iY2 ∈ H+; we choose to integrate over the parabolic basis of the cone

γp = C+ ∩ {ξ : ξ0 + ξd = 1}, (A.16)

which we parametrize as follows:

ξ0 = P 0 =
1

2
+ x2, ξi = P i = xi, ξd = P d =

1

2
− x2, dP = dx (A.17)

and the result is6

Ωκ(Y1, Y2) =W (dS)
κ (−iY1, iY2) = N(κ)

∫

γ
(P · Y1)−

d−1
2

−iκ(P · Y2)−
d−1
2

+iκ dP (A.18)

(see [9, Eq. 113]).

Even though it is a stretch, we might now insist in identifying both H− and H+ with

the same copy of a Euclidean AdS manifold; in the same vein we may also, identify the

light-cone C+ with the boundary of the Euclidean AdS manifold; with the these premises

Ωκ(Y1, Y2) may be taken as a basis of harmonic functions (proportional to Legendre func-

tions of the first kind, see Eq. (A.4)) that can be used to develop the AdS propagators.

6In a portion of the recent literature concerning harmonic analysis on the anti-de Sitter manifold a

formula like (A.18) is called a ”split representation” (see e.g. [48] and reference therein). The name has been

introduced to denote ”bulk-to-bulk propagators” that are represented as integrals of products of two scalar

”bulk-to-boundary propagators”. Our simple construction shows that ”bulk-to-boundary propagators” are

nothing but plane waves and a split representation is a special instance of the general analytic formula

(A.8). This remains true also in the more complicated tensorial cases treated in [48]. We believe that our

old denomination [24] ”Fourier-like” or ”plane-waves representation” makes more justice to Eq. (A.8) and

to any other split representation.
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While this may be a useful technical tool, as for instance in the calculations of Witten

diagrams in [9], it is somehow an unnatural move as we try to explain now.

Expressing the dS two-point function in as a superposition of AdS correlators we

already did in Eq. (3.12) which we we now rewrite in a more suggestive way:

wAdS
−ν (ζ)− wAdS

ν (ζ) = sinπν wdS
iν (ζ). (A.19)

Expressing the scalar AdS propagator (which is a Legendre functions of the second

kind) as a superposition of Legendre functions of the first kind is also simple; it can be

done in a one-line calculation by taking a generalized Mehler-Fock inverse transform [35,

Eq. 3.15.8]. In the two-dimensional case d = 2 the formula we are looking for is in books

since a very long time [45, Eq. (7.213))]:

Q− 1
2
+ν(u) =

∫ ∞

0
κ th(πκ)P

− 1
2
+iκ

(u) (x2 + ν2)−1 dx, Reκ > 0, u ∈ ∆2 ; (A.20)

the above identity holds in particular for real u > 1. It is however clear that something

goes wrong for −1 < u < 1: the integrand is holomorphic for u ∈ ∆ while the Legendre

function at the l.h.s. is defined only for u ∈ ∆2 ⊂ ∆; the cut of Q is longer and the integral

ill-defined on the cut.

To find the extension of the above formula to general dimension d, let us take the

Riemann-Liouville transform of both sides of Eq. (A.20):

∫ ∞

z
(u− z)µ−1P− 1

2
+iκ(u)du =

=
1

π
ch(πx)Γ(µ)Γ

(
1

2
− µ− iκ

)
Γ

(
1

2
− µ+ iκ

)(
z2 − 1

)µ/2
Pµ

− 1
2
+iκ

(z),

∫ ∞

z
(u− z)µ−1Q− 1

2
+ν(u)du =

=
1

π
e−iπµ cos(πµ+ πν)Γ(µ)Γ

(
1

2
− µ− ν

)
Γ

(
1

2
− µ+ ν

)(
z2 − 1

)µ/2
Qµ

− 1
2
+ν

(z).

(A.21)

The sought extension immediately follows:

Qµ

− 1
2
+ν

(z) = eiπµ
∫ ∞

0

κ sh(πκ)

(κ2 + ν2)

Γ
(
1
2 − µ− iκ

)
Γ
(
1
2 − µ+ iκ

)

cos(πµ + πν)Γ
(
1
2 − µ− ν

)
Γ
(
1
2 − µ+ ν

)Pµ

− 1
2
+iκ

(z)dκ.

(A.22)

Taking into account the identity (7.25) we get our final formula generalizing (A.20):

e−iπ d−2
2 Q

d−2
2

− 1
2
+ν

(z) =

∫ ∞

0

κ sh(πκ)

π(κ2 + ν2)
Γ

(
d− 1

2
− iκ

)
Γ

(
d− 1

2
+ iκ

)
P

− d−2
2

− 1
2
+iκ

(z)dκ. (A.23)

Eqs. (3.7) and (A.4) allow to rewrite the above identity (A.23) in a suggestive way:

w(AdS)
ν (ζ) =

2

π

∫ ∞

0

x sh(πκ)

(κ2 + ν2)
w(dS)
κ (ζ)dκ, ζ ∈ ∆2. (A.24)
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One should never forget that w
(AdS)
ν (ζ) and w

(dS)
κ (ζ) have different domains of analyticity.

Even the variable ζ has different meanings at the rhs and at the lhs. In particular the locus

of AdS coincident Euclidean points projects on ζ = 1 while the coincident dS Euclidean

points project on ζ = −1. In these respective places the Schwinger functions have distri-

butional singularities that in integer dimensions cause the appearance of a δ source at the

r.h.s. of the Klein-Gordon equation.

Inserting Eq. (A.18) into Eq. (A.24) one gets the so-called ”split representation” [28]

of the AdS Schwinger function:

w(AdS)
κ (Y1 · Y2) =

2

π

∫ ∞

0

κ sh(πκ)

(κ2 + ν2)
N(κ)

∫

γ
(P · Y1)−

d−1
2

−iκ(P · Y2)−
d−1
2

+iκ dP. (A.25)

This representation has proven to be useful in computing Witten diagrams on the Euclidean

anti de Sitter space [9]. However, it cannot be extended to the real anti de Sitter manifold.

Finally we may use Eq. (3.12) and write

w(AdS)
ν (ζ) =

i

π

∫ ∞

0

κ

(κ2 + ν2)
(w

(AdS)
iκ (ζ)− w

(AdS)
−iκ (ζ))dκ (A.26)

But the important formula is Eq. (A.23). The equivalent expressions (A.24) and (A.26)

are just ornamental.

The idea of expanding the AdS time-ordered propagator in Legendre functions of the

first kind has been introduced long ago by Düsedau and Freedman [49] as an intermediate

step in computing the Källén-Lehmann expansion of a propagator. Even in the title of their

paper, Düsedau and Freedman reserve the name of spectral representation to the Källén-

Lehmann expansion, the spectral parameter being the mass of the two-point functions

entering in there. Their Eq. (31) corresponds to our Eq. (A.23) specialized to d = 4 and

is described as a special instance of an integral transform of Gelfand and Graev [49].

The possibility of representing AdS propagators in terms of Legendre functions of the

first kind has been recently rediscovered and exploited. In this recent literature this is no

more intended as an intermediate step towards a true Källén-Lehmann representation of

the propagator but as a ”spectral representation” per se.

Eq. (A.24) is called in [9, Appendix B.1] ”the harmonic space representation of the bulk

to bulk propagator”. Eq. (A.26) in [14, Appendix B.2] is the ”spectral representation”

of the propagator. These denominations are, in our opinion, rather misleading because

the Legendre functions of the first and second kind (obviously) solve the same Legendre

differential equation (the delta terms arising only at coincident Euclidean points) and

also because that representation has already a name: generalized inverse Mehler-Fock

transformation (A.23).

The ”spectral representation” is sometimes rather inconvenient: a key result of [14]

consists in determining (through a quite involved bootstrappism and a certain amount of

clever guesswork) the ”spectral representation” of the bubble wλ(ζ)wν(ζ) in the particular

case of equal mass parameters λ = ν.

It is indeed quite elementary to compute such ”spectral representation” knowing the

Källén-Lehmann representation (7.19) and the Mehler-Fock antitransform of the propaga-

tor (A.24); here we perform the calculation in the general case of two different masses λ and

– 34 –



ν and for the maximally analytic functions which include as a special case the Schwinger

function at non-coinciding points:

w
(AdS)
λ (ζ)w(AdS)

ν (ζ) =
2

π

∫ ∞

0

∞∑

k=0

ρ(k;λ, ν)

(κ2 + (d−1
2 + 2k + λ+ ν)2)

κ sh(πκ)w(dS)
κ (ζ)dκ. (A.27)

By taking the series first, the weight is written as a generalized hypergeometric series:

Bd(λ, ν, κ) =

∞∑

k=0

ρ(k;λ, ν)

(κ2 + (2k + d−1
2 + λ+ ν)2)

. (A.28)

We have already encountered this series when computing the watermelon in Sect. 9 (see

Eq. (9.3)):

Bd(λ, ν, x) =
π−δΓ(δ + λ)Γ(δ + ν)Γ(δ + λ+ ν + 1)

2Γ(λ+ 1)Γ(ν + 1)Γ(2δ + λ+ ν) ((δ + λ+ ν)2 + κ2)

× 9F8

(
δ, δ + λ, δ + ν, δ + λ+ ν, 1+λ+ν

2 , 2+λ+ν
2 , 2+δ+λ+ν

2 , δ−iκ+λ+ν
2 , δ+iκ+λ+ν

2

1 + λ, 1 + ν, 1 + λ+ ν, δ+λ+ν
2 , 2δ+λ+ν

2 , 1+2δ+λ+ν
2 , 2+δ−iκ+λ+ν

2 , 2+δ+iκ+λ+ν
2

; 1

)
.

(A.29)

In the simplest case where the two masses are equal the above formula reduces to

Bd(ν, ν, κ) =
π−δΓ(δ + ν)2Γ(δ + 2ν + 1)

2Γ(ν + 1)2Γ(2(δ + ν)) ((δ + 2ν)2 + κ2)

× 7F6

(
δ, ν + 1

2 ,
δ
2 + ν + 1, δ2 + ν − iκ

2 ,
δ
2 + ν + iκ

2 , δ + ν, δ + 2ν

ν + 1, δ2 + ν, δ2 + ν − iκ
2 + 1, δ2 + ν + iκ

2 + 1, δ + ν + 1
2 , 2ν + 1

; 1

)
(A.30)

By using formula (9.6) to simplify Eq. (A.30) (with a = δ+2ν−iκ
2 and b = δ+2ν+iκ

2 ) we see

that Eq. (4.7) of [14] is an immediate consequence of the Källén-Lehmann formula.

The weight Bd(λ, ν, κ) of the ”spectral representation” is proportional to I
(1)
3 (λ, ν, iκ, d)

which is one of the two terms of the 2-loop vacuum diagram studied in Sect. 9: this explains

why Bd(λ, ν, x) may diverge at d = 3, 4 . . .; actually, Bd(λ, ν, κ) does not diverge at d = 3

because the divergences in I
(1)
3 (λ, ν, iκ, d) are milder than the divergences in I

(2)
3 (λ, ν, iκ, d);

the latter does diverge also at d = 3.

Whatever is the case, Bd(λ, ν, κ) is to be compared with the Källén-Lehmann weight

(7.20), which is splendidly regular at d = 3, 4 . . .

In our opinion, this is already a sufficient reason to avoid the use of the so-called

”spectral representation” and keep using the good old Källén-Lehmann representation.

Note also that in the ”spectral representation” the bubble is expanded as an integral

of Legendre functions of the first kind as opposed to the series of Legendre functions of

the second kind exhibited at the r.h.s. of Eq. (7.19). The quasi-periodical character of the

bubble is now completely hidden in a weird representation.

From a mathematical viewpoint, the Mehler-Fock representation (A.23) of the Legen-

dre functions may however be useful in other situations, as for the calculation of Euclidean
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Witten diagrams in [9]. For example, using the known integral of three Legendre functions

of the first kind [27]

hd(λ, ν, κ) =

∫ ∞

1
P

− d−2
2

− 1
2
+iλ

(u)P
− d−2

2

− 1
2
+iν

(u)P
− d−2

2

− 1
2
+iκ

(u) (u2 − 1)−
d−2
4 du =

=
2

d
2

(4π)
3
2Γ
(
d−1
2

)
∏

ǫ,ǫ′,ǫ′′=±1 Γ
(
d−1
4 + iǫλ+iǫ′ν+iǫ′′κ

2

)

∏
ǫ,ǫ′ǫ′′=±1 Γ

(
d−1
2 + iǫλ

)
Γ
(
d−1
2 + iǫ′ν

)
Γ
(
d−1
2 + iǫ′′κ

) (A.31)

we may compute the following related integral that may play a role in either dS or AdS

two-loop calculations (details are omitted):

∫ ∞

1
Q

− d−2
2

− 1
2
+a

(u)P
− d−2

2

− 1
2
+iν

(u)P
− d−2

2

− 1
2
+iκ

(u) (u2 − 1)−
d−2
4 du

=

π3/2G5,5
8,8

(
1

∣∣∣∣∣
1− a

2 ,
5−d
4 + iκ−iν

2 , 5−d
4 − iκ−iν

2 , 5−d
4 + iκ+iν

2 , 5−d
4 − iκ+iν

2 , 0, 12 , 1 +
a
2

a
2 ,

d−1
4 + iκ

2 − iν
2 ,

d−1
4 − iκ

2 + iν
2 ,

d−1
4 + iκ

2 + iν
2 ,

d−1
4 − iκ

2 − iν
2 ,

1
2 , 1,−a

2

)

22−
d
2 e

1
2
idπ cos

(
πa− πd

2

)
Γ
(
d−1
2

)∏
ǫ=± Γ

(
d−1
2 + iǫκ

)
Γ
(
d−1
2 + iǫν

)
Γ
(
d−1
2 + ǫa

)

(A.32)

where G is Meijer’s function. The limit a → iλ may be expressed as a combination of

hypergeometric series 7F6 which we do not reproduce here.

B Appendix. Proof of theorem 7.3

Let (δ, λ, ν) ∈ V , ζ ∈ ∆̂1, k ∈ Z+. Using (3.7) and [35, 3.3 (44) pp. 136-137], we get

Sk(δ, λ, ν, ζ) = Ak(δ, λ, ν)Bk(δ, λ, ν, ζ), (B.1)

Ak(δ, λ, ν) =

Γ(δ + k)

2δ+2π2δΓ(δ)
(δ + λ+ ν + 2k)×

Γ(1 + λ+ ν + 2k)Γ(δ + λ+ k)Γ(δ + ν + k)Γ(δ + λ+ ν + k)

Γ(1 + k)Γ(1 + λ+ k)Γ(1 + ν + k)Γ(1 + λ+ ν + k)Γ(1 + δ + λ+ ν + 2k)
, (B.2)

Bk(δ, λ, ν, ζ) =

(1− ζ−2)−
δ
2

[
1 + (1− ζ−2)

1
2

]−δ−λ−ν[
ζ + (ζ2 − 1)

1
2

]−2k
×

F

(
δ, 1− δ ; δ + 1 + σ ;

−ζ + (ζ2 − 1)
1
2

2(ζ2 − 1)
1
2

)
, σ = λ+ ν + 2k . (B.3)

The conditions (δ, λ, ν) ∈ V , ζ ∈ ∆̂1, ensure that Sk is well-defined for every k ∈ Z+. The

main point of the proof is the convergence of
∑

k Sk. Once this is established the analytic

functions on both sides of (7.30) are known to coincide on U0×∆2, where U0 is defined by

the conditions (7.18), hence they coincide wherever they are both defined.
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For any κ, ζ 7→ (1 − ζ−2)κ is even and analytic in ∆̂1. For ζ ∈ ∆1, (ζ
2 − 1)

1
2 =

ζ(1− ζ−2)
1
2 . Let

z =
−ζ + (ζ2 − 1)

1
2

2(ζ2 − 1)
1
2

=
−1 + (1− ζ−2)

1
2

2(1− ζ−2)
1
2

. (B.4)

The map ζ 7→ z is even and holomorphic in ∆̂1, and it maps ∆̂1 onto {u ∈ C : Re u < 1
2
}.

For ζ ∈ ∆1, we set

ζ = ch(ω), ω = τ + iθ, τ > 0, |θ| ≤ π. (B.5)

Then [
ζ + (ζ2 − 1)

1
2

]
= eω , (B.6)

z =
1

1− e2ω
, |z| ≤ 1

e2τ − 1
, 1 + |z| ≤ 1

1− e−2τ
, (B.7)

(1− ζ−2)
1
2 =

sh(ω)

ch(ω)
, sh(τ) ≤ | sh(ω)| ≤ ch(τ), sh(τ) ≤ | ch(ω)| ≤ ch(τ) . (B.8)

In order to estimate the hypergeometric function appearing in (B.3), we use [35, 2.3.2 pp

76-77]7 This provides the following estimate. Let a = α + iα′, b = β + iβ′, c = γ + iγ′,

w ∈ C, and suppose:

β ≥ 1
2
, γ − β ≥ 1

2
, |1− w| > ε, | arg(1− w)| < π(1− ε) for some ε > 0 . (B.9)

Then

|F (a, b, ; c ; w)| ≤ 1 +
|a||w|M(w)|β|

√
ch(πβ′) ch π(γ′ − β′)

γ
, (B.10)

with

M(w) = sup
0≤u≤1

|(1− uw)−a−1|. (B.11)

To apply this to the hypergeometric function appearing in (B.3), we treat separately the

cases Re δ ≥ 1
2
and Re δ ≤ 1

2
.

(1) Case Re δ ≥ 1
2
. In this case we set a = 1− δ, b = δ, c = δ+1+σ = δ+1+λ+ ν+2k,

and w = z defined as above, and satisfying (B.7) as well as Re z < 1
2
. For sufficiently large

k, the conditions (B.9) are satisfied and γ > 1. We have −α− 1− iα′ = Re δ − 2 + i Im δ

and

M(z) ≤
{
e2π| Im δ|22−Re δ if Re δ − 2 < 0 ,

e2π| Im δ|(1 + |z|)Re δ−2 if Re δ − 2 ≥ 0 .
(B.12)

Hence, with (B.5) and (B.7),

|z|M(z) ≤ 4e2π| Im δ|(e2τ − 1)−1(1− e−2τ )−(Re δ−2)+ , (B.13)

7We use formula (11) p. 76 (as corrected in the Errata) in the case n = 0.
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|Bk(δ, λ, ν, ζ)| ≤ e2π| Im δ|

(
ch(τ)

sh(τ)

)Re δ

×

e2π| Im(δ+λ+ν)|

(
eτ

sh(τ)

)−Re(δ+λ+ν)− ( eτ

ch(τ)

)−Re(δ+λ+ν)+

×
[
1 + 4|1− δ|e2π| Im δ|(e2τ − 1)−1(1− e−2τ )−(Re δ−2)+ ch(π Im δ)

1
2 ch(π Imσ)

1
2

]
×

× e−2kτ . (B.14)

(2) Case δ ≤ 1
2
. In this case we set a = δ, b = 1− δ, c = δ + 1 + σ = δ + 1 + λ+ ν + 2k,

and w = z defined as above. For sufficiently large k, the conditions (B.9) are satisfied and

γ > 1. We have −α− 1− iα′ = −Re δ − 1− i Im δ and

|z|M(z) ≤ 4e2π| Im δ|(e2τ − 1)−1(1− e−2τ )(Re δ+1)− , (B.15)

|Bk(δ, λ, ν, ζ)| ≤ e2π| Im δ|

(
ch(τ)

sh(τ)

)|Re δ|

×

e2π| Im(δ+λ+ν)|

(
eτ

sh(τ)

)−Re(δ+λ+ν)− ( eτ

ch(τ)

)−Re(δ+λ+ν)+

×
[
1 + 4|δ|e2π| Im δ|(e2τ − 1)−1(1− e−2τ )(Re δ+1)− ch(π Im δ)

1
2 ch(π Im(σ + 2δ))

1
2

]
×

× e−2kτ . (B.16)

The estimates (B.14) and (B.16) hold when (δ, λ, ν) remains in a compact subset K

of V intersected with {Re δ ≥ 1
2
} or {Re δ ≤ 1

2
} respectively, and for all k ≥ k0(K). With

the same restrictions on (δ, λ, ν), we can estimate Ak(δ, λ, ν) by the Erdélyi-Tricomi

theorem ([50, 5.11.13], [51], [52, pp. 118 ff]) and we find that there is a k1(K) > k0(K)

such that, for every k ≥ k1(K),

|Sk| ≤ H ch(τ)P τ−QkNe−2τk , (B.17)

where H > 0, P > 0, Q > 0 and N > 0 may depend on K (but not on τ). Therefore
∑

k Sk
(resp.

∑∞
k=k1

Sk) converges absolutely and uniformly, when all the parameters remain in

K × {ζ = ch(τ + iθ) : ε < τ < ε−1}, (ε > 0), to a function h(δ, λ, ν, ζ) (resp.

hk1(δ, λ, ν, ζ)) holomorphic in these variables. Since
∑L

k=0 Sk is holomorphic in ∆̂1 it

follows, by the maximum principle, that the convergence extends to K ×{ζ = ch(τ + iθ) :

ε < τ} ∪ {∞}, i.e. the functions h and hk1 are holomorphic there.

For any function f holomorphic in ∆1, and P > 0, Q > 0, let

||f ||P,Q = sup
ζ∈∆2

e−PττQ|f(ζ)|, ζ = ch(τ + iθ), τ > 0, |θ| < π . (B.18)

It then follows from our estimates that if (δ, λ, ν) remains in the compact K, there exist

constants P > 0, Q > 0, and M > 0 such that

||
L∑

k=k1

Sk||P,Q ≤M ∀L > 0, (B.19)
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for any ε > 0 there is an L > 0 such that

||
∞∑

k=L

Sk||P,Q < ε , (B.20)

||hk1 ||P,Q ≤M . (B.21)

(The functions appearing in the lhs of these inequalities are considered as functions of

ζ ∈ ∆2 at fixed δ, λ, ν.) Restricting these estimates to the tuboid Z1− ×Z1+ it is possible

to show that (7.30) remains true for the boundary values of both sides in the sense of

tempered distributions. We omit the lengthy but straightforward details.
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