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A B S T R A C T

Particle tracking codes such as MAD-X or TRANSPORT commonly use a matrix formalism to propagate beams
through magnetic elements as it simplifies the analysis of particle behavior, facilitates beam optimization and
component design, and enables accurate particle accelerator simulations. However, these codes are inefficient
when tracking many particles or accounting for energy degradation along the beamline. To overcome these
limitations, we introduce Georges, a Python library used in the field of particle accelerators for medical
applications comprising two modules: Manzoni and Fermi. Manzoni is an efficient particle tracking code
that can track many particles while calculating beam losses and energy degradation using the Fermi–Eyges
formalism implemented in the Fermi module. In this paper, we present the implementation details of Georges,
which includes a verification conducted against other software tools such as MAD-X and BDSIM, along with
a documentation on computational time.
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. Motivation and significance

The transport of charged particles in a magnetic element can be
escribed using the following matrix formalism [1,2]:

𝑖 =
∑

𝑗
𝑋𝑗𝑅𝑖𝑗 +

∑

𝑗𝑘
𝑋𝑖𝑗𝑇𝑖𝑗𝑘, (1)

here 𝑋 is a vector containing the particle’s properties, and 𝑅 and 𝑇
re the propagation matrices and tensors, respectively.

This matrix formalism is notably employed in the particle accel-
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erator field due to its effectiveness in mathematically describing the
dynamics of charged particles moving through electromagnetic fields.
It simplifies the analysis of particle behavior, facilitates beam optimiza-
tion and component design, and enables accurate particle accelerator
simulations.

Many particle tracking codes such as MAD-X [3], MAD-8 [4] or
TRANSPORT [1] implement this relation. However, a more detailed
description is needed when tracking many particles or when the beam
interacts with elements in the beamline, such as a degrader (reducing
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the beam energy) or a collimator (removing the beam halo). The trans-
port code TURTLE (Trace Unlimited Rays Through Lumped Elements)
s based on TRANSPORT and implements multiple scattering of charged
articles in the matter to estimate the emittance increasing or the beam
osses [5] but is not actively maintained. Therefore, complete beam
racking is required, where each particle is propagated individually in
he beamline, and the properties of the beam are statistical properties
alculated over the whole distribution.

. Software description

The Georges Python library has been developed to efficiently track
large number of particles (millions at a time) while also accounting

or energy degradation. It comprises two main modules: Fermi and
anzoni.

The Fermi module is a Python implementation of the extended
ermi–Eyges model that computes the beam properties after the pas-
age through matter [6]. Various methods are provided to calculate en-
rgy losses over a given thickness or reciprocally the required thickness
or a given degradation. A complete description of the implementation
an be found in Ref. [7].

The Manzoni module aims to provide fast particle beam tracking
hrough the most encountered accelerator and beamline elements, such
s magnets, scatterers, degrader, and collimators. Manzoni computes
he particle output coordinates for a given magnetic element by simply
pplying the magnet matrix, defined by its parameters, to the input
oordinates. The Fermi module is seamlessly integrated when particles
nteract with matter. Special attention has been paid to the speed of
he code to reduce the time for propagating a large number of particles
y using the Numba python library through the concept of Just in Time
Compiler [8].

2.1. Software architecture

As explained, Georges is composed of the Fermi and the Manzoni
modules. The entire structure of the library is presented in Fig. 1 and
detailed in the following sections.

2.1.1. Elements
The ‘‘elements’’ submodule contains the physical implementation of

different beamline elements, depending on their properties:
– Magnetic: Drifts, dipoles, quadrupoles, sextupoles, and multi-

poles.
– Collimators: Elements that interact with the beam to cut the halo.

Different apertures, including rectangular, circular, elliptical, or
phase-space, are available.

– Scatterers: Thin materials that interact with the particles and only
modify the transverse angle along the two transverse axes.

– Degraders: Thick materials that combine particle interaction with
a simple drift-type propagation along the material where the
energy reduction is considered through the Fermi module.

For each element, a first (‘‘𝑅 in (1)’’) and second-order (‘‘𝑇 in (1)’’)
type propagation is implemented, allowing the user to select the proper
tracking order for his specific application. The user should be aware
that the canonical variables of the particles are not the same for the
three different integrator types, so the definition of the beam must
be done accordingly to be consistent. The integrators ‘‘Mad8-type’’
and ‘‘Transport’’ add higher-order terms (‘‘𝑇 in (1)’’) to the matrix
formalism, as the output coordinate does not depend linearly on the
coordinate of the incoming particle. On the other hand, the ‘‘MadX’’
integrator is linear in the spatial coordinates and angles but exact in
the momentum deviation, making it much more precise when we are
interested in beams with a large energy spread. It is also possible to
specify the aperture of an element which can be rectangular, circular,
elliptical, or phase-space and is used to compute the losses into an

quad = georges.Element.Quadrupole(
NAME="Q1",
L=0.3 ∗ _ureg.m,
K1=2 ∗ _ureg.m∗∗−2,
APERTYPE="RECTANGULAR",
APERTURE=[5 ∗ _ureg.cm, 3 ∗ _ureg.cm])
quadrupole.integrator = MadXIntegrator

2.1.2. Definition of a sequence
Georges allows users to define a sequence consisting of magnetic

(drift, quadrupole, sextupole) or non-magnetic (energy degrader, colli-
mator) elements arranged to efficiently transport a beam of charged
particles by defining each element and placing it in a sequence. A
python module has been developed to convert sequences from CSV,
TFS,1 or Beam Delivery Simulation (BDSIM), a Geant4-based C++
library that can propagate charged particles through high-energy and
low-energy beamlines, output files [9]. The module loops over each
element and converts it into a georges.Element object. They are then
placed in a georges.Sequence object, which includes methods to modify
the properties of an element.

seq = georges.Sequence()
seq.set_parameters("el_name", dict_of

↪ properties)

2.1.3. Beam input distribution
The module ‘‘beam’’ contains the implementation of the class beam

for tracking with Manzoni. A beam definition requires the ‘‘kinematics’’
of the particles and a beam distribution to allow the generation of
the particles for tracking. The kinematics module deals with relativis-
tic physics computations and mainly concerns conversions between
kinematic quantities e.g., computing the momentum from the kinetic
energy. A beam distribution is a numpy array with the coordinates of
each particle. Various methods are available to generate distributions,
including defining them based on Gaussian mean and standard devia-
tion values, Twiss parameters, 𝛴-matrix, or from a file such as a CSV
or parquet file.

kin = georges.Kinematics(230∗_ureg.MeV)
gdist = georges.Distribution
beam = gdist.from_5d_sigma_matrix(∗∗kwargs)
mi_beam = Beam(kinematics=kin, distribution=

↪ beam.distribution.values)

2.1.4. Observers
By default, Manzoni does not provide output data during a tracking

simulation. The user must add an ‘‘observer’’ at the simulation to obtain
information on the beam properties. The syntax to use is the following:

mi.track(beam=beam, observers=observers)

Different observers are implemented in Manzoni to analyze the
beam at the entry and the exit of each element during the tracking
and assess several properties such as the beam size (1𝜎), the losses,
the centroid, the symmetry, the Twiss parameters or directly all the
coordinates of each particle. The code architecture allows choosing at
which positions the user wants to observe the beam by giving the name
of the corresponding element(s) inside the beamline.

observer = BeamObserver()

1 A TFS (Table File System) file in MAD-X is a text file that contains a
table of data used to describe the properties of a beamline or other accelerator
components.
2
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Fig. 1. Structure of the Python library Georges.

2.2. Software functionalities

All these objects are then sent to Manzoni for tracking or Twiss
computation. The ‘‘track’’ method contains the loop over the different
elements, with the option to check the apertures to select the particles
that survive the tracking at the end of each component, and the use of
‘‘observers’’ is defined by the user to save data during the tracking. The
Twiss method allows computing the matrix elements of all the elements
along a given beamline for the Twiss functions calculation based on
the 11 particles method [10]. Finally, the results are displayed using
Matplotlib or Plotly. The user can superimpose the cartouche to the
plot, corresponding to the element’s position along the 𝑆 coordinates
(see Fig. 3 for example).

mi = Input.from_sequence(sequence=seq)
mi.track(beam=beam)
manzoni_plot = vis.ManzoniMatplotlibArtist()
manzoni_plot.plot_beamline(seq.df)
manzoni_plot.tracking(obervers)

3. Illustrative examples

3.1. Fermi implementation

As described in detail in Ref. [7], the Fermi module allows the com-
putation of the properties of the beam after the passage in the material.
In particular, it is possible to calculate the beam size as a function of
the thickness of the material and to estimate the energy degradation
induced. Fig. 2 shows the validation of the module’s implementation
via a comparison between the results obtained with the Fermi module
and the results described in Ref. [6]. The code for the validation of the
module is depicted below.

material = georges.fermi.materials.Beryllium
mrange = material.range(158.6 ∗ _ureg.MeV)
depth = np.logspace(−3, −0.01, 10) ∗ mrange
epost = list(map(lambda e: material.stopping

↪ (thickness=e,kinetic_energy=158.6∗
↪ _ureg.MeV).ekin.m_as("MeV"), depth))

angle = list(map(lambda e: material.
↪ scattering(thickness=e,kinetic_energy
↪ =158.6 ∗ _ureg.MeV)["A"][0], depth))

3.2. Manzoni verification with the MAD-X tracking code

It is a common practice to validate tracking software using the
‘‘golden standard’’ of the field, namely MAD-X. In this study, we define
a beamline of dipoles and quadrupoles, which is converted into a MAD-
X input, and the Python library cpymad [11] is used to compute the
Twiss parameters along the beamline. The results obtained with MAD-X
and Manzoni are shown in Fig. 3 and, an excellent agreement between
both software is observed.

3.3. Performances

Manzoni is designed to optimize a beam transport line, making
computation time a crucial parameter for the design process. To de-
crease the computational time, Manzoni uses the Numba package that
allows to compile Python code into optimized code machine which
significantly improves the performance of numerical operations and
loops. We evaluate the computation time for tracking particles along
the beamline described in the previous section as a function of the
number of particles, and the results are presented in Fig. 4. This simu-
lation uses a MacBook Pro with a 2.8GHz Quad-Core Intel i7 processor.
3

The results show that the implementation of the software (including the
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Fig. 2. Validation of the Fermi module (dashed line) by comparison with data from Ref. [6] (square). The energy degradation and the scattering angle are successfully computed
with the Fermi module.

Fig. 3. Verification of Manzoni (dashed line) with the golden standard code MAD-X (black stars) on a simple beamline made of 2 quadrupoles and 2 dipoles. The horizontal (in
blue) and vertical (in red) 𝛽-functions are in excellent agreement for both software. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

choice of Numba) meets the runtime requirements (sub-second runtime
on ‘‘commodity’’ computers like laptop) of the targeted application
scenario. With this relatively short computation time (∼0.5 s), Manzoni
is well-suited for conducting optimization studies.

3.4. BDSIM comparison

As a final step of the complete validation of the Georges library,
we applied its different features to the modeling of the Ion Beam Ap-

plications (IBA) Proteus®One (P1) system. The P1 system is a compact
single-room proton therapy facility equipped with modern pencil beam
scanning techniques. It comprises a Synchro-cyclotron (S2C2), followed
by an energy degradation system consisting of a wheel made of three
materials: beryllium, graphite, and aluminum [12]. The system also
includes a circular collimator and a rotating gantry with quadrupoles,
dipoles, and kickers, efficiently transporting transport the beam to the
desired position at the isocenter. As the P1 system combines energy
degradation with beam tracking through several magnet types, it is an
4
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Fig. 4. Elapsed time as a function of the number of tracked particles. The line guides the eye.

Fig. 5. Validation of Georges through a comparison of the beam size along the IBA Proteus®One system where the beam is propagated with energy degradation and losses are
nduced. Georges is able to give the same beamsize and therefore the Fermi and Manzoni modules are validated. The black stars are the results obtained with BDSIM and the
lue and red lines are determined using the Python library Georges. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
f this article.)
5
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ideal use case for self-consistent validation of both the Fermi and Man-
zoni modules of Georges. We compared in Fig. 5 the evolution of the
beam size (1𝜎) along the horizontal and vertical axes of the transverse
plane as calculated with Georges (blue and red lines) to the results
obtained from the particle tracking and beam–matter interactions code
BDSIM (depicted by black stars). The nominal energy at the exit of the
degrader is 70MeV, which is the lowest possible with the P1 system.
An excellent agreement is observed between both codes, validating
the capability of Georges to model low-energy beam transport systems
accurately. It is also important to mention that the BDSIM simulation
takes hours to run while Manzoni computes the standard deviation in
about 150ms.

4. Impact

Fast and accurate tracking codes are crucial for designing and
optimizing charged particle therapy beamlines for medical applications.
In this regard, the Georges library is a valuable tool for various studies
in the field of medical accelerators and has already been applied to
optimize most modern proton therapy systems [13–16].

With the Manzoni module’s fast-tracking capabilities, the clinical
performances of most proton therapy systems can be studied and
improved through simulation. To illustrate, Georges has been coupled
with optimization routines, enabling the determination of the optimal
beamline configuration required to deliver an efficient and clinically
acceptable beam at the treatment room entrance, all while minimizing
beamline losses [13].

To facilitate the use of the Georges library, we have developed
several tools that simplify the installation process and allow for direct
usage via Docker or jupyter-lab. The Python code of Georges is open
source and available on GitHub for researchers.

5. Conclusions

Existing tracking codes like MAD-X or TRANSPORT cannot accu-
rately model the propagation of charged particles considering energy
degradation. On the other hand, Monte-Carlo codes such as BDSIM are
not designed to perform optimization of an existing beamline due to
the extensive computation time, e.g., depending on the application, a
Monte-Carlo simulation could take more than one day (compared to
150ms for Manzoni as written above) to obtain results with a small stan-
dard deviation. Typically, a Monte-Carlo simulation is often performed
with high-performance computing (HPC) clusters. The Georges library
offers users a straightforward and effective way of propagating particles
through beamlines while simultaneously simulating the beam–matter
interaction using the Fermi module. Thanks to its fast computation via
the Just in Time compiler, it is also possible to use Georges to optimize
beamlines to limit losses, for example. The library is also easy to use
since it can be used via a Docker and interfaces easily with jupyter-lab.
Future developments include creating a graphical interface that will
make Georges more user-friendly.
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