MAGNETIC MEASUREMENTS ON STEEL SAMPLES FOR BEAM TRANSPORT MAGNETS.

In the specifications of the steel for the bending and quadrupole magnets for beam transport we asked for a low carbon steel with a low sulphur content, annealed at about 800° C with the following magnetic specifications: The coercive force of the steel should be smaller than 2.4 At/cm and when subjected to a magnetizing force of 300 At/cm the flux density should be larger than 2.0 Wb/m².

The tenderers were asked to supply a sample of the type of steel they proposed to use. The samples should be rings with inner diameter 76 mm, outer diameter 114 mm and thickness 15 mm. For some samples the chemical composition was also given while for other samples it was not known. The chemical composition, together with the results of the magnetic measurements are shown in Table I. In the cases that more than one sample was measured, Table I gives the average values. The magnetisation curves are shown in Figs. 1 to 10.

The values of B at H = 300 At/cm are very similar for all samples. There is a tendency for B to decrease with increasing impurity content, but the effect is quite small. The spread in coercive force is much larger. As is well known, the coercive force is very sensitive to the heat treatment of the sample and the latter was in general not known. However, since all samples showed a coercive force below 2.4 At/cm this point was not investigated further.

The steel Oerlikon 40'285 will be used for the construction of the beam transport magnets.

The steel Oerlikon Fischer 29'371 can be considered as a good average magnetic steel, while the steel Smit 2 has the lowest permeability at high fields of the samples tested. For these two samples the magnetisation curves have been measured for values of H up to 1300 At/cm, in order to have some reference for future magnet design. For H > 1300 At/cm the steel is completely saturated so that its incremental permeability is unity and the increase in B is equal to the increase in µoH.

One firm gave us 12 samples taken from different melts of the same type of steel in order to study the spread among those. The difference in B at H = 300 At/cm between the extremes of 11 samples is only 0.04 Wb/m². It is not understood why sample 4 is so different. Large variations occur in the coercive force of these samples.

The sample "Pontier rond" was taken with its plane perpendicular to the plane of rolling and the sample "Pontier carré" was taken in the plane of rolling of the same plate of hot rolled steel. The difference between the two is negligible.

In order to see, to what extent a "magnetic steel" must be considered as a special steel, a sample was made from a bar of soft steel with a diameter of 120 mm, taken from the workshop, and measured magnetically. It is indicated as "soft steel" in Table I and Fig. 10. It is clear that also this steel would be excellent for the construction of magnets.

B. de Raad

/fv

Distribution: Magnet Group

Parameter Committee

Messrs: A. Achermann

B. Hedin

H. HorisbergerM. MorpurgoG. Petrucci

TABLE I

Hc(At, cm)	0.84	0.80	1.94	2.23	1.25	2.02	1.53	1.24	1.34	1.83	0.64	1.78	1.27	1.0	
B(WB/m ²) at H=300At/cm	2.07	2.05	1.98	2.04	2.03	2.03	2.00	2.04	2.04	2.02	2.05	5.06	2.03	2.08	
(°/°)		0.07				0.23									
Cr(o/o) Ni(o/o)		0.11				0.19									
		0.18				0.15		nyah, sakhar sakhinni				and the second s			
Mn(o/o)	05.0	0.24	9.0		0.5	0.55	0.5	0.3	0.4	9.0			0.4		
P(0/0)	0.01	0.01	0.03		0.05	0.02	0.03		0.03				0.02		
S(o/o)	0.01	0.01	0.03	0.05	0.05	0.02	0.04		0.03				0.02		
Si(o/o)	0.02	0.18	0.3	-		0.13	0.3	6.0	80.0	0.2			0.3		
(0/0)	50.0	20.0	0.2	0.1	0.15	0.10	0.11	0.08	90.0	0.2			0.1		-
Fig. No	τ	Н	А	8	М	4	72	77	72	9	7	ω	6	10	
Designation of sample	Oerlikon 40'285	Oerlikon Fischer 29'371	Smit 2	Savoisienne 1-12	Metrovick 1 - 3	Ansaldo 1 - 3	Pontier XC 10	Pontier 8119	Fontier rond, carré	Vickers	Imphy	Sid	Siemens	Soft steel	

FE-1.