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Abstract

Results of experiments on stochastic cooling of the energy dispersion in a beam are 
presented. Correlations were studied between damping decrement and the beam phase space 
density, number of harmonics involved and feedback gain. The final dispersion in a beam was 
found to be determined by the noise of the electronics. A coherent instability, associated 
with a beam shift in a pick-up was found. The limitations of the method due to the noise of 
electronics and to collective effects in intense beams are discussed.
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Introduction

The method of stochastic cooling, proposed by S. van der Meer1), is based on the use of 

a system of wideband feedback to cool a beam of heavy particles in a storage ring. In the 
simplest case, such a system consists of a pick-up electrode, measuring the deviation of a 
particle from its equilibrium position and a correcting element (kicker) to which the signal 
from the pick-up is applied through a wideband amplifier. As it was shown by Ya. S. Derbenev

 and S.A. Heifets2), the damping effect is associated with a self-interaction of a particle 
through the feedback. Interaction of different particles of a beam through the feedback leads 
to the effect of "screening” and increases the cooling time proportionally to the number N 
of particles in a beam. An attractive feature of the method of stochastic cooling is its low 
dependency of cooling time on the emittance of the beam to be cooled.

A series of experiments was performed at CERN from 1974 to 1978 on the ISR and on ICE,
 to study experimentally stochastic cooling3). In these experiments the cooling effect was 

demonstrated and it was also found that the cooling time increases with the number of particles 
in the beam.

It is regrettable that despite of the large amount of experimental data, important de
pendencies of e.g. the cooling time or beam size versus feedback loop parameters and dis
persion of revolution frequency of the particles in the beam were not given. This makes it

 difficult to apply the results3) to different machines. The importance of finding dependencies 
experimentally is emphasized by the fact that the process of stochastic cooling is described 
by a non-linear equation, the solution of which can be estimated only.

Here we present results of experiments on stochastic cooling of the energy dispersion 
in a proton beam in NAP-M. The goal of the experiments was to estimate the possibility of 
using this method of cooling in machines for antiproton accumulation and to study peculiarities 
of the cooling process.

1. Estimation of cooling decrements

Let us consider the case of cooling a beam, of uniform azimuthal distribution, with the 
help of a system shown in Fig. 1. A balanced pick-up consisting of open-ended strip lines was 
used as a signal source for a feedback loop (FB). The level of the differential signal induced 
by a particle is : 

where v = βc, ωp and e are the velocity, revolution frequency and charge of the particle, 
resp., p = Mγv = momentum of equilibrium particle, Δp = deviation of momentum of the particle 
from equilibrium value, ψ = dispersion function of the storage ring, 00 = L/R0 = azimuthal 
length of the sensor plate, A = its aperture, Z0 = impedance of the strip line.

(1)
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The differential signal is applied through a transformer to a feedback amplifier and 
then to the kicker, representing itself a drift tube with a length equal to that of the sensor. 
If the gain of the amplifier K0 is constant within the band |n| < n and is zero outside
that frequency band, then the voltage at the kicker is :

(2)

where T0 is the feedback loop delay. The change of particle momentum after passing through a 
drift tube for optimum values T0 and pick-up length 00 equals :

The last equation allows us to determine the single particle decrement :

(3)

Here rl = e2/Mc2 is the classical radius of the particle, W = f0nmax “ amplifier band width. 

As one can see from expressions (2) and (3) the value of the decrement λ0 is increasing with 
the bandwidth W as long as nmaxΔf/f < 1 (Δf is the revolution frequency spread in a beam). If 
one increases W further, the particle and the correcting pulse will not reach the ends of the 
drift tube simultaneously and this will lead to the decrease of λ0.

In addition to self-interaction, leading to a decrease of the momentum spread in a beam, 
particles are subject to random kicks, associated with the thermal noise of the amplifier. 
This random kicks define the final spread in a beam. Assuming that the amplifier noise is 
defined by its input resistance, the mean square of the amplifier output is, according to the 
Nyquist formula :

(4)

where T is the temperature and k the Boltzmann factor. With this, the rate of the change of 
momentum spread in a beam is given by the following equation :

(5)

where G(wτ) is the correlation function of the noise of the amplifier and τ is the flight 
time through the accelerating tube. From this equation one can see that the square of the 
final momentum spread increases linearily with the increase of the gain K0· That is why the 
decrement of damping to a given final spread is restricted by the value :

(6)

R0 = radius of equilibrium orbit.
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Another limitation on the damping rate is associated with the self-interaction of the 
beam particles through the feedback loop. Because of the finite amplifier bandwidth, a signal, 
induced by a particle, affects adjacent particles, shifting them to the opposite direction,

 and this makes the cooling decrement smaller. This effect has been studied in many works2-6) 
and can be described by the formula (6) :

(7)

where N is the number of particles in a beam. As one can see from (7), the described screening 
effect leads to the increase of cooling time of intense beams with small momentum dispersion.

It was mentioned above that the maximum number of harmonics which can effectively par
ticipate in cooling is defined by the spread of the revolution frequency nmax < f0/Δf. There- 
fore, if there are no technical limitations on the bandwidth of the systems’operation fre
quencies, the value of at the initial stage of cooling may approach the value :

As one can see from the above condition, in order to increase W it is necessary to de
crease the revolution frequency spread in the beam and therefore to increase the "hardness” 
of a storage ring, provided the value of Δp/p0 is given. The minimum possible spread of the 
revolution frequency is defined in this case by the condition of the coherent stability of 
a beam.

2. Description of the cooling system NAP-M

The block diagram of the cooling system is given in Fig. 1. The signals from two radial 
plates of the pick-up are applied to a differential transformer, then a differential signal, 
after amplification in pre-amplifier and power amplifier, is applied to the kicker. A variable 
attenuator and a delay line are included in the feedback loop in order to be able to change 
the amplitude and delay time of the feedback signal. Pick-up plates together with the inner 
surface of the ring’s vacuum chamber form 50 Ohm open-ended strip lines. The kicker is made 
of four matched strip lines. Signals for the kicker are taken from four differential outputs 
of the power amplifier. The influence of such a kicker on the beam is equivalent to that of 
an accelerating gap. The sensor and the kicker have the same length βc W/4 equal to that of 
the wavelength in a beam and corresponding to the upper frequency of the feedback bandwidth.

In addition to this system, which we will refer to as wideband, a cooling system with a 
resonant filter on its input was also studied. Coaxial cables were used as a filter. They 
form together with the strip lines of the pick-up two resonant lines short circuited at the 
end by the low input resistance of amplifiers. The amplified signals of both channels are 
substracted then on the transformer. The lines have the electrical lengths corresponding to 
1/4 wavelength of beam revolution frequency. The filter being transparent for the working 
spectrum of the beam, suppresses the spectral components of the noise of the input amplifiers 
and of the quarter-wavelength lines outside their bandwidth. This allows to have high feed
back gain at a given power of the output amplifier. On the other hand, the signal-to-noise 
ratio may be increased if the quality factor of the filter is sufficiently high.
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It should be noted that a system with a filter passing only half the number of harmonics 
of the beam revolution frequency makes it possible to study experimentally the influence of 
particles on the cooling decrement when the number of working harmonics is varied.

Below are given the characteristics of the cooling systems :

Wideband With filter

Working frequencies 100 - 300 MHz 100 - 300 MHz
Maximum gain 0.75 . 106 4. . 106
Output power, Watt 4 x 0.5 4 x 0.5
Number of harmonics 100 100
Noise factor, DB 2.5 3-4

Beam observation during cooling was done by measurement of the beam’s Schottky noise 
spectrum. A continuous beam, coasting in a ring, induces in the pick-up a signal which is 
associated with the finite number of particles in a beam. This signal is essentially a 
Schottky noise with a spectrum concentrated around harmonics of the average revolution fre
quency. The spectral width of the n-th harmonic is defined by the spread of revolution fre
quencies NΔω, which is proportional to the energy spread of the particles in the beam. The 
power of such a signal i.e. the spectral integral around a given harmonic, is determined by 
the total number of particles in a beam and does not depend on the revolution frequency 
dispersion.

Noise spectra were taken at the 8th harmonic of the revolution frequency with the help 
of the integrating pick-up and using the system described in (7). After double down frequency 
conversion, the initial signal was converted into digital form and sent to the computer. It 
was then analyzed with fast Fourier transformation. Thus one determined the width of the 
spectrum of the longitudinal noise in the beam and the spectral integral, containing inform
ation on the number of particles in a beam.

3. Experimental results

NAP-M is a proton accelerator, designed for experiments on electron cooling. Its mean 
radius is 7.5 m, the injection energy about 1.5 MeV. Experiments were performed at an energy 
of 62 MeV with a revolution frequency equal to 2.21 MHz. After acceleration, the beam size 
was rather small. Therefore, in order to be able to see the effect of stochastic cooling, we 
had to increase beforehand the momentum dispersion of the beam. To do this, a frequency 
modulated voltage with a mean frequency equal to the beam revolution frequency was applied 
to the cavity of the ring. The modulation frequency was chosen to be about 20 Hz. Frequency 
deviation and level of the voltage applied to the cavity were set such that the momentum 
dispersion was increased without substantial increase of the amplitudes of betatron oscilla
tions. After initial heating, before switching on the feedback, the beam had Δp/p = ±3 10-4 
(Δf/f0 = ±3 10-5).

The optimum feedback loop time delay was chosen observing the decrease of the width of 
the noise spectrum. A typical change of noise spectrum is shown in Fig. 2. Spectra are
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normalized on their own amplitude. In Fig. 3, beam behaviour is compared when positive and 
negative feedback is applied. One can see that for practically the same rate of change of 
the number of particles in the beam (ln S) , spectrum width is decreasing when negative feed
back is applied and increasing when one applies a positive one. In the last case the maximum 
width of the spectrum was determined mainly by aperture limitations.

In our experiments, the width of spectrum of the beam being cooled has been decreasing 
to a final level determined by the noise of the electronics in feedback circuit. In Fig. 4, 
dependencies are shown of the final spread of revolution frequencies in a beam as a function 
of single-particle damping decrement. The dependencies are given for filter and wideband 
systems. The fact that in the wideband system with the same decrement a smaller final size 
is achieved can be explained possibly by better noise matching of the input circuit, a higher 
number of working harmonics in the wideband system and also by a low quality factor of the 
filter in the resonant system.

In Fig. 5, the dependence of the damping decrement is shown vs. the gain of the sensor
kicker circuit in the middle of the working frequency band. Data are presented for wideband 
and resonant systems. Straight lines 1 and 3 correspond to measurements with a small number 
of particles (N = 2 107). The substantial difference (about 2 times) in decrements λ for 

both systems at the same gain is explained by the two times smaller number of harmonics par
ticipating in the cooling.

The difference in harmonics number shows up in the screening effect. In a wideband 
system at N = 108, the joint influence of particles is small (curve 2). Halving the number 
of harmonics leads to a substantial increase of cooling time of the intense beam (curve 4). 
It should be noted that starting from K0 = 0·8 106 the decrement practically does not change 
staying at the level of λ = 1/8 min.

As was pointed out before (7), the damping time constant, when the joint interaction of 
the particles is taken into account, is defined by the following expression : 

where n = number of harmonics, τ0 = single-particle damping time constant. The experimental 
dependence of the damping time constant on the value of N/Δf n2is given in Fig. 6 (τ0 was 
the same for both systems). One can see that the results obtained are in good agreement with 
theoretical predictions.

4. Longitudinal beam instability

After applying feedback to a beam with a small spread of revolution frequency, a lon
gitudinal instability has been seen. A coherent signal from the integrating pick-up was seen 
during several seconds and disappeared afterwards. When the feedback was switched on for the 
second time, no coherent signal was seen. In Fig. 7, a typical behaviour of noise power and 
spectrum width is shown at the moment of instability. At the moment of switching, S is sharply 
increasing and Δf decreasing. This corresponds to the monochromatisation of the signal.
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During instability development, S is getting smaller and Δf higher, until they reach values 
corresponding to a new stable state. It is shown in Fig. 8 that the magnitude of the revo
lution frequency spread Δfst, which is observed after the instability, is proportional to the 
square root of beam current Ip.

It was found that at a given current and gain factor, the instability may be initiated 
by :

1) electron cooling of the beam below Δfst spread,
2) displacing the beam position in the feedback pick-up.

Reducing the gain factor or beam current led to disappearance of instability. The sta
bility condition for a beam interacting with a stochastic cooling system may be obtained with 
the help of the linearized Vlasov equation. Assume that stationary state of a beam is des
cribed by a distribution function F0(p). When a collective movement is excitated in a beam, 
the distribution gets non-stationary :

(8)

which causes to appear on the kicker an accelerating voltage with Fourier amplitude :

(9)

Using the Vlasov equation we can write :

(10)

where the number of particles in the beam, N, is separated out from Fo.

Picking out in (10) the moment dp p Fnw(p), we get the dispersion equation for finding 
the eigen-frequencies ω :

(11)

where

(12)

is the complex coherent frequency shift near nω0.

One can see from equation (11) that the reason for beam instability may be either some 
displacement relative to the centre of the pick-up or incomplete substraction of the plate 
signals, the latter being also equivalent to a displacement of the beam in the pick-up.
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For a beam with finite momentum spread, this instability may be stabilized by Landau 
damping. In order to write down the stability criterion it is more convenient to write 
equation (11) in the following form :

(13)

where Δω0 - Δp0 = η(Δp0/p), Δp0 corresponds Co the beem displacement
in the pick-up, η = γ-2 - γ-2tr, γtrMc2 transition energy of the storage ring. If one
changes along the real axis (Δn - Δn + i0), then equation (13) in its parametric form 
gives the limit of the stability region in the plane of complex variable Ωn. The detailed
behaviour of the limit curve depends on the equilibrium distribution F0(p). One can see, 
however, that if the displacement of the beam in the pick-up is big enough, (|Δω0| > Δω, 
Δω = modulation frequency spread in the beam), then the limit of the instability region has 
usually a pear-like form along the axis Re Ωn. Therefore the stability criterion may be 
written in the form :

(14)

It should be stressed that since instability is defined by the difference in sign of Re Ωn 
and η, condition (14) is a necessary one, because stability must be provided for all har
monics in the working band.

Stability condition (14) limits the cooling rate. We will compare this limitation with 
that obtained from the screening effect. It should be noted that in the band of harmonics 
giving the most important contribution to the cooling rate the value of |Ωn| may be approx

imately expressed in the following form :

(15)

where λ0 is the damping decrement for single particle. The screening effect becomes important 
when the coherent shift |Ωn| is getting closer, or higher than the dispersion of the beam 

revolution frequency :

(16)

Taking into account (15) and (16), the condition of coherent stability may be rewritten in 
the form :

(17)

It can be seen from this that for a beam being cooled near the centre of the pick-up, the 
limitation on the cooling rate caused by screen effect is more rigid (16). Anyway, when 
storing in longitudinal phase space, one can get a situation where a beam with relatively 
small spread Δω is far from the centre of the storage region |Δω0| >> Δω. in this case, to 
provide coherent beam stability according to (17), it is necessary to decrease the decrement 
λ0 and, therefore, to decrease the filling rate.
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Conclusions

In the performed experiments, the influence of the main factors (thermal noise of elec
tronics and joint interaction of particles) on the effectiveness of stochastic cooling was 
studied. The cooling time achieved for a low intensity beam was equal to 150 s, while the 
spread had changed from 3 10-4 to 2 10-4. This corresponds well to the limitation due to 

thermal noise : formula (6), which gives 170 s. One of the methods to make this limitation
 less severe was proposed in CERN3) and consists of using many parallel cooling systems. In 

that case, the final size is the same as in the case of only one system, but the cooling time 
is decreasing in proportion to the number of systems. So, in experiments on ICE, using 12

 pick-ups and 12 kickers, a cooling time of 15 s3) was reached, which approximately corres
ponds to results of our measurements.

Let us estimate the power of thermal noise at the amplifier output in a system providing 
cooling in time τ. Assuming the aperture in pick-up as small as possible, A » R0ψ(Δp/p)in 
where (Δp/p)in is the initial momentum spread, and combining with formulas (3), (4) we will 
get :

(18)

q is the number of parallel systems. From formula (18) one can see that the power needed to 
cool a beam in time τ increases as the square of the spread Δp/p and as the 4th power of 
momentum (at a fixed field in the storage ring). So, for 100 systems cooling a beam with 
momentum pc = 4 GeV and spread Δp/p = ±3 10-2 in a machine with R0 = 2.5 103 cn, Z0 = 50 Ohm, 
W = 500 MHz, T0 = 300°K in a time τ = 4 s, the total power of the amplifiers is P = 1.5 105 W.

That is why for the antiproton accumulator project AA8) it was proposed to use a beam 
with much smaller momentum spread Δp/p - 0.75 10-2, τ = 2.2 s, which allows to limit the 

power of the amplifiers to 25 kW.

At the end, the authors want to express their gratitude to N. Dikansky, I. Meshkov, 
A. Skrinsky for their stimulating interest, and also to A. Kalinin, Μ. Karliner, 
W. Tcherepanov for useful discussions.
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Fig. 1 Block diagram of wideband 
system for stochastic cooling.
ATT = attenuator, 
YM = power amplifier.

Fig. 2 Wideband system.
Longitudinal beam noise 
spectra.

Fig. 3 Wideband system.
Spectrum width ΔF and 
current S, rate of change 
for different signs of 
feedback.
1,2 : spectrum,
3,4 : current, 
❖ : negative FB,
+ : positive FB.

Fig. 4 Square of final spread of 
revolution frequency versus 
cooling time.
1 : system with filter, 
2 : wideband system.
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Fig. 5 Cooling decrement vs. gain 
for different numbers of 
particles.
X, + : N = 2 107 
x + : N = 108 
1,2: wideband system, 
3, 4 : with filter.

Fig. 6 Cooling time vs. phase density 
of particles divided by square 
of number of harmonics.
+ : system with filter,
+ : wideband system .

Fig. 7 Development of instability at 
the moment when stochastic 
cooling was switched on.
S : integral power of noise, 
ΔF : width of spectrum.

Fig. 8 Final size ΔF after instability 
vs. current I for different 
feedback gains.
1 : K = 2 106
2 : K = 1.4 106
3 : K = 0.5 106


