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Abstract—Accelerator magnets made from blocks of
permanent magnets in a zero-clearance configuration are
known as Halbach arrays. The objective of this work is the
fusion of knowledge from different measurement sources
(material and field) and domain knowledge (magnetostat-
ics) to obtain an updated magnet model of a Halbach
array. From Helmholtz-coil measurements of the magne-
tized blocks, a prior distribution of the magnetization is
estimated. Measurements of the magnetic flux density are
used to derive, by means of Bayesian inference, a posterior
distribution. The method is validated on simulated data and
applied to measurements of a dipole of the FASER detector.
The updated magnet model of the FASER dipole describes
the magnetic flux density one order of magnitude better
than the prior magnet model.

Index Terms—Bayesian inference, Inverse problems, Per-
manent magnets, Hallbach array, Monte Carlo methods

I. INTRODUCTION

A special type of accelerator magnet, referred to as
Halbach array [1], is made of circularly arranged

blocks of permanent magnets (PM). The magnet system
of the FASER detector [2] consists of three 0.57T Hal-
bach dipole magnets. In [3], it is shown that imperfections
of the PM block magnetizations affect the field quality
by generating higher-order multipole field errors.
Quality assurance of the FASER dipole, see Figure 1,
consisted of two measurement campaigns [3]: (i) The
measurement of the magnetization of each PM block be-
fore the magnet assembly using a Helmholtz-coil system
and (ii) the measurement of the magnetic flux density
of the built magnet with a 3D Hall probe mapper. In
both cases deviations arise due to sensor calibration, stage
alignment, magnetization errors in the PM blocks and
manufacturing errors in the magnet assembly.

Deriving the magnetization of PM blocks from mea-
sured magnetic flux densities is a well known inverse
problem [4], [5], [6], in particular for Halbach arrays [7],
[8]. Different methods and regularization techniques are
used, e.g., physics informed neural networks [4], singular
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Fig. 1. FASER dipole magnet.

value decomposition [7], [5], Tikhonov regularization [8]
and Bayesian inference based on a linear model [6].
In this work, Bayesian inference is used to combine the
prior magnetization data obtained from the Helmholtz-
coil measurements with the magnetic flux density mea-
surements in the magnet, taken with the Hall probe
mapper and the domain knowledge imposed by the mag-
netostatic problem. This method is validated on simulated
data and applied to measured data of a FASER dipole.
Inserting the posterior magnetization in the simulation
leads to an updated model that predicts the magnetic
flux density in the homogeneous field region one order
of magnitude better than the prior simulation model.

II. PROBLEM STATEMENT

The magnetostatic problem in a Halbach array on a
domain D = Dair∪Dm∪Diron is defined by curlH = 0
in D, divB = 0 in D, B · n = 0 on ∂D, with magnetic
flux density B, magnetic field strength H and outward
pointing unit normal vector n. The corresponding consti-
tutive equation is ν(∥B∥)B = H+M, where M denotes
the magnetization with supp(M) = Dm =

⋃16
i=1 Di and

Di denote the PM blocks (Figure 2 left). The reluctivity
function ν : R+

0 → R+
0 is defined by

(1)ν(s) =


1/µ0 in Dair

1/(µ0µr) in Dm

fHB(s)/s in Diron

dependent on a (non-linear) H(B)-curve fHB on the iron
domain Diron.

Insertion of the magnetic vector potential A defined
by curl A = B and the constitutive equation in the
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Fig. 2. Left: Domain D with the cross section of the FASER Halbach
dipole with PM blocks Di and their nominal magnetization Mi. Right:
Absolute value of the Gateaux derivative B′ of the mapping (8).

magnetostatic problem yields the well-known curl-curl
formulation of the problem which is discretized and
solved by the finite element (FE) software getDP [9].

The FASER dipoles are composed of a series of 12 to
18 rings with 16 PM blocks per ring. We use the index
i to indicate the PM block number in a ring and index j
to indicate the ring number. The nominal magnetization
of the PM blocks (Di)i=1,...,16 is parametrized by

Mi,j := m vol(Di)
−1 (cos(αi), sin(αi), 0)

⊤ (2)

for all j = 1, . . . , 12, with nominal orientation αi :=
180◦ + 2(i − 1) · 22.5◦ (Figure 2 left) and nominal
magnetic moments mi = 330Am2. Due to manufactur-
ing tolerances and production errors, the magnetizations
Mij of the procured PM blocks differ from the nominal
(specified) values. This can be expressed as

Mi,j = Mi,j +∆Mi,j , (3)

adding the magnetization deviation ∆Mi,j . The magne-
tization of each PM block was measured by means of a
Helmholtz coil prior to the assembly of the Halbach array
[3]. We interpret ∆Mi,j and Mi,j as random vectors that
can be deducted from the measurements.

We define the parameter vector p of the PM block
magnetization by

p := (Mx
i,j ,M

y
i,j ,M

z
i,j) : Ω → R16×12×3 (4)

in the 3D case while the 2D case is analogous for only
the x and y components;

Ω is the probability space that reflects the random
occurrence of production errors of the PM blocks. Hav-
ing measurements for multiple PM blocks of the same
magnetization type, corresponding to different rings of
the Halbach dipole, a prior distribution π0 of p can be
derived by computing the sample mean µ and sample
covariance C0, leading to p ∼ π0 := N (µ0,C0), where
N is the Gaussian distribution. The Anderson-Darling
test justifies the usage of the Gaussian distribution.

The simulation model H : p 7→ q maps the parameter
vector p to a field-related measurable quantity q such as

the magnetic flux density B in the bore of the magnet.
The two definitions of q that are used in this paper are

qB := (Bx,By,Bz) , (5)

where each B⋆ depends on measurement positions
x,y, z, and

qF := (A1, . . . , AK , B1, . . . , BK) , (6)

where Ak(z) and Bk(z) are the Fourier coefficients of
the magnetic flux density component Br(z) on a circle
with radius r0 = 75mm, centered in the magnet bore.
The advantage of working with the Fourier coefficients is
the averaging effect to random noise. However, especially
in the 2D case, considering only the Fourier coefficient
leads to an under-determined inverse problem.

If the reluctivity in D is assumed to be constant, e.g.
the iron ring is neglected Diron = ∅, the model is linear
and we can write Hp = q by abuse of notation.

To select positions x,y, for which the magnetic flux
density B is sensitive to variations of p, a sensitivity
analysis is performed. Similar to [10] it can be shown
that the Gateaux derivative B′ of the mapping

∆M 7→ B[M+∆M] (7)

can be determined by finding the weak solution A′ of∫
D

ν(|curlA′|)curlA′ ·curlvdV =

∫
D

curl∆M·curlvdV

and computing B′ = curl A′. For illustration, Figure 2
shows the absolute value of the Gateaux derivative

E[∆M13] 7→ B
[
M13 + E[∆M13]

]
. (8)

It increases towards the segment whose magnetization is
varied. Thus, equally distributed measurement positions
on a centered circle inside the inner air region of the
magnet are chosen.

III. BAYESIAN INFERENCE

Due to uncertainties of the magnetic flux density
measurements, the measurable quantity q = H(p) is
not directly observable, but qobs := H(p) + ε with
ε ∼ N (0,Σ). Thus, the distribution of qobs given p is
π(qobs|p) = N (H(p),Σ). Following [11], Bayes’ rule

(9)π(p|qobs) =
π(qobs|p)π0(p)

π(qobs)

can be applied to determine the posterior distribution
of the magnetization parameter vector p, given an ob-
servation qobs of the measurable quantity. To generate
samples from the posterior distribution, we use different
approaches depending on whether the model H is linear
or nonlinear.
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In the linear case, the posterior distribution is propor-
tional to a Gaussian distribution [12]

π(p|qobs) ∝ N (µ1,C1). (10)

The expected value µ1 and the covariance matrix C1 of
this distribution are given by

µ1 = C1

(
H⊤Σ−1qobs +C−1

0 µ0

)
, (11)

C1 =
(
H⊤Σ−1H+C−1

0

)−1
. (12)

In the nonlinear case, the Metropolis-Hastings algo-
rithm [11] is applied. The main idea is the construction of
a Markov chain, whose states are samples of π(p|qobs).
Therefore, the transition kernel K, for which π(p|qobs)
is an invariant distribution, is defined by

K(p̂|p) := a(p̂,p) · π̃(p̂|p) (13)

with the proposal density π̃(p̂|p) and

a(p̂,p) := min

{
1,

π(p̂|qobs)π̃(p|p̂)
π(p|qobs)π̃(p̂|p)

}
. (14)

The preconditioned Crank Nicolson proposal [13]

π̃(p̂|p) := N (
√
1− s2p, sC0) (15)

with step size s = 1/80 is chosen, which incorporates
the prior knowledge on the covariance C0. The sample
{pk}k≥0 is then generated by conducting the following
steps of the Metropolis-Hastings sampling [11]:

1) Initialize p0 := µ0. Set k = 1.
2) Generate proposed sample p̃ ∼ π̃(p̃|pk−1). Accept

p̃ by setting pk := p̃ with probability a(p̃,pk−1).
Else, set pk := pk−1.

3) Set k = k + 1. Return to step 2.
Inserting the Gauss distributions of the prior, the measure-
ment uncertainty and the preconditioned Crank Nicolson
proposal in (14) simplifies the acceptance probability to

a(p̃,pk−1) = min

1, exp
(

1
2

∥∥H(pk−1)− qobs
∥∥2
Σ−1

)
exp

(
1
2 ∥H(p̃)− qobs∥2Σ−1

)
.

IV. VALIDATION

For validation of the algorithm, observation data is
generated based on a ground truth parameter vector
ptrue ∼ π0 by setting

qobs := H(ptrue) + ε, ε ∼ N (0, σ2I). (16)

For qobs
B based on magnetic flux densities we set σ =

10−4 T, for the observation of Fourier coefficients qobs
F

we set σ = 10−6 T, which are reasonable values for
modern day measurement equipment.
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Fig. 3. Validation of posterior derivation algorithm in linear case
on 3D simulation model. Comparison of ground truth (red), prior
N (µ0,C0) (black), posterior based on magnetic flux density obser-
vation N (µB

1 ,CB
1 ) (blue) and posterior based on magnetic Fourier

coefficient observation N (µF
1 ,C

F
1 ) (green).

In the linear case, the algorithms are validated on the
3D simulation model. The ground truth ptrue is com-
pared to the prior distribution π0 and the two posterior
distributions

πB(p|qobs
B ) = N (µB

1 ,C
B
1 ) (17)

πF(p|qobs
F ) = N (µF

1 ,C
F
1 ) (18)

that are based on the different observation vectors. In
Figure 3, the ground truth of the magnetization deviation
ptrue − M restricted to the 5th ring of the Halbach
array is shown together with the expected values and the
variances. The maximal difference between µB

1 and ptrue

is decreased by 70% compared to the maximal difference
between µ0 and ptrue. The variances are also smaller.

In the nonlinear case, the method is applied to the
2D simulation model and simulated observations qobs

B of
magnetic flux densities. To obtain the sample {pk}k the
Metropolis-Hastings sampling is applied for k = 18000
steps. In Figure 4 the sample mean and the sample vari-
ance of the prior and posterior distributions are plotted
with the ground truth ptrue. The posterior sample mean
follows the ground truth better than the prior sample
mean, the maximal difference is decreased by 50%.

V. APPLICATION

The algorithm in the linear case (neglecting the outer
iron ring) is applied to observations qobs

F of K = 8
Fourier coefficients on a centered circle with r0 = 75mm
radius in dim(z) = 156 positions along the full range of
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Fig. 4. Validation of posterior derivation algorithm in non linear
case on 2D simulation model. Comparison of ground truth (red), prior
N (µ0,C0) (black) and posterior (blue) sample mean and variance.

the magnet, including the fringe field. Measurements of
the magnetic flux density are taken with a Hall probe
mapper for each coordinate of z in 60 equally distributed
points on the circle and qobs

F is obtained by Fourier
analysis.

For estimating the noise covariance matrix Σ posi-
tioning uncertainties that result from small misalignments
between the various coordinate systems (magnet, mapper,
simulation) as well as small oscillations of the Hall
probe mapper system have to be taken into account. In
the fringe field region, where the magnetic flux den-
sity changes the most, positioning errors lead to larger
measurement errors than in regions where the magnetic
flux density is almost constant. Therefore, Σ = σ(z)I is
chosen position-dependent with

σ(z) =

{
5× 10−5 T z in the homogen. field region,
5× 10−3 T z in the fringe field.

Figure 5 shows the relative error

Erel(z,p) =

∣∣∣∣Bmeas
x (z)−Bsim

x (z,p)

Bmeas
x (z)

∣∣∣∣ (19)

between the measured and simulated Bx component
along the z-axis for the simulation with the prior pa-
rameter vector µ0 and the updated posterior parameter
vector µF

1 . The measured flux density data used in this
comparison was not part of the training set used for
updating the model. The relative error Erel(z,µF

1 ) of the
update is one order of magnitude smaller than the relative
error Erel(z,µ0) of the prior, almost everywhere in the
homogeneous field region.

VI. CONCLUSION

Bayesian inference was applied to combine domain
knowledge and obervations from material and magnetic
flux density measurements for deriving a posterior mag-
netization distribution of the PM blocks of an Halbach
array. The method is not only validated on simulated
data, but also applied to measurements of a Halbach
dipole of the FASER experiment. Updating the mag-
netization of the PM blocks with the expected value
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1 ) Bmeas
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Fig. 5. Relative error of prior and posterior simulation model compared
to magnetic flux density measurements of the first FASER dipole. Area
of fringe field marked in grey.

of the posterior distribution decreases the relative error
of the simulated magnetic flux density compared to the
measured magnetic flux density inside the aperture by
one order of magnitude. A more detailed analysis of
the systematic measurement errors will be investigated
in future research.
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