PROJET OF e_7 BEAM LAYOUT AFTER THE SHUT-DOWN 1969

Dicussions with the members of the group proposing the \mathbf{s}_5 beam and the ejection study group led to the layout as sketched in this note.

Basic assumptions and constraints

- 1) The beam line of the present e_5 beam and the position of the target p_4/p_5 should remain unchanged, in order to restrict the transformations of the East Hall layout, including the shielding to a minimum. This seems necessary, if the main part of the work is to be executed during the time of the shut-down.
- 2) The first focal point for the H_2 target should be as far as possible upstream (in order to make use of the existing installations for the H_2 target inside the ring and to provide space for the production angle variations of s_5 in the ring area.)
- 3) The optics of the e_7 beam layout has to be planned to transport 26.9 GeV/c protons.
- 4) The beam elements of the ejected beam and the s_5 beam must be positioned to allow for a production angle for the s_5 beam of 12.5 mr in the first part and 35 mr outside the ring area (see figure).
- 5) A test beam for machine studies should be accommodated inside the ring area, since the test zone used up to now has to be given up.

In the attached figure a layout is shown, which meets the requirements mentioned above. This project is not regarded as final and should only serve as a basis for further discussions.

e₇ Line

The e_5 line is unchanged downstream of M 200 (in front of the H_2 target). The bending angle of the e_5 line (32.673 mr) is divided proportionally between M 150 and M 200. The line of the test beam is obtained by the bending given by MC 200 (36 mr) and M 200 (37 mr).

0ptics

Targets and Observations

TV 2: TV 2 and screen box remaining unchanged,

TV 3: TV 3 and screen box (vacuum),

TV 4: equipped as TV 3 in the present layout (test zone),

TV 5: TV 5 and screen box (vacuum) Radelin, ZnS and plastic screen,

TV 6: p_4/p_5 targets, screens equipped as present (TV 7).

Monitors

Three secondary emission chambers positioned as indicated in the figure.

Vacuum

 \emptyset 10 cm vacuum tube for the first part (down to MC 200). A vacuum tank behind $\rm H_2$ target (special) is delivered by NP. \emptyset 20 cm vacuum tube continues behind the second MNP down to the target $\rm p_4/\rm p_5$.

The magnet M 200 requires a special vacuum tank, however, a beam passage through air in M 200 could be envisaged.

Beam Stoppers

- L. Hoffmann
- D. Dumollard

Distribution:

- V. Agoritsas
- Y. Baconnier
- 0. Barbalat
- A. Colombo
- A. Diddens
- P. Forrat
- J. Geibel
- L. Henny
- J. Leault
- L. Mazzone
- J.H.B. Madsen
- 0. Martin
- G.L. Munday
- J. Robert
- M. Perret
- G. Petrucci
- G. Plass
- Ch. Steinbach
- K. Schlupmann
- A. Wetherell
- M. van Rooy