

# Rare leptonic and semi-leptonic decays at LHCb





**Tom Hadavizadeh** On behalf of the LHCb collaboration

> 58th Rencontres de Moriond 2024 QCD and High Energy Interactions

> > 2nd April 2024





## **Rare decays** are a great place to test the Standard Model

## Flavour changing neutral currents are particularly sensitive area





Moriond QCD

## Motivation

Suppressed in the Standard Model  $\rightarrow$  New physics can be competitive

e.g.  $b \rightarrow s\ell\ell$ 



## Motivation

## **Rare decays** are a great place to test the Standard Model

## Flavour changing neutral currents are particularly sensitive area





### Moriond QCD

Suppressed in the Standard Model  $\rightarrow$  New physics can be competitive

e.g.  $b \rightarrow s\ell\ell$ 



## Rare decays at LHCb

## **Rare decays** can provide a wealth of information





Moriond QCD

## Lepton flavour universality tests $R_{K} = \frac{\mathscr{B}(B^{+} \to K^{+}\mu^{+}\mu^{-})}{\mathscr{B}(B^{+} \to K^{+}e^{+}e^{-})}$

Precise theory

predictions









## Rare decays at LHCb

## **Rare decays** can provide a wealth of information



MONASH University

Moriond QCD

Lepton flavour universality tests  $R_{K} = \frac{\mathscr{B}(B^{+} \to K^{+}\mu^{+}\mu^{-})}{\mathscr{B}(B^{+} \to K^{+}e^{+}e^{-})}$ 

Precise theory predictions



- **LHCb** is an excellent place to study rare processes

  - Large samples of b and c-hadrons collected in Run1 + Run2











 $J/\psi \to \mu^+ \mu^- \mu^+ \mu^-$ 

Run 2

 $B^0 \to K^{*0} \mu^+ \mu^-$ 

Shown Continents LHCb-PAPER-2024-011, in preparation Comprehensive analysis of local and nonlocal amplitudes in the  $B^0 \rightarrow K^{*0} \mu^+ \mu^-$  decay



### Moriond QCD

## Today's outline

## **Rare leptonic decay**

## LHCb-CONF-2024-001, Observation of the rare decay $J/\psi \rightarrow \mu^+ \mu^- \mu^+ \mu^-$

## **Rare semileptonic decay**

Shown For the stress





**Electromagnetic** process that proceeds though final-state radiation of a virtual photon

Four lepton decays of heavy quarks are not well studied

Similarity to FCNC processes make this measurement very useful for understanding FSR e.g  $B_s^0 \rightarrow \mu^+ \mu^- \mu^+ \mu^-$ 



Moriond QCD

 $J/\psi \to \mu^+ \mu^- \mu^+ \mu^-$ 

### LHCb-CONF-2024-001









 $J/\psi \to \mu^+ \mu^- \mu^+ \mu^-$ 

**Electromagnetic** process that proceeds though final-state radiation of a virtual photon

Four lepton decays of heavy quarks are not well studied

Similarity to FCNC processes make this measurement very useful for understanding FSR e.g  $B_s^0 \rightarrow \mu^+ \mu^- \mu^+ \mu^-$ 



### LHCb-CONF-2024-001



## The state of play









## Analysis strategy







Moriond QCD

Measures the branching fraction  $\mathscr{B}(J/\psi \to \mu^+ \mu^- \mu^+ \mu^-)$  relative to normalisation channel  $J/\psi \to \mu^+ \mu^-$ 

$$\frac{\psi \to \mu^+ \mu^- \mu^+ \mu^-)}{J/\psi \to \mu^+ \mu^-)}$$







## Analysis strategy

 $J/\psi$  from **two origins** are used: Prompt  $J/\psi$ ✓ High production gate × High background rates × Requires tight selection

Dedicated **BDT algorithms** are trained to reject combinatorial background









## $J/\psi \rightarrow \mu^+ \mu^- \mu^+ \mu^-$ is **observed** in both samples with a large significance ( $\gg 5\sigma$ )



Moriond QCD

Results

### LHCb-CONF-2024-001









 $J/\psi \rightarrow \mu^+ \mu^- \mu^+ \mu^-$  is **observed** in both samples with a large significance (  $\gg 5\sigma$ )

$$R_{BR} = (1.89 \pm 0.17 \pm 0.09) \times 10^{-5}$$

$$\mathscr{B}(J/\psi \to \mu^+ \mu^- \mu^+ \mu^-) = (11.3 \pm 1.0 \pm 0.5 \pm 0.1) \times 10^{-7}$$

## Most precise measurement to date **Consistent** with SM within $1.4\sigma$



Moriond QCD

Results

### LHCb-CONF-2024-001









 $J/\psi \rightarrow \mu^+ \mu^- \mu^+ \mu^-$  is **observed** in both samples with a large significance (  $\gg 5\sigma$ )

$$R_{BR} = (1.89 \pm 0.17 \pm 0.09) \times 10^{-5}$$

$$\mathscr{B}(J/\psi \to \mu^+ \mu^- \mu^+ \mu^-) = (11.3 \pm 1.0 \pm 0.5 \pm 0.1) \times 10^{-7}$$

## Most precise measurement to date **Consistent** with SM within $1.4\sigma$

**Dimuon mass** distributions agree with QED predictions



Moriond QCD

Results

### LHCb-CONF-2024-001











 $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ : A very brief history

## $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ has caused lots of interest in the community



MONASH University

Moriond QCD







 $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ : A very brief history

## $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ has caused lots of interest in the community



MONASH University

Moriond QCD

[LHCb-PAPER-2020-002]

observables and the differential decay rate









 $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ : A very brief history

## $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ has caused lots of interest in the community



MONASH University

Moriond QCD

[LHCb-PAPER-2020-002]

Discrepancies are present in multiple observables and the differential decay rate









MONASH University

Moriond QCD







## The $B^0 \to K^{*0} \mu^+ \mu^-$ decay doesn't live in isolation...



MONASH University

Moriond QCD

## New physics or QCD?















MONASH University

Moriond QCD

## New physics or QCD?















MONASH University

Moriond QCD

## New physics or QCD?

![](_page_19_Picture_8.jpeg)

![](_page_19_Picture_10.jpeg)

![](_page_19_Figure_11.jpeg)

![](_page_19_Picture_12.jpeg)

![](_page_20_Picture_0.jpeg)

**2016:** 4.7 fb

Run

![](_page_20_Picture_1.jpeg)

![](_page_20_Figure_2.jpeg)

Measure observables in bins of  $q^2$ 

![](_page_20_Picture_4.jpeg)

Moriond QCD

![](_page_20_Figure_6.jpeg)

![](_page_21_Picture_0.jpeg)

![](_page_21_Picture_1.jpeg)

- **Unbinned** amplitude analysis to the whole  $q^2 \equiv m^2(\mu^+\mu^-)$  region  $\checkmark$
- ✓ First measurement using the full Run1 [2011-2012] and Run2 [2016-2018] data

Local Dispersion  $C_{9}^{\text{eff},\lambda}(q^{2}) = C_{9}^{\mu} + Y_{c\bar{c}}^{(0),\lambda} + Y_{c\bar{c}}^{1P,\lambda}$ Relation

Moriond QCD

$$C_7^{\text{eff},\lambda}(q^2) = C_7^{\mu} + \epsilon^{\lambda} e^{i\omega^0}$$

![](_page_21_Picture_6.jpeg)

## New results

Non-local contributions

$$Y^{\lambda}(q^2) + Y^{1P,\lambda}_{\text{light}}(q^2) + Y^{2P,\lambda}_{c\bar{c}}(q^2) + Y_{\tau\bar{\tau}}(q^2)$$

C. Cornella, G. Isidori, M. König, S. Liechti, P. Owen, N. Serra [Eur.Phys.J.C 80 (2020) 12, 1095]

![](_page_21_Picture_15.jpeg)

![](_page_21_Picture_16.jpeg)

![](_page_22_Picture_0.jpeg)

![](_page_22_Picture_1.jpeg)

- **Unbinned** amplitude analysis to the whole  $q^2 \equiv m^2(\mu^+\mu^-)$  region  $\checkmark$
- First measurement using the full Run1 [2011-2012] and Run2 [2016-2018] data  $\checkmark$

![](_page_22_Figure_4.jpeg)

![](_page_22_Picture_5.jpeg)

## New results

Non-local contributions

$$Y^{\lambda}(q^2) + Y^{1P,\lambda}_{\text{light}}(q^2) + Y^{2P,\lambda}_{c\bar{c}}(q^2) + Y_{\tau\bar{\tau}}(q^2)$$

 $\psi(4160)$ 

C. Cornella, G. Isidori, M. König, S. Liechti, P. Owen, N. Serra [Eur.Phys.J.C 80 (2020) 12, 1095]

Tom Hadavizadeh

 $J/\psi$ ,

![](_page_22_Picture_17.jpeg)

![](_page_22_Picture_18.jpeg)

![](_page_23_Picture_0.jpeg)

![](_page_23_Picture_1.jpeg)

- **Unbinned** amplitude analysis to the whole  $q^2 \equiv m^2(\mu^+\mu^-)$  region  $\checkmark$
- First measurement using the full Run1 [2011-2012] and Run2 [2016-2018] data  $\checkmark$

![](_page_23_Figure_4.jpeg)

![](_page_23_Picture_5.jpeg)

## New results

![](_page_23_Picture_12.jpeg)

![](_page_23_Picture_13.jpeg)

![](_page_24_Picture_0.jpeg)

![](_page_24_Picture_1.jpeg)

- **Unbinned** amplitude analysis to the whole  $q^2 \equiv m^2(\mu^+\mu^-)$  region  $\checkmark$
- First measurement using the full Run1 [2011-2012] and Run2 [2016-2018] data  $\checkmark$

![](_page_24_Figure_4.jpeg)

![](_page_24_Picture_5.jpeg)

## New results

![](_page_24_Picture_12.jpeg)

![](_page_24_Picture_13.jpeg)

![](_page_25_Picture_0.jpeg)

![](_page_25_Picture_1.jpeg)

- **Unbinned** amplitude analysis to the whole  $q^2 \equiv m^2(\mu^+\mu^-)$  region  $\checkmark$
- First measurement using the full Run1 [2011-2012] and Run2 [2016-2018] data  $\checkmark$

![](_page_25_Figure_4.jpeg)

![](_page_25_Picture_9.jpeg)

## New results

![](_page_25_Picture_16.jpeg)

![](_page_25_Picture_17.jpeg)

![](_page_26_Picture_0.jpeg)

- **Unbinned** amplitude analysis to the whole  $q^2 \equiv m^2(\mu^+\mu^-)$  region  $\checkmark$
- First measurement using the full Run1 [2011-2012] and Run2 [2016-2018] data  $\checkmark$

![](_page_26_Figure_4.jpeg)

## New results

![](_page_26_Picture_10.jpeg)

![](_page_26_Picture_11.jpeg)

![](_page_27_Picture_0.jpeg)

**Angular analysis** preformed in the three decay angles and  $q^2$ 

## **From Simulation**

Acceptance model

## **From Data**

- Resolution •
- S-wave parameters
- Background model •

## From Theory

Local  $B \rightarrow K^*$  Form factors Gaussian constrained GRvDV [JHEP 09, 133 (2022)]

### Moriond QCD

## Analysis strategy

## **Fit determines 150 parameters:**

- $\Re(C_9), \, \Re(C_{10}), \, \Re(C_9), \, \Re(C_{10}), \, \Re(C_9^{\tau})$
- Mag. and Phase of 1-particle resonances
- Real+Imag  $D^{(*)}\overline{D}^{(*)}$  per helicity
- $\Delta C_7$  per helicity
- Form factors lacksquare

![](_page_27_Picture_21.jpeg)

![](_page_27_Picture_23.jpeg)

![](_page_27_Picture_24.jpeg)

![](_page_27_Picture_25.jpeg)

![](_page_28_Picture_1.jpeg)

![](_page_28_Figure_2.jpeg)

## Results

![](_page_28_Picture_7.jpeg)

![](_page_29_Picture_0.jpeg)

## Wilson Coefficients

 $\Re(C_{10})$ 

-4

-5

 $\Re(C'_{10})$ 

-1

-2

![](_page_29_Figure_2.jpeg)

| $\mathcal{C}_9$     | $3.56 \pm 0.28 \pm 0.18$  | $2.1\sigma$  |
|---------------------|---------------------------|--------------|
| $\mathcal{C}_{10}$  | $-4.02 \pm 0.18 \pm 0.16$ | 0.6 <i>o</i> |
| $\mathcal{C}_9'$    | $0.28 \pm 0.41 \pm 0.12$  | $0.7\sigma$  |
| $\mathcal{C}'_{10}$ | $-0.09 \pm 0.21 \pm 0.06$ | $0.4\sigma$  |
| $\mathcal{C}_9^	au$ | $-116 \pm 264 \pm 98$     | $0.4\sigma$  |
|                     |                           |              |

Global significance  $\sim 1.5\sigma$  from SM

In agreement with previous unbinned analysis

 $\mathscr{B}(B^0 \to J/\psi K^{*0})$  dominates systematic uncertainty

MONASH University

Moriond QCD

## LHCb-PAPER-2024-011, in preparation

![](_page_29_Figure_10.jpeg)

![](_page_29_Picture_13.jpeg)

![](_page_29_Picture_14.jpeg)

![](_page_30_Picture_0.jpeg)

**Impact** of the nonlocal amplitudes on the Wilson coefficients shown per helicity e.g.

## Good agreement with previous analysis

![](_page_30_Figure_4.jpeg)

![](_page_30_Picture_5.jpeg)

MONASH University

Moriond QCD

![](_page_30_Picture_9.jpeg)

![](_page_31_Picture_0.jpeg)

![](_page_31_Figure_4.jpeg)

![](_page_31_Figure_5.jpeg)

![](_page_31_Picture_7.jpeg)

![](_page_32_Picture_0.jpeg)

![](_page_32_Figure_4.jpeg)

![](_page_32_Figure_5.jpeg)

![](_page_32_Picture_7.jpeg)

![](_page_33_Picture_0.jpeg)

![](_page_33_Figure_4.jpeg)

![](_page_33_Figure_5.jpeg)

![](_page_33_Picture_7.jpeg)

![](_page_34_Picture_0.jpeg)

**Observation** of  $J/\psi \rightarrow \mu^+ \mu^- \mu^+ \mu^-$  decays

**Measurement** of local and nonlocal amplitudes in  $B^{\vee} \to K^{\vee} \mu^+ \mu^-$  decays

Key takeaway: Nonlocal contributions found to only mildly impact the results

| $\mathcal{C}_9$             | $3.56 \pm 0.28 \pm 0.18$  | $2.1\sigma$  |
|-----------------------------|---------------------------|--------------|
| $\mathcal{C}_{10}$          | $-4.02 \pm 0.18 \pm 0.16$ | 0.6 <i>σ</i> |
| $\mathcal{C}_9'$            | $0.28 \pm 0.41 \pm 0.12$  | $0.7\sigma$  |
| $\mathcal{C}_{10}^{\prime}$ | $-0.09 \pm 0.21 \pm 0.06$ | $0.4\sigma$  |

MONASH University

Moriond QCD

## Conclusions

$${}^{+}\mu^{-} \text{ decays}$$

$$\mathcal{B}(J/\psi \to \mu^{+}\mu^{-}\mu^{+}\mu^{-}) =$$

$$(1.13 \pm 0.10 \pm 0.05 \pm 0.01) \times 10^{-6}$$

$$(1.13 \pm 0.10 \pm 0.05 \pm 0.01) \times 10^{-6}$$

- First LHCb  $B^0 \rightarrow K^{*0} \mu^+ \mu^-$  angular analysis with Run 1 + Run 2 data set

$$C_9^{\tau} - 116 \pm 264 \pm 98 \ 0.4\sigma$$

First direct measurement of  $C_{
m o}^{ au}$ 

![](_page_34_Picture_14.jpeg)

![](_page_34_Picture_16.jpeg)

![](_page_34_Picture_17.jpeg)

Back up

![](_page_36_Picture_0.jpeg)

![](_page_36_Picture_1.jpeg)

![](_page_36_Picture_2.jpeg)

MONASH University

Moriond QCD

## LHCb

![](_page_36_Picture_8.jpeg)

![](_page_37_Figure_0.jpeg)

![](_page_37_Figure_2.jpeg)

![](_page_37_Figure_3.jpeg)

![](_page_37_Picture_4.jpeg)

![](_page_38_Picture_0.jpeg)

![](_page_38_Picture_1.jpeg)

## $q^2$ dependence

Fit performed with linearly varying  $C_0$ and  $C_{10}$ :  $C_{9}^{q^{2}} = C_{9} + \alpha (q^{2} - 8.95)$  $C_{10}^{q^{2}} = C_{10} + \beta (q^{2} - 8.95)$  $\alpha = 0.029 \pm 0.082$  $\beta = -0.058 \pm 0.026$  $2.2\sigma$  deviation from zero for  $C_{10}$  is observed

Moriond QCD

![](_page_38_Picture_4.jpeg)

## Cross checks

## Form factor dependence

Use alternative local  $B \rightarrow K^*$  form factors - different LCSR inputs

Bharucha, Straub, & Zwicky [JHEP 08 (2016) 098]

 $C_9$  changes by 35%  $\sigma_{\rm stat}$ 

 $C_{10}$  changes by 90%  $\sigma_{\rm stat}$ 

## **Subtraction point**

Dispersion relation should be independent of subtraction point

Varying subtraction point between  $q_0^2 = -1 \,\text{GeV}^2/c^4$  and  $q_0^2 = -10 \,\text{GeV}^2/c^4$ leads to variation of 35%  $\sigma_{\rm stat}$  in  $C_9$ 

![](_page_38_Picture_17.jpeg)

![](_page_39_Picture_0.jpeg)

## Comparison to binned analysis

![](_page_39_Figure_2.jpeg)

MONASH University

### Moriond QCD

[LHCb-PAPER-2020-002]

![](_page_39_Picture_9.jpeg)

![](_page_40_Figure_0.jpeg)

MONASH University

### Moriond QCD

![](_page_40_Picture_5.jpeg)

![](_page_41_Picture_0.jpeg)

![](_page_41_Picture_1.jpeg)

## **sPlot method** is used to study kinematic distributions

![](_page_41_Figure_3.jpeg)

MONASH University

Moriond QCD

## QED model

## LHCb-CONF-2024-001

![](_page_41_Picture_10.jpeg)

![](_page_42_Picture_0.jpeg)

![](_page_42_Figure_2.jpeg)

CMS (33.6 fb<sup>-1</sup> 
$$pp \rightarrow J/\psi$$
)

![](_page_42_Figure_6.jpeg)

MONASH University

Moriond QCD

![](_page_42_Picture_13.jpeg)