

THE UNIVERSITY of EDINBURGH

EW and QCD Measurements

Júlia Cardoso Silva

On behalf of the ATLAS and CMS Collaborations

La Thuile - Les Rencontres de Physique de la Valle d'Aoste

7th March 2024

Overview

- Several recent EWK and QCD results from ATLAS and CMS:
 - provide precise measurements of **fundamental SM parameters**
 - probe the mechanism of **EW symmetry breaking**
 - offer sensitivity to BSM physics
 - test state-of-the-art **perturbative QCD calculations**
 - provide measurements of proton PDFs
 - provide important input for the development of MC simulations
 - search for **rare SM decays**
 - introduce and develop interesting experimental techniques

*new for La Thuile

- *RAZ effect and polarisation in WZ production
- *Wyjj fiducial and differential x-sections
- *MET+jets differential x-sections
- *Lund subjet multiplicities
- Search for exclusive hadronic W decays

- Multidifferential dijet x-sections
- Azimuthal jet correlations \rightarrow determination of $\alpha_{_{S}}$
- Tau lepton polarisation \rightarrow determination of sin $\dot{\theta}_{w}$

ΓHE UNIVERSITY

of EDINBURGH

Measurement of τ lepton polarisation

- Weak mixing angle (sin θ_w^{eff}) leads to different coupling of Z boson to RH and LH fermions - described by asymmetry parameter A_f From τ polarisation in Z \rightarrow $\tau\tau$ decays can determine sin θ_w^{eff}

$$P_{\tau} = -A_{\tau} = -\frac{2v_{\tau}a_{\tau}}{v_{\tau}^2 + a_{\tau^2}} \approx -2.\frac{v_{\tau}}{a_{\tau}} = -2(1 - 4\sin^2\theta_W^{eff})$$

$$P_{\tau} = \frac{\sigma(\tau_R) - \sigma(\tau_L)}{\sigma(\tau_R) + \sigma(\tau_L)}$$

- More challenging than measurement at LEP
 - hard to determine polar emission angle Ο
 - average over limited range of \sqrt{s} of the qq pair Ο
 - comparisons are test of lepton universality of weak neutral current Ο

Measurement of τ lepton polarisation

Júlia Cardoso Silva

Events / bin

of EDINBURGH

4/21

07/03/2024

JHEP 2401 (2024) 101

EW and QCD Measurements - La Thuile

Measurement of τ lepton polarisation

Average polarisation extracted from fits

All plots & tables here

0.2

RAZ effect and polarisation in WZ production

NEW FOR LA THUILE

WZ polarisation measurements probe the nature of EW symmetry breaking •

arXiv:2402.16365

Use **WZ** \rightarrow **lvl'l'** (l, l'=e, μ) production to study:

Júlia Cardoso Silva EW and O

EW and QCD Measurements - La Thuile

07/03/2024

6/21

RAZ effect and polarisation in WZ production

- WZ polarisation measurements probe the nature of EW symmetry breaking
 - Use **WZ** \rightarrow **Ivl'i**' (l, l'=e, μ) production to study:
 - energy dependence of diboson polarisarion fractions
- Diboson polarisation fractions in inclusive WZ are dominated by TT events with low momentum bosons
- Target events with **high p_T Z bosons**
- **BDT** trained to separate 00 polarisation state from others
- Fit to BDT score to extract polarisation fractions in two bins of p_T(Z) (<u>100-200 GeV</u> & <u>>200 GeV</u>)

non-0 f₀₀ for 100 < p_T^Z < 200 GeV w/ >5σ significance

ΓHE UNIVERSITY

of EDINBURGH

arXiv:2402.16365

NEW FOR LA THUILE

07/03/2024

Wγjj x-section @ 13 TeV

<u>arXiv:2403.02809</u>

All plots & tables <u>here</u>

EW Wyjj signal

- Measurement of fiducial and differential x-sections of EW Wyjj
 - VBS process sensitive to quartic gauge couplings & probe of EW gauge symmetry breaking
 - Corrected for detector effects

QCD Wyjj bkgd

Wyjj x-section @ 13 TeV

<u>arXiv:2403.02809</u>

All plots & tables here

EW Wyjj signal

QCD Wyjj bkgd

- Measurement of fiducial and differential x-sections of EW Wyjj
 - VBS process sensitive to quartic gauge couplings & probe of EW gauge symmetry breaking
 - Corrected for detector effects
 - Fiducial x-section measurement:
 - NN used for signal/bkgd classification in VBS enhanced phase space
- Differential x-section measurements:
 - VBS observables (m_{jj}, p_T^{jj}, p_T^l, m_{lγ}) sensitive to aQGCs & used to constrain
 EFT operators
 - CP observables (ΔΦ_{jj}, ΔΦ_{lγ}) probe CP structure

arXiv:2403.02809

Wγjj x-section @ 13 TeV

<u>arXiv:2403.02809</u>

07/03/2024

Wyjj x-section @ 13 TeV

arXiv:2403.02809

of EDINBURGH

Júlia Cardoso Silva

EW and QCD Measurements - La Thuile

- Unfolded differential measurements of p_T^{miss} produced in association with jets
 - process-specific ($\mathbf{Z} \rightarrow \mathbf{vv}$)
 - after subtraction of all sub-dominant processes
 - \circ inclusive measurements
 - only subtracting fakes from data
 - sensitive to various DM other BSM models

 Measurements repeated in auxiliary regions (lepton+jets, photon+jets)

NEW FOR LA THUILE

 Ratios between SR measurement and auxiliary measurements (R^{miss}) allow cancellation of systematics and modelling effects

arXiv:2403.02793

MET+jets differential x-section @ 13 TeV

All plots & tables here

arXiv:2403.02793

EW and QCD Measurements - La Thuile

Generally reasonable

agreement with

MET+jets differential x-section @ 13 TeV

Pred./Data 0.8 0.6 Z+jets -W+jets Top Relative contribution В ^{miss} R miss 10-3 500 1000 1500 2000 Pred./Data MEPS@NLO (Stat.+Syst) $p_{T}^{\text{recoil}} = p_{T}^{\text{miss}}$ 1.2 0.8 All plots & tables here 0.6 1000 2000 3000 4000 5000 6000 7000 m_{ii} [GeV] arXiv:2403.02793

10³

10

10

10 10

10

1.4

1.2

 $\frac{d\sigma}{dp_T^{recoil}} \left[\frac{fb}{GeV} \right]$

ATLAS

√s=13TeV, 140 fb⁻¹

o^{miss}+jets, ≥ 1 jet

MEPS@NLO (Stat.+Svst)

EW and QCD Measurements - La Thuile

8000

07/03/2024

MET+jets differential x-section @ 13 TeV

07/03/2024

arXiv:2312.16669

- 2D and 3D measurements of dijet production x-section
 - \circ anti-k_T jets with R = 0.4 and R = 0.8

arXiv:2312.16669

- 2D and 3D measurements of dijet production x-section
 - \circ anti-k_T jets with R = 0.4 and R = 0.8
 - \circ 2D spectra: as function of **m**_{1,2} in 5 rapidity bins
 - |y|_{max} largest absolute rapidity of the 2 jets

arXiv:2312.16669

arXiv:2312.16669

Júlia Cardoso Silva

EW and QCD Measurements - La Thuile

07/03/2024

12/21

2000

 $\langle p_{\rm T} \rangle_{1,2}$ (GeV)

arXiv:2312.16669

- fitting HERA ep DIS data + 2D/3D dijet data
 - only measurements of $m_{1,2}$ for R = 0.8
- Inclusion of dijet measurement allows better constraint on PDFs
- Compatible results from fits with 2D/3D measurements
- Slightly more precise $\alpha_s^{}(M_z^{})$ value from fit with 2D dijet measurements
 - $\alpha_{s}(M_{Z})^{CMS} = 0.1179 \pm 0.0019$

Azimuthal jet correlations $\rightarrow \alpha_{s}$ determination

CMS-PAS-SMP-22-005

- $R_{\Lambda\Phi}(p_T)$ measured over 360 < p_T < 3200 GeV
 - proportional to $\alpha_s^3/\alpha_s^2 = \alpha_s$
 - leads to cancellation of experimental systematic uncertainties

Azimuthal jet correlations $\rightarrow \alpha_s$ determination

CMS-PAS-SMP-22-005

- Good description from LO Pythia8 CUETM2
- Overestimation from other generators tested

and compared with **predictions from MC**

generators & NLO pQCD predictions

Azimuthal jet correlations $\rightarrow \alpha_s$ determination

CMS-PAS-SMP-22-005

- Good agreement with NLO pQCD predictions with all PDF sets tested

NLO pQCD predictions

compared with predictions from MC generators &

Azimuthal jet correlations $\rightarrow \alpha_{c}$ determination

CMS-PAS-SMP-22-005

Azimuthal jet correlations $\rightarrow \alpha_{e}$ determination CMS-PAS-SMP-22-005

CMS,

of EDINBURGH

arXiv:2402.13052

- different algorithms give different predictions
- higher order QCD effects, like "double-soft" splittings need to be understood and incorporated
- affects precision of analyses
- Measurement of Lund subjet multiplicities is sensitive to higher order effects
 - number of subjets above a certain jet relative transverse momentum k_t in a jet's angle-ordered clustering history (obtained using Cambridge/Aachen algorithm)
- Measurement done in dijet events

$$k_t = p_T^{\text{emission}} \times \Delta R(p^{\text{emission}}, p^{\text{core}})$$

NEW FOR LA THUILE

 Unfolded differential x-section measurement of N_{Lund} for different k_t requirements, in jet p_T bins, and in relative rapidity bins

- Unfolded differential x-section measurement of N_{Lund} for different k_t requirements, in jet p_T bins, and in relative rapidity bins
 - Herwig gives best overall description of multiplicities, especially in perturbative regions
 - Sherpa performs best when **non-perturbative** emissions are allowed ($k_t < 2$ GeV)

- Unfolded differential x-section measurement of N_{Lund} for different k_t requirements, in jet p_T bins, and in relative rapidity bins
 - Herwig gives best overall description of multiplicities, especially in perturbative regions
 - Sherpa performs best when **non-perturbative** emissions are allowed ($k_t < 2$ GeV)
- Average N_{Lund} also measured good agreement with analytic prediction (NLO+NNDL)

- Unfolded differential x-section measurement of N_{Lund} for different k_t requirements, in jet p_T bins, and in relative rapidity bins
 - **Herwig** gives best overall description of multiplicities, especially in **perturbative** regions
 - Sherpa performs best when non-perturbative emissions are allowed $(k_t < 2 \text{ GeV})$ important input for PS
- Average N_{Lund} also measured good agreement with analytic prediction (NLO+NNDL) algorithms development!

arXiv:2309.15887

- No exclusive hadronic decay of the W boson has been observed to date
- Could offer:
 - Clean tests of QCD factorisation
 - W mass measurement through fully-reconstructed final state

$W^{\pm} \sim \gamma \qquad W^{\pm} \sim \gamma \qquad W^{\pm} \sim \gamma \qquad W^{\pm} \sim \gamma \qquad W^{\pm} \rightarrow \rho^{\pm} \gamma \qquad (4.0 \pm 0.8) \times 10^{-9} \\ W^{\pm} \rightarrow \rho^{\pm} \gamma \qquad (8.7 \pm 1.9) \times 10^{-9} \\ W^{\pm} \rightarrow K^{\pm} \gamma \qquad (3.3 \pm 0.7) \times 10^{-10} \\ \end{array}$

search for $W^{\pm} \rightarrow \pi^{\pm} \gamma$, $W^{\pm} \rightarrow \rho^{\pm} \gamma$, $W^{\pm} \rightarrow K^{\pm} \gamma$

Y. Grossman, M. König, M. Neubert

arXiv:2309.15887

- No exclusive hadronic decay of the W boson has been observed to date
- Could offer:
 - Clean tests of QCD factorisation \cap
 - W mass measurement through Ο fully-reconstructed final state
- 3 decays targeted using 2 final states
 - track+photon all decays Ο
 - dedicated triggers
 - tau+photon $W^{\pm} \rightarrow \rho^{\pm} \gamma$ Ο

of EDINBURGH

- di-photon triggers to target $\pi^0 \rightarrow \gamma \gamma$
- p-candidate reconstructed as tau

search for $W^{\pm} \rightarrow \pi^{\pm} \gamma$, $W^{\pm} \rightarrow \rho^{\pm} \gamma$, $W^{\pm} \rightarrow K^{\pm} \gamma$ Decay Channel SM Branching Fraction $(4.0\pm0.8)\times10^{-9}$ $W^{\pm} \rightarrow \pi^{\pm} \gamma$ $W^+ \sim \sim \sim \sim$

Y. Grossman, M. König, M. Neubert

arXiv:2309.15887

- No exclusive hadronic decay of the W boson has been observed to date
- Could offer:
 - Clean tests of QCD factorisation
 - W mass measurement through fully-reconstructed final state
- 3 decays targeted using **2 final states**
 - track+photon all decays
 - dedicated triggers
 - $\circ \quad \textbf{tau+photon} W^{\pm} \rightarrow \rho^{\pm} \gamma$
 - di-photon triggers to target $\pi^0 \rightarrow \gamma \gamma$
 - ρ-candidate reconstructed as tau
- Modelling of di-jet and jet+photon background using novel non-parametric data-driven technique based on ancestral sampling (JHEP10(2022)001) in region with relaxed selection

search for $W^{\pm} \rightarrow \pi^{\pm} \gamma$, $W^{\pm} \rightarrow \rho^{\pm} \gamma$, $W^{\pm} \rightarrow K^{\pm} \gamma$

Т

ГНЕ UNIVERSITY of EDINBURGH

Júlia Cardoso Silva

20/21

07/03/2024

Júlia Cardoso Silva

EW and QCD Measurements - La Thuile

of EDINBURGH

Summary

- Several recent **EWK and QCD** results from **ATLAS and CMS** discussed today
 - further details can be found in the respective publications

- RAZ effect and polarisation in WZ production [Link]
- Wγjj fiducial and differential x-sections [Link]
- MET+jets differential x-sections [Link]
- Lund subjet multiplicities [Link]

THE UNIVERSITY

of EDINBURGH

- Search for exclusive hadronic W decays [Link]

- Multidifferential dijet x-sections [Link]
- Azimuthal jet correlations \rightarrow determination of α_{s} [Link]
- Tau lepton polarisation \rightarrow determination of sin $\tilde{\theta}_{W}$ [Link]

- Many more interesting results, not covered today, can be found in ATLAS & CMS public pages
 - ATLAS public STDM results: <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic/StandardModelPublicResults</u>
 - CMS public STDM results:

https://cms-results.web.cern.ch/cms-results/public-results/publications/SMP/index.html

