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Accelerator magnets made from blocks of permanent magnets (PMs) in a zero-clearance configuration are known as Halbach
arrays. The objective of this article is the fusion of knowledge from the magnetic field and material measurements and domain
knowledge (magnetostatics) to obtain an updated magnet model of a Halbach array. From Helmholtz coil measurements of the
magnetized blocks, a prior distribution of the magnetization is estimated. Measurements of the magnetic flux density are used
to derive a posterior distribution by means of Bayesian inference. The method is validated on simulated data and applied to
measurements of a dipole of the FASER detector. The updated magnet model of the FASER dipole describes the magnetic flux
density one order of magnitude better than the prior magnet model.

Index Terms— Bayesian inference, Halbach array, inverse problems, Monte Carlo methods, permanent magnets (PMs).

I. INTRODUCTION

A SPECIAL type of accelerator magnet, referred to as
a Halbach array [1], is made of circularly arranged

blocks of permanent magnets (PMs). The magnet system of
the FASER detector [2] consists of three 0.57 T Halbach
dipole magnets. In [3], it is shown that imperfections of the
PM block magnetizations affect the field quality by generating
higher-order multipole field errors.

Quality assurance of the FASER dipole consisted of two
measurement campaigns [3]: 1) the measurement of the mag-
netization of each PM block before the magnet assembly
using a Helmholtz coil system and 2) the measurement of
the magnetic flux density of the built magnet with a 3-D Hall
probe mapper. In both cases, uncertainty arises from sensor
calibration, stage misalignment, magnetization errors in the
PM blocks, and manufacturing errors in the magnet assembly.

Deriving the magnetization of PM blocks from measured
magnetic flux densities is a well-known inverse problem [4],
[5], [6], in particular, for Halbach arrays [7], [8]. Different
methods and regularization techniques are used, for example,
physics-informed neural networks [4], singular value decom-
position [5], [7], Tikhonov regularization [8], and Bayesian
inference based on a linear model [6].

In this article, Bayesian inference is used to combine the
prior magnetization data obtained from the Helmholtz coil
measurements with the magnetic flux density measurements
in the magnet, taken with the Hall probe mapper, and the
domain knowledge imposed by the magnetostatic problem.
This method is validated on simulated data and applied to
measured data of a FASER dipole. Inserting the posterior
magnetization in the simulation leads to an updated model that
predicts the magnetic flux density in the homogeneous field
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Fig. 1. Top left: Domain D with the cross section of the FASER Halbach
dipole with PM blocks Di and their nominal magnetization Mi and nominal
orientation αi . Top right: Absolute value of the Gateaux derivative B′ of
the mapping (7). Bottom: 3-D geometry of the FASER Halbach dipole
with Diron = ∅.

region one order of magnitude better than the prior simulation
model.

II. PROBLEM STATEMENT

The magnetostatic field problem of a Halbach array is
defined on a domain D = Dair ∪ Diron ∪ Dm , consisting of
the air region Dair, iron region Diron, and permanent magnet
region Dm (see Fig. 1). The fields are defined by curl H = 0
in D, divB = 0 in D, and B·n = 0 on ∂ D, with magnetic flux
density B, magnetic field strength H, and outward pointing unit
normal vector n. The corresponding constitutive equation is
ν(∥B∥)B = H + M, where M denotes the magnetization with
supp(M) = Dm =

⋃16
i=1 Di and Di denotes the PM blocks

(Fig. 1 top, left). The reluctivity function ν : R+

0 → R+

0 is
defined by ν(s) = 1/µ0 in Dair and ν(s) = 1/(µ0µr ) in Dm
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and ν(s) = fHB(s)/s in Diron dependent on a (nonlinear)
H(B)-curve fHB.

Insertion of the magnetic vector potential A defined by
curl A = B and the constitutive equation in the magnetostatic
problem yields the well-known curl–curl formulation of the
problem, which is discretized and solved with the finite-
element (FE) software getDP [9].

The FASER dipoles are composed of a series of 12–18
rings with 16 PM blocks per ring (Fig. 1, bottom). We use the
index i to indicate the PM block number in a ring and index
j to indicate the ring number. The nominal magnetization of
the PM blocks (Di )i=1,...,16 is

Mi, j := m vol(Di )
−1 (cos(αi ), sin(αi ), 0)⊤. (1)

For all j = 1, . . . , 12, with nominal orientation αi := 180◦
+

2(i − 1) · 22.5◦ (Fig. 1, top left) and nominal magnetic
moments mi = 330 A m2. Due to manufacturing tolerances
and production errors, the magnetizations Mi j of the procured
PM blocks differ from the nominal (specified) values. This can
be expressed as adding the deviation 1Mi, j to the nominal
magnetization

Mi, j = Mi, j + 1Mi, j . (2)

The magnetization of each PM block was measured by means
of a Helmholtz coil before the assembly of the Halbach
array [3]. We interpret 1Mi, j and Mi, j as random vectors
that can be deduced from the measurements.

We define the parameter vector p of the PM block magne-
tization in the 3-D case by

p := (Mx
i, j , My

i, j , Mz
i, j ) :� → R16×12×3. (3)

The 2-D case is analogous for only the x and y components.
The probability space � reflects the random occurrence of
production errors of the PM blocks. Having measurements
for multiple PM blocks of the same magnetization type,
corresponding to different rings of the Halbach dipole, a prior
distribution π0 of p can be derived by computing the sam-
ple mean µ and sample covariance C0, leading to p ∼

π0 := N (µ0, C0), where N is the Gaussian distribution.
The Anderson–Darling test justifies the usage of the Gaussian
distribution.

The simulation model H : p 7→ q maps the parameter
vector p to a field-related measurable quantity q such as the
magnetic flux density B in the bore of the magnet. The two
definitions of q that are used in this article are

qB :=
(
Bx , By, Bz

)
(4)

where each B⋆ depends on measurement positions x, y, z, and

qF := (A1, . . . , AK , B1, . . . , BK ) (5)

where Ak(z) and Bk(z) are the Fourier coefficients of the
magnetic flux density component Br (z) on a circle with radius
r0 = 75 mm, centered in the magnet bore. The advantage of
working with the Fourier coefficients is the averaging effect
on random noise. However, especially in the 2-D case, consid-
ering only the Fourier coefficient leads to an under-determined
inverse problem.

If the reluctivity in D is assumed to be constant, for
example, the iron ring is neglected Diron = ∅, the model is
linear and we can write Hp = q by abuse of notation.

To select positions x, y, at which the magnetic flux den-
sity B is sensitive to variations of p, a sensitivity analysis is
performed. Similar to [10], it can be shown that the Gateaux
derivative B′ of the mapping

1M 7→ B[M + 1M] (6)

can be determined by finding the weak solution A′ of∫
D
ν(|curl A′

|)curl A′
· curl v dV =

∫
D

curl 1M · curl v dV

and computing B′
= curl A′. For illustration, Fig. 1 shows the

absolute value of the Gateaux derivative

E[1M13] 7→ B[M13 + E[1M13]]. (7)

It increases toward the segment whose magnetization is varied.
Thus, equally distributed measurement positions on a centered
circle inside the inner air region are chosen.

III. BAYESIAN INFERENCE

Due to uncertainties of the magnetic flux density measure-
ments, the measurable quantity q = H(p) is not directly
observable, but qobs

:= H(p) + ε with ε ∼ N (0, 6). Thus,
the distribution of qobs given p is π(qobs

|p) = N (H(p), 6).
Following [11], Bayes’ rule:

π(p|qobs) = π(qobs
|p)π0(p)/π(qobs) (8)

can be applied to determine the posterior distribution of the
magnetization parameter vector p, given an observation qobs

of the measurable quantity. To generate samples from the
posterior distribution, we use different approaches depending
on whether the model H is linear or nonlinear.

In the linear case, the posterior distribution is proportional
to a Gaussian distribution [12]

π(p|qobs) ∝ N (µ1, C1). (9)

The expected value µ1 and the covariance matrix C1 of this
distribution are given by

µ1 = C1
(
H⊤6−1qobs

+ C−1
0 µ0

)
(10)

C1 =
(
H⊤6−1H+ C−1

0

)−1
. (11)

In the nonlinear case, the Metropolis–Hastings (MH)
algorithm [11] is applied. The principle of this algorithm is
the construction of a Markov chain, whose states are samples
of π(p|qobs). Therefore, the transition kernel K , for which
π(p|qobs) is an invariant distribution, is defined by

K (p̂|p) := a(p̂, p) · π̃(p̂|p) (12)

with the proposal density π̃(p̂|p) and

a(p̂, p) := min
{

1,
π(p̂|qobs)π̃(p|p̂)

π(p|qobs)π̃(p̂|p)

}
. (13)

The preconditioned Crank Nicolson proposal [13]

π̃(p̂|p) := N (
√

1 − s2p, sC0) (14)
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with step size s = 1/80 is chosen, which incorporates the
prior knowledge on the covariance C0. The sample {pk}k≥0 is
then generated by conducting the following steps of the MH
sampling [11].

1) Initialize p0 := µ0. Set k = 1.
2) Generate the proposed sample p̃ ∼ π̃(p̃|pk−1). Accept

p̃ by setting pk := p̃ with probability a(p̃, pk−1). Else,
set pk := pk−1.

3) Set k = k + 1. Return to step 2.
Inserting the Gaussian distributions of the prior, the mea-
surement uncertainty, and the preconditioned Crank Nicolson
proposal in (13) simplifies the acceptance probability to

a(p̃, pk−1) = min

1,
exp

(
1
2

∥∥H(pk−1) − qobs
∥∥2

6−1

)
exp

(
1
2

∥∥H(p̃) − qobs
∥∥2

6−1

)
.

IV. VALIDATION

For validation of the algorithm, observation data is gener-
ated based on a ground-truth parameter vector ptrue

∼ π0 by
setting

qobs
:= H(ptrue) + ε, ε ∼ N (0, σ 2I). (15)

For qobs
B based on magnetic flux densities, we set σ = 10−4 T,

for the observation of Fourier coefficients qobs
F , we set

σ = 10−6 T, which are reasonable values for modern-day mea-
surement equipment.

The simulation models in 2-D and 3-D are implemented
using the FEM software getDP [9], and the input files to the
numerical models are available at [14].

In the linear case, the algorithms are validated on the 3-D
simulation model. The ground-truth ptrue is compared to the
prior distribution π0 and the two posterior distributions

πB(
p
∣∣qobs

B
)

= N
(
µB

1 , CB
1

)
(16)

πF(p
∣∣qobs

F

)
= N

(
µF

1, CF
1

)
(17)

that are based on the different observation vectors. In Fig. 2,
the ground-truth of the magnetization deviation ptrue

− M
restricted to the fifth ring of the Halbach array is shown
together with the expected values and the variances. The
maximal difference between µB

1 and ptrue is decreased by 70%
compared to the maximal difference between µ0 and ptrue. The
variances are also smaller.

In the nonlinear case, the method is applied to the 2-D
simulation model and simulated observations qobs

B of magnetic
flux densities. To obtain the sample {pk}k , the MH sampling is
applied for k = 18 000 steps. In Fig. 3, the sample mean and
the sample variance of the prior and posterior distributions are
plotted with the ground-truth ptrue. The posterior sample mean
follows the ground-truth better than the prior sample mean, the
maximal difference is decreased by 50%.

Applying the MH algorithm in combination with the 3-D
nonlinear simulation model is computationally prohibitive,
because the simulation is more time-consuming, and a higher
number k of samples is required because of the increasing
dimension of the parameter vector in 3-D.

Fig. 2. Validation of posterior derivation algorithm in the linear case on the
3-D simulation model. Comparison of ground-truth (red), prior N (µ0, C0)
(black), posterior based on magnetic flux density observation N (µB

1 , CB
1 )

(blue) and posterior based on Fourier coefficient observation N (µF
1 , CF

1)

(green).

Fig. 3. Validation of posterior derivation algorithm in the nonlinear case on
the 2-D simulation model. Comparison of ground-truth (red), priorN (µ0, C0)
(black) and posterior (blue) sample mean and variance.

V. APPLICATION

The algorithm in the linear case (neglecting the iron ring)
is applied to observations qobs

F of K = 8 Fourier coefficients
on a centered circle with r0 = 75 mm radius in dim(z) =

156 positions along the full range of the magnet, including
the fringe field. Measurements of the magnetic flux density
are taken with a Hall probe mapper for each coordinate of z in
60 equally distributed points on the circle and qobs

F is obtained
by Fourier analysis.

For estimating the noise covariance matrix 6 positioning
uncertainties that result from small misalignment of the var-
ious coordinate systems (magnet, mapper, and simulation),
as well as small oscillations of the Hall probe mapper system
have to be taken into account. In the fringe field region,
where the magnetic flux density changes the most, positioning
errors lead to larger measurement errors than in regions
where the magnetic flux density is almost constant. Therefore,
6 = σ(z)2I is chosen position-dependent with σ(z) = 5 ×

10−5 and 5 × 10−3 T in the homogeneous field region, and
σ(z) = 5 × 10−5 and 5 × 10−3 T in the fringe field. Fig. 4
shows the relative error

E rel(z, p) =
∣∣(Bmeas

x (z) − Bsim
x (z, p)

)
/Bmeas

x (z)
∣∣
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Fig. 4. Relative error of prior and posterior simulation model compared to
magnetic flux density measurements of the first FASER dipole. Area of the
fringe field marked in gray.

between the measured and simulated Bx component along the
z-axis for the simulation with the prior parameter vector µ0
and the updated posterior parameter vector µF

1 . The measured
flux density data used in this comparison was not part of
the training set used for updating the model. The relative
error E rel(z, µF

1) of the update is one order of magnitude
smaller than the relative error E rel(z, µ0) of the prior, almost
everywhere in the homogeneous field region.

VI. CONCLUSION

Bayesian inference was applied to combine domain knowl-
edge and observations from material and magnetic flux
density measurements for deriving a posterior magnetiza-
tion distribution of the PM blocks of a Halbach array.
The method is not only validated on simulated data, but
also applied on measurements of a Halbach dipole of the
FASER experiment. Updating the magnetization of the PM
blocks with the expected value of the posterior distribu-
tion decreases the relative error of the simulated mag-
netic flux density compared to the measured magnetic flux
density inside the aperture by one order of magnitude.
A more detailed analysis of the systematic measurement
errors will be investigated in future research. Furthermore,
surrogate models of the nonlinear 3-D model shall be
investigated to reduce the computational cost of the MH
algorithm.
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