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1 Introduction

It has been more than a century since the introduction of Einstein’s General Relativity
(GR). To date, this theory, with action made out of the Ricci scalar, has passed numerous
experimental tests. Yet, theoretical principles and recent cosmological observations challenge
it, bringing a significant interest in its extensions and alternative theories of gravity [1].

Among these, Quadratic Gravity (QG) — a theory which extends the Einstein-
Hilbert action by including also quadratic powers of the Ricci scalar and Weyl tensor — is
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particularly interesting [2–22]. As initially noticed in [2] and later shown in [3, 4], QG improves
the renormalizability of Einstein’s GR and, is argued to be asymptotically free1 [3, 23, 24].
Yet, the full QG is not unitary — it contains Ostrogradsky ghosts that make its energy
unbounded from below [26, 27]. Notably, in the case of conformal gravity, which has only
the Weyl tensor sqared, it was shown that these ghosts could be removed by imposition of
the boundary conditions in the de Sitter and Minkowski space [28–31].

R2 Gravity — a theory that involves only the terms linear and quadratic in Ricci
scalar — is the simplest case of f(R) gravity, and the only combination of QG that is
ghost-free [32].2 This model, also known as the Starobinsky inflation, is one of the most
promising inflationary models to date [34–41]. It has also been extensively studied in the
context of supergravity [42–58] and black holes [59–62].

The Pure R2 Gravity is a special case of R2 gravity, which contains only the square
of the Ricci Scalar. It is scale-invariant and, in addition, has restricted Weyl symmetry,
in which the Weyl transformation parameter satisfies the wave equation [63–65]. To date,
many classical solutions of this theory have been investigated [66–78]. Interestingly, in the
Newtonian limit, the potential of this theory has only a confining part [13].

As shown in [34, 79], R2 gravity is conformally equivalent to Einstein gravity coupled
to the scalar field. However, for flat space-time, the transformation to the Einstein frame is
singular in the pure case [13]. To study the degrees of freedom (dof), the authors of [13] have
thus considered perturbations around the Minkowski metric for the original action. They
have found that in the case of the full R2 gravity, the theory has a massive scalar mode and
two tensor modes that describe gravitational waves. In contrast, in the pure case, they have
shown that the tensor modes are absent, and the theory describes only a single massless
scalar mode. To arrive at this result, their analysis contained two key ingredients — the
Stueckelberg trick and the Lorentz-like gauges.

The Stueckelberg Trick is a way to introduce additional dof to the theory in a
manifestly covariant way, such that the resulting theory has gauge redundancy [80, 81].
Originally, it was introduced in Proca theory, the theory of a massive vector field which
describes three degrees of freedom — a longitudinal scalar mode, and two transverse vector
ones [82]. In contrast to Maxwell’s electrodynamics, this theory has no gauge redundancy.
However, by rewriting the original vector field as a sum of a new one with a 4-derivative
of a scalar field, the gauge redundancy appears for the new variables. This trick has also
been extended to other theories, such as massive Yang-Mills theory, with mass added by
hand, and massive gravity [83–91].

In the case of gravity, by rewriting the metric perturbations a la Stueckelberg, one adds
scalar and vector dof to the theory, thus introducing gauge redundancy. By employing
the Lorentz-Like Gauges — conditions that the 4-divergence of the tensor and vector
components is vanishing — the resulting relation between old and new variables resembles the
helicity decomposition.3 This thus makes the Stueckelberg trick favorable to study the dof of
theories that even initially have gauge redundancy (see [17, 92–100] for studies including QG).

1See also [25], for an argument against these claims.
2See also [33], for recent claims on the non-viability of a class of f(R) theories.
3Although, as pointed out in [84], the Stueckelberg trick is not a decomposition, but an introduction of

new variables.
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While this procedure is favored, as it preserves the manifest Lorentz covariance, the
resulting action can appear to have ghost-like dof. This was the case in [13] for the scalar
modes, and appears even for linearized gravity alone. By noting that the Stueckelberg trick
introduces additional gauge redundancy on top of the invariance under the infinitesimal
coordinate transformations, it can be shown that all ghost-like dof are not physical modes
of the theory. Nevertheless, if one wishes to study the nature of these degrees of freedom,
or quantize the theory, a more convenient approach would be to express the action such
that it only contains physical modes. Thus, the goal of this paper is to answer — Is there
an alternative way to describe the R2 gravity in flat space, in which the action is expressed
only in terms of the propagating dof?

We will see that this is possible with a direct approach, based on the Cosmological
Perturbation Theory (CPT) — a theory that brought upon our understanding of the
origin of galaxies and the large-scale structure [38, 101–104]. The core of CPT lies in the
study of the evolution of the metric perturbations in an expanding Universe, by decomposing
them according to the spatial rotations. As a result, the theory contains scalar, vector,
and tensor modes that can be separately studied. This procedure can be even applied to
vector theories, and theories of 2-form and 3-form fields [105, 106]. Notably, with the tools of
CPT, it was possible to resolve one of the contemporary theoretical puzzles — the apparent
discontinuity of the massless limit of massive Yang-Mills theory, with mass added by hand —
and show that the limit is smooth, in contrast to the previous approaches [107].

In this paper, we will use the tools of CPT to study the dof of the full and pure R2

gravity in the flat space. Surprisingly, we will find that while the manifestly covariant and
direct approach gives the same number of degrees of freedom for the full theory, this is not
the case for the pure R2 gravity — in the flat background, we will show that this theory
has no dof. Thus we will find that the scalar sector of R2 gravity has a striking resemblance
to the theory of a 3-form, which if massless has no dof, while in the massive case describes
one massive pseudoscalar [108–121]. Moreover, by studying the theories two-ways, via the
manifestly covariant approach [13] and a direct one, we will see that the discrepancy in the
dof that appears for R2 gravity persists also for the 3-form theory, if rewritten in terms of
its dual vector field, through the Levi-Civita symbol.

Curiously, the mismatch between the dof of the full and pure R2 theory implies the
presence of a discontinuity. The vDVZ Discontinuity — discrepancy between the predic-
tions of massive Fiersz-Pauli theory and linearised GR for the deflection of starlight and the
precession of the perihelia of Mercury — seems, at first sight, to be so significant that one
could exclude massive gravity as a possible theory of nature [122–124]. A similar discontinuity
appears even in the massive Yang-Mills theory, in the form of the corrections to the propagator
of the gauge bosons at one loop, if their mass is added by hand, and treated by conventional
perturbative methods [123]. At higher order corrections, it even manifests by the singular
behavior of the perturbative expansion [125–129]. Moreover, the apparent discontinuity of
the massless limit also arises in other gauge theories, such as massive two and three forms, or
even in Proca theory, if their self-interactions are taken into account, and manifests in the
apparent singular behavior of the perturbative series in the massless limit [105].

The origin of the discrepancy between the behavior of the massive and massless gauge the-
ories lies in the modes that are absent in the massless theory. The Vainshtein Mechanism,
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however, resolves this pathology. As originally pointed out in [130], the longitudinal mode
that introduces the vDVZ pathology in massive gravity becomes strongly coupled due to the
non-linear terms, and as a result decouples from the remaining degrees of freedom [131, 132].
As a result, the apparent discontinuity in the massless limit is just an artefact of the pertur-
bation theory, and the results of GR become restored beyond this scale. Moreover, the same
mechanism was applied for the massive Yang-Mills and self-interacting theories of Proca,
Kalb-Ramond, and 3-form fields4 [88, 105, 107].

As we will see, while the full R2 gravity propagates a scalar mode together with two
tensor ones, the pure case has no dof. Thus, at the linearized level, there might be a
discontinuity between the two theories, in the limit when the parameter in front of the
Einstein’s contribution vanishes. However, by studying the first-order corrections of the full
theory beyond the linear regime, we will show that this is just an artefact of the perturbation
theory. In particular, we will find that at high energies, when the R2 term dominates, both
scalar and tensor modes become strongly coupled, showing that a mechanism similar to the
case of massive gauge theories takes place.

The paper is organized as follows. First, we will study the two approaches to R2 gravity
— the manifestly covariant approach, in which we will review the analysis of [13] and confirm
its results, and the direct approach, which uses the gauge-invariant variables, and gives rise to
a disagreement in the dof for the pure case. We will then generalize this analysis to the theory
dual to the 3-form, and show that the same discrepancy appears there as well. Once we identify
the origin of the disagreement between the two approaches, we will study the high.energy
limit of R2 gravity, and the behavior of its modes in the presence of the non-linear terms.

2 The two faces of R2 gravity

In this section, we will study the degrees of freedom (dof) of the linearized R2 gravity in
the flat spacetime with two approaches — the manifestly covariant one, in which we will
closely follow the analysis of [13], and a direct approach, that relies on the gauge-invariant
metric perturbations.

The full R2 gravity is described by the action

Sfull =
∫
d4x

√
−g

[
M2

2 R+ βR2
]
. (2.1)

In addition to this theory, we will consider the pure R2 gravity which is a special case of
the above theory with action given by:

Spure = β

∫
d4x

√
−gR2. (2.2)

In order to study the dof, let us first consider small perturbations of the metric around
a flat background:

gµν = ηµν + hµν . (2.3)
4See [133, 134] for an alternative approach to the strong coupling problem in f(T ) gravity.
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Then, the Lagrangian density corresponding to the action (2.1) up to quadratic terms in
the metric perturbations is given by:

Lfull = M2

2 (2∂µhµν∂αhαν − ∂αhµν∂
αhµν − 2∂µhµν∂νh+ ∂µh∂

µh) + β (∂µ∂νhµν −2h)2 ,

(2.4)

where h = hµµ. We can notice that the above expression involves higher derivatives of the
metric perturbations. So the most natural question would be to investigate if the theory
contains dof that are ghosts. However, as we will see, this will not be the case. In order to
show this, let us first study the theory with the manifestly covariant approach.

2.1 Approaching the R2 gravity a la Stueckelberg

Following [13], let us now apply the Stueckelberg trick to the metric perturbations, by
rewriting the original metric perturbations as:

hµν = lTµν + ∂µA
T
ν + ∂νA

T
µ +

(
∂µ∂ν −

1
42ηµν

)
µ+ 1

4ληµν . (2.5)

We will impose the Lorentz-like conditions on the new vector and tensor fields:

∂µl
Tµ
ν = 0, and ∂µA

Tµ = 0, (2.6)

and, in addition, require:

lTµµ = 0 (2.7)

In this case, (2.4) becomes:

Lfull = M2

8

[
−∂αlTµν∂αlTµν + 3

8∂α (2µ− λ) ∂α (2µ− λ)
]

+ 9β
19 (2µ− λ)2 . (2.8)

Thus, we can see that this theory describes tensor and scalar modes, while the vector ones
have dropped out from the action. However, the above fields are frame-dependent. Under
infinitesimal coordinate transformations:

xµ → x̃µ = xµ + ξµ, (2.9)

the above fields transform as:

λ→ λ̃ = λ− 22κ and µ→ µ̃ = µ− 2κ, (2.10)

where we have decomposed the parameter ξµ as

ξµ = ξTµ + ∂µκ, where ∂µξ
Tµ = 0. (2.11)

We can form an invariant quantity:

σ = λ−2µ, (2.12)
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which remains unchanged with the transformation (2.9). With it, the Lagrangian den-
sity becomes:

Lpure = −M
2

8 ∂αl
T
µν∂

αlTµν + 9β
162σ

(
2−m2

σ

)
σ, (2.13)

in agreement with [13], where

m2
σ = M2

12β . (2.14)

Let’s now first consider the full R2 gravity. We can notice that the second term of (2.13)
indicates that the theory is plagued by ghosts — it would describe a massive healthy dof as
well as the massless ghost one. However, this comes with a subtlety. The relation among the
old metric perturbations and new ones, given in (2.5), is not a decomposition, but rather an
introduction of the additional vector and scalar degrees of freedom [84]. Thus, in addition to
the invariance under infinitesimal coordinate transformations (2.9), by performing such a trick
we have introduced additional gauge invariance on top of the existing one, due to the presence
of the new vector and scalar fields. We have already partially fixed the gauge to set the
conditions (2.6) and (2.7). However, similarly to the Lorentz gauge-fixing in electrodynamics,
this leaves us with residual gauge freedom [13]:

lTµν → l̃Tµν + ∂µvν + ∂νvµ σ → σ̃ = σ + 2∂µsµ, (2.15)

where
∂µvν = 0, 2vµ = 0 and ∂µsν + ∂νsµ = 1

2ηµν∂
γsγ . (2.16)

By using it, we can remove one ghost-like dof. Then, all together, the Lagrangian density (2.13)
describes two tensor degrees of freedom and one healthy scalar mode.

Let us now consider only the pure R2 gravity. In this case, the Lagrangian density
becomes:

Lpure = 9β
162σ2σ. (2.17)

In contrast to the full R2 gravity, we can see that the tensor modes have disappeared, and the
theory only describes scalar dof, in agreement with [13]. We should note that even though
it appears that another ghost-like dof is contained in the theory, it can be removed in the
same manner as in the previous case.

2.2 The direct approach

In the previous subsection we have investigated the degrees of freedom of the R2 gravity in
the flat space using the Stueckelberg trick together with the Lorentz-like conditions on the
metric perturbations. We have seen that the pure R2 gravity describes a single, massless,
scalar dof. By adding to this theory an Einstein-Hilbert term, this scalar becomes massive,
and the theory in addition propagates two tensor modes that describe the gravitational waves.

However, while the previous approach keeps the Lorentz covariance manifest, it is not
convenient. We have seen that the scalars appear with higher-time derivatives, and thus
suggest a presence of ghosts. While these modes are not physical and can be removed with
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the residual gauge redundancy, it would be interesting to see the form of the action which
contains only the physical dof. We will explore such formulation of the theory in this section.
In contrast to the previous approach, we will follow an alternative, direct one, that originates
from the cosmological perturbations theory.

2.2.1 The pure R2 gravity

Let’s begin our analysis with the pure R2 gravity. As in the previous section, we will
decompose the metric in terms of the flat space-time background, and a small perturbation:

gµν = ηµν + hµν . (2.18)

In this case, the Lagrangian density corresponding to the action (2.2), is given by:

Lpure = β (∂µ∂νhµν −2h)2 . (2.19)

In order to know the full spectrum of the theory, let us decompose the metric perturbations
in the scalar, vector and tensor modes [136]:

h00 = 2ϕ
h0i = B,i + Si, Si,i = 0
hij = 2ψδij + 2E,ij + Fi,j + Fj,i + hTij , Fi,i = 0, hTij,i = 0, hTii = 0,

(2.20)

where , i = ∂
∂xi . Then, the above Lagrangian density becomes:

Lpure = β
[
36ψ̈ψ̈ − 48ψ̈∆ψ + 16∆ψ∆ψ

+4∆
(
ϕ+ Ë − Ḃ

) (
6ψ̈ − 4∆ψ + ∆

(
ϕ+ Ë − Ḃ

))]
.

(2.21)

Here, ˙ denotes a derivative with respect to time. We can notice that as in the initial approach,
both tensor and vector perturbations have dropped out from the action. Moreover, the
scalars that are involved in this Lagrangian density depend on the choice of the coordinate
frame. Upon the infinitesimal coordinate transformation:

xµ → x̃µ = xµ + ξµ, (2.22)

one can easily show that the scalar perturbations transform as:

ϕ→ ϕ̃=ϕ−ξ̇0 ψ→ ψ̃=ψ E→ Ẽ=E−ζ B→ B̃=B−ξ0−ζ̇. (2.23)

Here, we have decomposed the infinitesimal parameter ξµ as

(ξ0, ξi), and ξi = ξTi + ζ,i. (2.24)

Even though they are absent at the moment, let us note for completeness that the vector
perturbations transform as:

Si → S̃i = Si − ξ̇Ti Fi → F̃i = Fi − ξTi (2.25)
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while the tensor modes are left unchanged:

hTij → h̃Tij = hTij . (2.26)

By defining the following gauge-invariant quantities:

Φ = ϕ−
(
Ḃ − Ë

)
and Ψ = ψ (2.27)

known in the cosmological perturbation theory as the Bardeen potentials [135], the Lagrangian
density (2.21) becomes

Lpure = 4β
[
∆Φ∆Φ + 2Φ∆

(
3Ψ̈ − 2∆Ψ

)
+ 9Ψ̈Ψ̈ + 4∆Ψ∆Ψ − 12Ψ̈∆Ψ

]
. (2.28)

This expression can be further simplified by defining the following gauge-invariant quantity:

χ = Φ + Ψ. (2.29)

With it, (2.28) becomes:

Lpure = 4β [∆χ∆χ− 6∆χ2Ψ + 92Ψ2Ψ] . (2.30)

Clearly, the quadratic term for Ψ appears with higher-order time derivatives. Naively, this
could leave an impression that the theory does contain scalar ghosts. However, in contrast
to the previous approach, we have two fields, χ and Ψ, among which the first one does not
propagate as there are no time-derivatives acting on it. By varying the action with respect
to χ, we find the following constraint:

∆2χ = 3∆2Ψ → ∆χ = 32Ψ, (2.31)

whose solution is given by:

χ = 3
∆2Ψ. (2.32)

Here, should think of the operator 1
∆ in the sense of the Fourier transform. For the quantity

X(x⃗, t) =
∫

d3k

(2π)3/2Xk⃗
(t)eik⃗x⃗, (2.33)

it is simply given by:
1
∆X =

∫
d3k

(2π)3/2
1

|⃗k|2
X
k⃗
(t)eik⃗x⃗. (2.34)

By substituting the solution (2.32) back to the Lagrangian density (2.30), we find:

Lpure = 0. (2.35)

In other words, the constraint (2.32) has exactly cancelled the contribution of the field Ψ.
This means that within this approach, inspired by the cosmological perturbation theory,
we have found that the pure R2 gravity has no propagating degrees of freedom at all. One
should note that an equivalent result holds if we found the constraint for Φ, solved it and
substituted it back to the action. This result clearly contradicts the previous result, or even
with the result that might follow from studying the theory in the Einstein or String frames.
While in the appendix we show that the two transformation to the two frames is singular for
flat space, before we discuss the reason for the discrepancy between the manifestly covariant
and the direct approach, let us first study the remaining cases.
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2.2.2 The full R + R2 gravity

Let us now generalize the previous procedure to the action that also contains an Einstein-
Hilbert term:

Sfull =
∫
d4x

√
−g

[
M2

2 R+ βR2
]
. (2.36)

Then, by perturbing the metric around the flat spacetime, we find the Lagrangian density
given in (2.4). Decomposing the metric perturbations according to (2.20), we find:

Lfull = LSfull + LVfull + LTfull, (2.37)

where

LSfull = M2
(
2Φ∆Ψ − 3Ψ̇Ψ̇ − Ψ∆Ψ

)
+ 4β

(
3Ψ̈ − 2∆Ψ + ∆Φ

)2
, (2.38)

LVfull = −M
2

4 Vi∆Vi, (2.39)

and
LTfull = −M

2

8 ∂αh
T
ij∂

αhTij . (2.40)

Here, the vector modes are expressed through an gauge-invariant variable:

Vi = Si − Ḟi. (2.41)

We can notice that the theory now contains two massless tensor modes, two scalars and a
vector. However, the vector modes are not propagating — they do not have any kinetic terms.
By varying the action with respect to Vi, we find the constraint:

∆Vi = 0, (2.42)

whose solution is

Vi = 0. (2.43)

Thus, we can set their correponsing Lagrangian density to zero.
The Lagrangian density corresponding to the scalar modes is the most complicated

one. However, similarly to the pure R2 gravity, the gauge-invariant scalar potential Φ is not
propagating. By varying the action with respect to it, we arrive at the following constraint:

4β∆
(
3Ψ̈ − 2∆Ψ + ∆Φ

)
+M2Ψ = 0. (2.44)

Its solution is given by:

Φ = 1
∆

(
−3Ψ̈ + 2∆Ψ − M2

β
Ψ
)
. (2.45)

By substituting it back to (2.37), we find:

LSfull = 3M2
(
Ψ̇Ψ̇ + Ψ∆Ψ −m2

ΨΨΨ
)
, (2.46)

where
m2

Ψ = M2

12β . (2.47)

Thus, Starobinsky model in flat spacetime describes a massive scalar degree of freedom,
with mass given by (2.47), and two massless tensor modes, in agreement with the manifestly
covariant approach.
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3 Generalization to the 3-form

In the previous sections, we have seen that the two approaches — the manifestly covariant
one, and the direct one — yield different results for the pure R2 gravity. The first method
indicates that the theory has a single scalar dof, while the second one results in no dof at all.

However — How special is R2 gravity? As we will see in this section, there exists at
least one more example where the two methods provide different results — the theory of
a massless 3-form. Its action is given by:

S = − 1
48

∫
d4xWµναβW

µναβ , (3.1)

where
Wµναβ = Cναβ,µ − Cµαβ,ν + Cβµν,α − Cαµν,β (3.2)

is the corresponding field strength. It is well known that if the three form is massless, it
describes no dof, while if massive, it propagates one pseudoscalar dof [108–121]. Notably, the
dof can be easily obtained using the direct approach as in [105]. In order to demonstrate
the discrepancy that occurs for this theory when studied via the two approaches, we will
rewrite the theory in terms of the vector field, dual to the 3-form:

Aµ = εµνρσC
νρσ. (3.3)

In terms of the vector field, (3.1) becomes:

S = 1
2

∫
d4x (∂µAµ)2 . (3.4)

Let us now study this action via the two different approaches.

3.1 The manifestly covariant approach

In this subsection, we will focus on the manifestly covariant approach. For this, let us write
the vector field a la Stueckelberg:

Aµ = Wµ + ∂µϕ. (3.5)

As in the case of R2 gravity, this introduces a new field to the theory — the scalar field ϕ.
This is clear, as the vector field is not divergence-less at this moment, so the action becomes:

S = 1
2

∫
d4x (∂µWµ + 2ϕ)2 . (3.6)

One should note that the relation between old and new variables in (3.5) is non-local, which
could be considered as a weak point of the approach. However, it is nevertheless widely used
in the literature, mostly in the context of massive gauge fields. Let us use it here to count
the degrees of freedom by following the procedure analogous to the case of R2 gravity.

By writing the original field as (3.5) introduces also a gauge redundancy:

Wµ → W̃µ = Wµ + ∂µλ and ϕ→ ϕ̃ = ϕ− λ. (3.7)
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Let us use it to set the Lorentz gauge. For this, we can choose the gauge parameter λ, such that

∂µW̃µ = 0. (3.8)

This is possible for

2λ = −∂µWµ, (3.9)

and fixes the gauge, up to an additional parameter γ:

Wµ → W̃µ = Wµ + ∂µγ and ϕ→ ϕ̃ = ϕ− γ, (3.10)

which satisfies

2γ = 0. (3.11)

Then, the above approach (3.5) is precisely the vector analogue of the Stueckelberg trick
for R2 gravity that we have performed in the first section.

In this case, the Lagrangian density corresponding to the action (3.4) becomes:

L = 1
22ϕ2ϕ, (3.12)

and leads to the following equation for the scalar field:

22ϕ = 0. (3.13)

Even thought this equation is fourth-order in time-derivatives, it nevertheless does not
describe two degrees of freedom — a ghost and a healthy one. Due to the residual gauge
redundancy (3.10), one degree of freedom can be removed, so the resulting theory only
describes only one degree of freedom. However, based on the literature to date, this is an
incorrect result — the theory described by the action (3.4) should not have any dof. In order
to convince ourselves that this is the case, let us study the theory directly.

3.2 Using the methods of the cosmological peturbation theory

Let us now approach the action (3.4) by using the direct approach, that is based on the
cosmological perturbation theory, as we have done for the R2 gravity. We will separate the
time and spatial component of the vector field (A0, Ai), and further decompose:

Ai = V T
i + ∂iχ, with V T

i,i = 0. (3.14)

Then, we find:

L = 1
2
(
Ȧ0Ȧ0 − 2Ȧ0∆χ+ ∆χ∆χ

)
. (3.15)

We can notice that the field V T
i has dropped out from the action. Moreover, similarly to the

case of the pure R2 gravity, the scalar χ is not propagating. It satisfies a constraint:

∆χ = Ȧ0, (3.16)
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whose solution is given by

χ = 1
∆Ȧ0. (3.17)

By substituting it back to (3.15), we find

L = 0. (3.18)

Thus, with the direct decomposition, we have confirmed that the this theory has no dof,
in agreement with the previous literature.

One should note that this case, as well as the case of pure R2 gravity, imply the absence
of degrees of freedom even though the equations of motion for Ψ and A0 involve second-order
time derivatives. Substituting the constraints satisfied by the non-propagating fields into the
equations for Ψ and A0 would imply a relation 0 = 0, providing an equivalent result to the
vanishing of the Lagrangian density after all constraints are substituted. This is similar to the
case of electrodynamics, where the contribution of the longitudinal modes (whose equation of
motion involves second-order time derivatives) cancels with the solution of the constraint
of the temporal component, and thus drops out of the action, while only the transverse
modes remain [143]. Similarly, one could easily show that in linearized gravity, only traceless,
transverse, tensor modes remain after substituting the constraints back to the action.

3.3 The massive case

For completeness, let us also consider the massive case, whose action is given by:

S = 1
2

∫
d4x

[
(∂µAµ)2 +m2AµA

µ
]
. (3.19)

Interestingly, as we will see, two approaches coincide in this case, and give the same number
of degrees of freedom.

On the one hand, in the direct approach, the Lagrangian becomes

L = 1
2
[
Ȧ0Ȧ0 −m2A0A0 − 2Ȧ0∆χ+ ∆χ(∆ −m2)χ

]
. (3.20)

The χ satisfies now a different constraint:

∆(∆ −m2)χ− ∆Ȧ0 = 0, (3.21)

whose solution is given by:

χ = − 1
−∆ +m2 Ȧ0. (3.22)

Upon subsituting it to the Lagrangian density, we find:

L = −1
2A0(−2 +m2) m2

−∆ +m2A0, (3.23)

which describes one massive scalar degree of freedom.
Approaching to the theory, on the other hand, with the Stueckelberg trick supplemented

with Lorentz gauge, we find:

L = 1
22ϕ(2−m2)ϕ (3.24)

thus resulting in one degree of freedom as well, as one of the two that would arise from the
above Lagrangian density can be removed with the residual gauge redundancy (3.10).
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4 The origin of the discrepancy

So far, we have studied the dof of R2 gravity and the dual of a 3-form theory via two
approaches — the direct approach based on the tools of the cosmological perturbation theory,
and the manifestly covariant one. We have found that while the two agree in the case of a
massive 3-form, and the full R2 gravity in flat spacetime, they give conflicting results for
the massless 3-form, and the pure R2 gravity. In particular:

⋄ R2 Gravity. For the R2 gravity, we have found that the direct approach gives

Lpure = 0, and

Lfull = 3M2
(
Ψ̇Ψ̇ + Ψ∆Ψ −m2

ΨΨΨ
)
− M2

8 ∂αh
T
ij∂

αhTij .

(4.1)

In contrast, by performing the Stueckelberg trick and by implementing the Lorentz-like
gauges, we find:

Lpure = 9β
162σ2σ, and

Lfull = −M
2

8 ∂αl
T
µν∂

αlTµν + 9β
162σ

(
2−m2

σ

)
σ.

(4.2)

⋄ 3-form Dual. The two approaches also do not agree in the case of a dual of a 3-form.
There, we have found that the direct approach leads to:

L = 0, for m = 0, and

L = −1
2A0(−2 +m2) m2

−∆ +m2A0, for m ̸= 0.

(4.3)

Applying the Stueckelberg trick with the Lorentz gauge, we find:

L = 1
22ϕ2ϕ, for m = 0, and

L = 1
22ϕ(2−m2)ϕ, for m ̸= 0.

(4.4)

Let us now compare the two approaches and discuss what might be the cause of this
discrepancy. The manifestly covariant approach is appealing as the manifest Lorentz covariance
is preserved. It relies on the Stueckelberg trick, in which one has to introduce additional fields.
In the case of a vector field, dual to the 3-form, we have introduced an additional scalar, while
in the gravity case, we introduced both scalar and vector fields. However, this comes at a cost

— the additional fields are introduced such that the system has additional gauge redundancy.
Thus, even though the scalar fields appear with higher-time derivatives, the system has no
ghost degrees of freedom — they can be removed using the residual redundancy.
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From this perspective, the direct approach, which relies on the tools of the cosmological
perturbation theory could be more appealing. While the resulting Lagrangian is not manifestly
covariant, the apparent ghosts do not appear and the theory has and no gauge redundancy. It
also provides a straightforward way to quantize the (linearized) theory. One simply promotes
the fields Ψ and hTij , and their corresponding moments

πΨ = 6M2Ψ̇ and πTij = M2

4 ḣTij (4.5)

to operators, and postulates the corresponding canonical commutation relations.
However, the two approaches do not give the same number of dof for the pure R2 gravity

or the massless 3-form. In the manifestly covariant approach, one could always pick the
unitary gauge, which sets the additionally introduced fields to zero. Therefore, we can
conclude that the problem might not arise by just performing the Stueckelberg trick — we
can always go back to the gauge-invariant variables and turn to the direct approach.

One can wonder if the problem of counting the dof lies in the direct approach, due
to the substitution of the equations (2.31) and (3.16) back to the action. However, these
equations are constraints, and will thus be valid at all times. This can be easily seen from
the Hamiltonian formalism, that we have presented in the appendix. There, we have found
that it yields the same number of dof as we have found with the direct approach.

This leads us to the conclusion that the reason for this discrepancy lies in the Lorentz-like
gauge conditions, given in (2.6) and (3.8). By imposing them, it seems that there is not
enough gauge redundancy to remove all degrees of freedom and provide matching between
the two approaches.

This is similar to the problem with the synchronous gauge, arising in the cosmological
perturbation theory. Following [136], let us consider the scalar perturbations of the background
metric for the Friedmann-Robertson-Lemetre-Walker Universe. In this case, the metric
given by:

ds2 = a2(η)
[
(−1 + 2ϕ) dη2 + 2∂iBdxidη + ((1 + 2ψ)δij + 2∂i∂jE) dxidxj

]
. (4.6)

Under infinitesimal coordinate transformations:

xµ → x̃µ = xµ + ξµ, (4.7)

the above potentials transform as

ϕ→ ϕ̃ = ϕ− a′

a
ξ0 − ξ′0 B → B̃ = B − ζ ′ − ξ0

ψ → ψ̃ = ψ + a′

a
ξ0 and E → Ẽ = E − ζ.

(4.8)

Let us now first consider the conformal gauge:

Ẽ = 0 and B̃ = 0. (4.9)

It is easy to show that this choice fixes the coordinate system uniquely. If E and B are zero
in one coordinate frame, the gauge parameters are exactly determined:

ζ = 0 and ξ0 = 0. (4.10)

– 14 –



J
H
E
P
0
2
(
2
0
2
4
)
0
3
9

The same is not true, however, in the synchronous gauge, defined by:

ϕ̃ = 0 and B̃ = 0. (4.11)

It is possible to make a gauge transformation to this frame if

ϕ = 1
a

(aξ0)′ B = ξ0 + ζ ′. (4.12)

However, if ϕ and B are then zero in one frame of reference, there is a whole class of frames
where this will also be true, all connected with that one by:

η̃ = η + C1(x⃗)
a

and x̃i = xi + ∂iC2(x⃗) +
∫
dη
∂iC1(x⃗)

a
. (4.13)

In other words, (4.11) does not fix the degrees of freedom uniquely — the constants of
integration prevent this. As a result, the synchronous gauge can give rise to fictitious,
unphysical modes.

Let us now draw a parallel with our previous example. In the case of the vector field,
the Stueckelberg decomposition introduced a gauge redundancy:

Wµ → W̃µ = Wµ + ∂µλ and ϕ→ ϕ̃ = ϕ− λ. (4.14)

It is easy to see that the Coulomb gauge:

∂iW̃i = 0 (4.15)

fixes the gauge uniquely. In this case

∆λ = −∂iWi = −∆χ → λ = −χ. (4.16)

Here we have decomposed Wi = W T
i + ∂iχ. If now Wµ and ϕ are zero, it implies that

λ = 0, and thus our gauge choice uniquely fixes the gauge. A similar thing happens with
the unitary gauge, in which

ϕ̃ = 0. (4.17)

However, unlike the previous two cases, the Lorentz gauge does not fix the gauge uniquely:

∂µW̃
µ = 0 → 2λ = −∂µWµ. (4.18)

If we set in one frame now Wµ = 0, it implies

2λ = 0 (4.19)

and thus

λk = C1e
ikt + C2e

−ikt (4.20)

in the Fourier space. The appearance of the constants of integration shows that the Lorentz
gauge is not uniquely fixed. Following the analogy with the synchronous gauge, the result
of this is the presence of fictitious degrees of freedom.
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This can also be seen from the fact that the gauge invariant fields (obtained in the direct
approach) are connected with those of the Stueckelberg trick by

∆χ− Ȧ0 = ∂µW
µ + 2ϕ (4.21)

By applying the constraint (3.16) as well as the Lorentz gauge, we find:

0 = 2ϕ. (4.22)

Thus, where gauge invariant variables give us nothing — the scalar gives us something — it
is the fictitious mode, an artefact of the gauge choice. The same analysis can also be applied
to the R2 gravity, by a complete analogy. Thus, by performing the manifestly covariant
procedure, which consists of the Stueckelberg trick along with the Lorentz-like conditions to
partially fix the gauge, one can find fictitious modes in a similar way as in the synchronous
gauge of the cosmological perturbation theory.

5 Beyond the linear approximation

So far, we have seen that the full R2 gravity propagates a massive scalar mode and a massless
tensor mode. Yet, by using a gauge invariant approach, we have seen that in the pure theory,
these modes are absent. This brings us to the following question — Is there a discontinuity
between the two theories when each of the parameters of the model vanishes?

In this section, we will study the full R2 theory, described by the action (2.1), and show
that the discrepancy in the number of dof is just an artefact of the perturbation theory. In
particular, we will investigate the limit when M → 0, by following the procedure along the
lines of [105, 107, 137] which searches for the strong coupling scale. The main ingredient for
this analysis is the minimal amplitude of the quantum fluctuations of the fields — a direct
consequence of Heisenberg’s uncertainty principle.

5.1 The free theory and the quantum fluctuations

In this subsection, we will find the amplitude of the quantum fluctuations of the propagating
modes of the full R2 theory, studying each of them separately.

5.1.1 Scalar modes

By expanding (2.1) in terms of the metric perturbations, solving the constraints, and
substituting them back to the action, we have previously found that the Lagrangian density
describing the scalar modes of the linear theory is given by:

LS = 6M2
(
ψ̇ψ̇ + ψ∆ψ −m2

ψψ
2
)
, (5.1)

where
m2
ψ = M2

6β (5.2)

is the mass of the scalar field. As we have previously pointed out, we can notice that by
setting M = 0, this scalar mode drops out, giving the agreement with the pure R2 gravity.
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In order to estimate the scale at which the above expansion will no longer hold, let us
find the fluctuations of the perturbations. For the normalized scalar field, ψn, the minimal
amplitude of quantum fluctuations on the scales k ∼ 1

L is given by [138]

δψn ∼

√
k3

ωk

∣∣∣∣∣∣
k∼ 1

L

(5.3)

In our case, the normalized scalar field is given by:

ψn =
√

12Mψ, (5.4)

while
ω2
ψ = k2 +m2

ψ. (5.5)

Thus for energies k2 ∼ 1
L2 ≫ m2

ψ, the minimal amplitude of quantum fluctuations for
the original scalar field is given by:

δψ ∼ 1
ML

. (5.6)

We should note that the limit β → 0 seems singular — in that case, the mass of the
scalar field diverges. Nevertheless, the above expression was obtained by expanding the
metric around the Minkowski space-time:

gµν = ηµν + hµν , (5.7)

and holds only for the metric fluctuations that are smaller than unity. Thus, at low energies
k2 ∼ 1

L2 ≪ m2
ψ, the minimal amplitude of quantum fluctuations for the scalar field:

δψ ∼ 1
ML

√
Lmψ

∼ β1/4

(ML)3/2 , (5.8)

becomes of order of unity on length scales

Lψ ∼ 1(
M

√
mψ

)2/3 ∼ β1/6

M
(5.9)

beyond which the above expansion (5.7) no longer holds. Similarly, the expansion will not
hold at high-energies, once the length scales

Lstr ∼
1
M
, (5.10)

are reached.
In the remaining part of this work, we will be interested in the high-energy limit — the

limit when the R2 contribution dominates over the Einstein term.
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5.1.2 Tensor modes

As we have previously found, the tensor modes are described by the following Lagrangian
density:

LT = −M
2

4 ∂αh
T
ij∂

αhTij . (5.11)

We can see that similarly to the scalar modes, they vanish for M = 0. The corresponding
amplitude of quantum fluctuations for the tensor modes is given by

δhTij ∼
1
ML

. (5.12)

Thus, once L ∼ 1
M , the tensor modes enter a strong coupling regime and the metric expansion

no longer holds (5.7).

5.2 The first-order corrections

Let us now consider the first-order corrections to the full R2 gravity. By expanding the
metric according to (5.7), we find the following Lagrangian density involving the cubic terms
of the metric perturbations:

L = L0 + Lint, (5.13)

where

L0 = M2

2
(
2hµν,µ h,ααν − hµν,αh

µν,α − 2hµν,µ h,ν + h,µh
,µ
)

+ β
(
hµν,µν − h,µ,µ

)2
, (5.14)

and

Lint = β
(
hαβ,αβ − h,α,α

) [
2hµν

(
h,µν − 2hγν,µγ + h,γµν,γ

)
+ 1

2h
(
hµν,µν − h,µ,µ

)
−1

2h,µh
,µ − 2hµν,µ hγν,γ + 2h,µhνµ,ν − hγν,µh

γµ,ν + 3
2hµν,γh

µν,γ
]

+M2
(
−1

4h
αβhµνh

µν
,αβ −

1
8hµνh

µνhαβ,αβ −
1
4h

αβhβνh
ν,δ
α,δ − hαβhµα,µh

ν
β,ν

+1
2h

αβhβν,µh
µ,ν
α − hαβ,µ h

µ
αh

ν
β,ν + 1

8hhµνh
µν,γ
,γ + 3

16hµνh
µνh,γ,γ + hαβhµα,µh,β

+1
2hh

µν
,µ h

α
ν,α − 1

4hhαν,µh
αµ,ν + 1

4hh
αβh,αβ −

1
16h

2h,µ,µ

)
(5.15)

In the above relations, comma denotes the derivative: ,µ = ∂µ. For example:

h,µ = ∂µh and h,µν = ∂µ∂νh,

where h = hµµ. Let us now decompose the metric perturbations according to (2.20). For
simplicity, we will impose the conformal gauge:

E = 0 and B = 0, (5.16)

and use the residual gauge redundancy to set

Fi = 0. (5.17)
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As in the free case, the action corresponding to the above Lagrangian density has two
constraints — one for the scalar mode ϕ, and one for the vector modes Si, as these fields are
not propagating. These constraints can be found by varying the action with respect to the
two modes. By finding them, solving them perturbatively, and substituting them back to the
action, we find the following Lagrangian density up to quartic terms in metric perturbations:

L = L0 + Lint, (5.18)

where
L0 = 6M2

(
ψ̇ψ̇ + ψ∆ψ −m2

ψψ
2
)
− M2

4 hTij,αh
T,α
ij , (5.19)

and

Lint = M2
{
−3ψ̈ψ2 − 15ψ2∆ψ + 12m2

ψψ
3 − 1

4ψḣ
T
ij ḣ

T
ij + 1

2h
T
ijh

T
ijψ̈ − 4ψhTij∆hTij

−9
4ψh

T
ij,kh

T
ij,k + 3

2ψh
T
ij,kh

T
ik,j −

1
4h

T
ijh

T
ikh

T,µ
jk,µ −

1
4h

T
ijh

T
klh

T
kl,ij + 1

2h
T
ijh

T
il,kh

T
jk,l

−6
[
3ψ̇ψ̇ − 2ψ∆ψ + ψ,iψ,i + 3m2

ψψ
2 + hTijψ,ij + 1

8 ḣ
T
ij ḣ

T
ij −

1
2h

T
ij∆hTij

−3
8h

T
ij,kh

T
ij,k + 1

4h
T
ij,kh

T
ik,j

] 1
∆
[
ψ̈ +m2

ψψ
]}

(5.20)

We can see that by setting M = 0, all of the terms of the Lagrangian density disappear
at the cubic order.5 This gives further support for R2 having no dof, now confirmed also
at the cubic order.

5.3 The strong coupling

In order to find the strong coupling scale, let us find the equations of motion for the scalar
and tensor modes. By varying the action with respect to ψ and hTij , and expanding the two as

ψ = ψ(0) + ψ(1) + . . . and hTij = h
T (0)
ij + h

T (1)
ij + ., (5.21)

where the zeroth values satisfy:

(−2 +m2
ψ)ψ(0) = 0 and 2hT (0)

ij = 0, (5.22)

we find that the first-order contributions to the scalar and tensor modes satisfy respectively:

12(−2+m2
ψ)ψ(1) = 22ψ̇(0)ψ̇(0)−24m2

ψψ
(0)ψ(0)+12ψ(0)∆ψ(0)+6ψ(0)

,i ψ
(0)
,i

−6hT (0)
ij ψ

(0)
,ij + 3

4 ḣ
T (0)
ij ḣ

T (0)
ij −3hT (0)

ij ∆hT (0)
ij − 9

4h
T (0)
ij,k h

T (0)
ij,k

+ 3
4h

T (0)
ij,k h

T (0)
ik,j −6 1

∆

[
4∆ψ(0)∆ψ(0)−2ψ(0)∆2ψ(0)+2ψ(0)

,i ∆ψ(0)
,i

−4m2
ψψ

(0)∆ψ(0)−m2
ψψ

(0)
,i ψ

(0)
,i +3m4

ψψ
(0)ψ(0)+3m2

ψψ̇
(0)ψ̇(0)

+ψ̇(0)
,ij ḣ

T (0)
ij +ψ(0)

,ij ∆hT (0)
ij +hT (0)

ij ∆ψ(0)
,ij −

5
8 ḣ

T (0)
ij ḣ

T (0)
ij

−1
4∆hT (0)

ij ∆hT (0)
ij − 1

2h
T (0)
ij ∆2h

T (0)
ij − 1

4h
T (0)
ij,k ∆hT (0)

ij,k

+m2
ψ

(1
8 ḣ

T (0)
ij ḣ

T (0)
ij − 1

2h
T (0)
ij ∆hT (0)

ij − 3
8h

T (0)
ij,k h

T (0)
ij,k + 1

4h
T (0)
ij,k h

T (0)
ik,j

)]
,

(5.23)
5One can easily confirm that this holds even if one would not set the conformal gauge, and Fi = 0.
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and

−2h(1)
mn = 2P Tmnij

(
−m2

ψψ
(0)h

T (0)
ij + 2ψ̇(0)ḣTij − 2ψ(0)

,k h
T (0)
ij,k − 6ψ(0)ψ

(0)
,ij

+1
2 ḣ

T (0)
il ḣ

T (0)
jl − 1

4h
T (0)
kl h

T (0)
kl,ij + h

T (0)
il,k h

T (0)
jk,l − 1

2h
T (0)
kl h

T (0)
ij,kl − h

T (0)
il,k h

T (0)
lk,j

)
,

(5.24)

where

P Tmnij = 1
2 (δimδjn + δjmδin) − 1

2δij
(
δmn −

∂k∂l
∆ δkmδln

)
+ 1

∆

[1
2δmn∂i∂j + 1

2δmkδln
∂i∂j∂k∂l

∆ − δimδln∂l∂j − δjmδln∂l∂i

] (5.25)

is the transverse-traceless projector.
Let us now first consider the scalar modes. At high energies, k2 ∼ 1

L2 ≫ m2
ψ, we can

represent the most important terms for the equation of motion of the scalar modes (5.23) as:

12(−2 +m2
ψ)ψ(1) ∼ 1

L2ψ
(0)ψ(0) + 1

L2ψ
(0)h

T (0)
ij + 1

L2h
T (0)
ij h

T (0)
ij (5.26)

where we have evaluated the derivatives as

∂µ ∼ 1
L
. (5.27)

By taking into account the minimal level of quantum fluctuations for the scalar and tensor
modes (5.6) and (5.12), we can in addition estimate:

ψ(0) ∼ 1
ML

and h
T (0)
ij ∼ 1

ML
. (5.28)

Then, we find:

ψ(1) ∼ 1
(ML)2 (5.29)

Clearly, in the limit M → 0, this term is divergent. However, once it becomes of the same
order as the linear term, ψ(0), the scalar mode becomes strongly coupled, and thus we can no
longer use the perturbative expansion. This corresponds to the length scales:

Lstr ∼
1
M
. (5.30)

Similarly, in the case of tensor modes, all the terms apart from the first one on the r.h.s.
of (5.24) are equally dominant. Thus, we can estimate:

h
T (1)
ij ∼ 1

(ML)2 . (5.31)

By comparing this non-linear term with the linear one, hT (0)
ij , we find that the tensor modes

enter the strong coupling regime at length scales

Lstr ∼
1
M
, (5.32)

same as the scalar modes.
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Thus, we have found that on energies larger than the mass of the scalar field, the
perturbative expansion holds for the length-scales L > Lstr.6 However, once the strong
coupling scale Lstr is reached, both scalar and tensor modes become strongly coupled. For
completeness, in the appendix we comment on the limit when β → 0.

6 Discussion

The main purpose of this paper was to study the dof of R2 gravity in flat space-time and
obtain an action that is given just in terms of the gauge-invariant variables. By performing
an analysis based on the cosmological perturbation theory, we have found a surprising result

— the pure R2 gravity has no dof, in contradiction to the previous statements in the literature.
We have also confirmed that the existing manifestly covariant procedure, based on the
Stueckelberg trick and Lorentz-like conditions, yields the presence of one massless scalar in
the theory. Moreover, we have shown that an analogous analysis leads to the same conflict
for the vector field dual to the 3-form.

However, as we have seen, similarly to the synchronous gauge, the manifestly covariant
approach does not fix the gauge uniquely. As a result, the apparent scalar mode is fictitious,
leading us to conclude that the massless 3-form and pure R2 gravity have no dof. This
result is supported by the Hamiltonian formalism as well, which we have presented in the
appendix. In addition, we have shown that the first-order non-linear terms disappear for
M = 0, supporting this result as well.

Curiously, the scalar sector of R2 gravity and the 3-form theory bear striking resemblance.
If the Einstein-Hilbert term is added to the R2 term, the scalar mode becomes massive. In its
absence, however, the theory has no dof. Similarly, if the 3-form is massive, it contains one
massive pseudoscalar, while if massless no dof remains. It would be interesting to investigate
if such similarity between the two theories would persist once one takes into account the
coupling between the 3-form and GR to include the tensor modes, or when the non-linear
terms and the external matter are taken into account.

The difference between the dof of the pure and full R2 gravity implies that there could
be a discontinuity between the two theories. This would in turn imply that the perturbative
series becomes singular when M → 0. However, the analysis of the first-order corrections
suggests otherwise, implying that the discontinuity is just an artefact of the perturbation
theory. In particular, we have found that both scalar and tensor modes are strongly coupled
for length-scales L ≤ Lstr ∼ 1

M . This is also intuitive — the Einstein term dominates over the
R2 contribution. One should note that this analysis also supports the absence of the degrees
of freedom in beyond the linear approximation. If M = 0, all terms in the Lagrangian vanish.
It will be interesting to further study this theory in the presence of an external source, and
investigate further similarities with the Vainstein mechanism.
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A Hamiltonian formalism for the massless 3-form

In this appendix we will study the Hamiltonian formalism for the massless 3-form and the
pure R2 gravity by following closely the constraint procedure described in [139]. In this
subsection, let us first consider the simplest case of the dual of the massless 3-form. The
starting point is the Lagrangian density:

L = 1
2 (∂µAµ)2 . (A.1)

The conjugated momenta are given by:

π0 = Ȧ0 − ∆χ (A.2)

and
πχ = 0. (A.3)

Since the momenta corresponding to the scalar χ is vanishing, it implies the existence of
a primary constraint:

πχ ≈ 0. (A.4)

Then, the total Hamiltonian density is given by:

HT = 1
2π

0π0 + π0∆χ+ vπχ, (A.5)

where v is the Lagrange multiplier. Let us define the equal-time Poisson brackets:

{f(x⃗, t), g(y⃗, t)} =
∑
i=1,2

∫
d3z

(
δf

δQi(z)
δg

δPi(z)
− δg

δQi(z)
δf

δPi(z)

)
, (A.6)

where,

Q1 = A0, P1 = π0, Q2 = χ, and P2 = πχ. (A.7)

Then, the equations of motion for the function f are given by:

ḟ = {f,HT } , (A.8)

and we have:{
A0(x⃗, t),π0(y⃗, t)

}
= δ(3)(x⃗−y⃗) and {χ(x⃗, t),πχ(y⃗, t)}= δ(3)(x⃗−y⃗). (A.9)
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From the consistency condition:

π̇χ = 0, (A.10)

we find the secondary constraint:

C = −∆π0 ≈ 0 → π0 ≈ 0. (A.11)

Since Ċ = 0 implies 0 = 0, we have thus found all of the constraints of the system. It is
easy to see that the constraints (A.4) and (A.11) are first-class constraints — their Poisson
brackets vanish. The extended Hamiltonian — quantity from which we can find the most
general equations of motion of the above theory — is then given by:

HE =
∫
d3x

[1
2π

0π0 + π0∆χ+ vπχ + uπ0
]
. (A.12)

Let us now count the dof. The equations of motion

π̇0 =
{
π0, HE

}
Ȧ0 = {A0, HE}

π̇χ = {πχ, HE} χ̇ = {χ,HE}
(A.13)

require four initial conditions, and thus give us two degrees of freedom. Substracting the
two constraints

πχ = 0 and π0 = 0, (A.14)

cancels the two, thus we ultimately find that this theory has no propagating dof, in agreement
with the direct approach.

B Hamiltonian formalism for the pure R2 gravity

Let us now generalize the previous procedure to the case of the (linearized) pure R2 gravity.
Our starting point will be the Lagrangian density:

Lpure = 4β [∆χ∆χ− 2∆χ2Ψn + 2Ψn2Ψn] , (B.1)

were we have rescaled

Ψn = 3Ψ (B.2)

from (2.30) for simplicity. Following the method described in [26, 140], we can identify
three canonical variables:

Ψ1 = Ψn, Ψ2 = Ψ̇n, and χ. (B.3)

The corresponding canonical momentas are given by:

π1 = −8β
(
∂3Ψn

∂t3
+ ∆

(
χ̇− Ψ̇n

))
, (B.4)

π2 = 8β
(
Ψ̈n + ∆ (χ− Ψn)

)
, (B.5)
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and
πχ = 0. (B.6)

As before, this theory has a primary constraint:

πχ ≈ 0, (B.7)

and the Hamiltonian density is given by:

H = π1Ψ2 + 1
16βπ2π2 + π2∆ (Ψ1 − χ) . (B.8)

Since we have brought the previous theory to a form described by the Hamiltonian for three
canonical variables together with a constraint, we can straightforwardly apply the constraint
analysis of [139]. The total Hamiltonian is given by:

HT = π1Ψ2 + 1
16βπ2π2 + π2∆ (Ψ1 − χ) + vπχ, (B.9)

where v is the Lagrange multiplier. Similarly to the previous case, we can define the Poisson
brackets:

{f(x⃗, t), g(y⃗, t)} =
∑

i=1,2,3

∫
d3z

(
δf

δQi(z)
δg

δPi(z)
− δg

δQi(z)
δf

δPi(z)

)
, (B.10)

where
Qi = {Ψ1,Ψ2, χ} , and Pi = {π1, π2, πχ} . (B.11)

Then, the equation of motion for the function f is given by:

ḟ = {f,HT } . (B.12)

From the consistency condition,

π̇χ = 0, (B.13)

we find the secondary constraint:

C1 = ∆π2 = 0 → π2 ≈ 0. (B.14)

This one further implies another constraint:

π̇2 = 0 → C2 = −π1. (B.15)

Thus, in total, this theory has three first-class constraints:

πχ ≈ 0, π1 ≈ 0, and π2 ≈ 0. (B.16)

The extended Hamiltonian is then given by:

HE =
∫
d3x

(
π1Ψ2 + 1

16βπ2π2 + π2∆ (Ψ1 − χ) + vπχ + u1π1 + u2π2

)
, (B.17)

where u1 and u2 are Lagrange multipliers. The equations of motion for the canonical variables
imply three dof. Substracting the three constraints brings us to the overall zero dof of this
theory, in agreement witht the direct approach.
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C The limits of R + R2 gravity in the Einstein frame

In this section, we will comment on the limits of the full R+R2 gravity, described by the
action (2.1) from the Einstein frame [34, 79, 141]. The action (2.1) can be requested in
the following form:

S =
∫
d4x

√
−g

(
M2R+ 2βRχ− βχ2

)
. (C.1)

Here, χ satisfies the constraint:

χ = R. (C.2)

By performing a conformal transformation of the metric:

gµν → g̃µν =
(

1 + 2β
M2χ

)
gµν , (C.3)

and upon defining the canonically normalized field:

χn =
√

3M ln
(

1 + 2β
M2χ

)
, (C.4)

the above action becomes:

S =
∫
d4x

√
g̃

[
M2R̃− 1

2 g̃
µν∂µχn∂νχn −

M4

4β
(
1 − e

− χn√
3M

)2
]
, (C.5)

where R̃ is the Ricci scalar corresponding to the new metric g̃µν . Let us now expand on
the above potential, assuming that

χn
M

< 1. (C.6)

In this case, the action can be approximated by:

S ∼
∫
d4x

√
g̃

[
M2R̃− 1

2 g̃
µν∂µχn∂νχn −

m2
χ

2 χ2
n + M

12
√

3β
χ3
n

]
, (C.7)

where
m2
χ = M2

6β (C.8)

is the mass of the scalar. Thus, we have found the action of a massive scalar, similar to
the direct approach.

It is clear that in the limit M → 0, both the tensor and the scalar mode will get strongly
coupled, at the scale that we have previously found — the tensor modes will obey the same
behavior as in Einstein gravity, while the scalar will get strongly coupled at the same scale
due to the interaction with the tensor mode.

Let us now study the behavior of this scalar in the limit when β → 0, and for simplicity
ignore the tensor perturbations. This limit is consistent only in the regime for scales

k2 ∼ 1
L2 ≪ m2

χ. (C.9)
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As we have previously found, the minimal amplitude of quantum fluctuations for the scalar
mode corresponding to these scales is given by

δχn ∼ β1/4

(ML)3/2 . (C.10)

Let us now find the strong coupling scale, at which the non-linear terms become of the same
order as linear ones on the level of the equation of motion. We can easily estimate this by
working directly with the action. By estimating

χ̇n ∼ mχχn and ∂iχn ∼ χn
L
, (C.11)

we find:

χ̇nχ̇n ∼ M√
βL3 and M

β
χ3
n ∼ M

β1/4L3(ML)3/2 . (C.12)

The two terms are of the same order at length scales

Lχ ∼ β1/6

M
(C.13)

which is precisely the scale that we have found with the direct approach. It is easy to verify
that for scales L > Lχ, the scalar field is weakly coupled. However, once the strong coupling
scale is reached, the assumption (C.6) will no longer hold. At this point, one has to work
with the full potential, given in (C.5). One could wonder if our estimate should be different,
as the scalar field no longer has the mass term associated with it. However, it is easy to
check that the potential term is dominating over the kinetic term at the strong coupling scale.
Thus, at this point, the scalar is already strongly coupled — it loses its linear propagator
and becomes frozen due to the dominant potential.

Finally, an interesting behavior happens in the limit when β → ∞. In this case, the
potential vanishes, while we are left with only Einstein gravity coupled to a scalar. However,
at the same time, the conformal transformation is undefined in this case. Thus even though
the pure R2 theory has no dof, we could interpret the change in the description due to the
singular behavior of the transformations that connect the two theories. It should be noted
that in the case of the pure R2 gravity [66] found non-trivial black-hole solutions with which
the transformation between the conformal and Einstein frames is singular and thus which
are not supported with both of the frames.

D Can we use Einstein and string frames for the pure theory?

In this section, we will study if the action of the pure R2 gravity can be studied in the
Einstein or String frames.

SR2 =
∫
d4x

√
−gβR2. (D.1)

D.1 The Einstein frame

Following the analysis of [13], let us derive the corresponding action in the Einstein frame.
For this, let us consider the following action:

S =
∫
d4x

√
−g

(
ϕR− 1

4βϕ
2
)
. (D.2)
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Here, ϕ satisfies the constraint:

ϕ = 2βR. (D.3)

By substituting it into (D.2), it can be easily shown that the action reduces to the original
one, given by (D.1). Furthermore, let us define a conformally rescaled metric:

g̃µν = 2
M2
pl

ϕgµν (D.4)

By expressing (D.2) in temrs of the new metric, we find:

S(E) =
∫
d4x

√
−g̃

[
M2
pl

2
(
R̃− 2Λβ

)
− 1

2 g̃
µν∂µΦn∂νΦn

]
, (D.5)

where R̃ is the curvature corresponding to the new metric,

Λβ =
M2
pl

16β , and Φn =
√

3
2Mpl ln

(
2ϕ
M2
pl

)
(D.6)

The action (D.5) is the action of the pure R2 gravity in the Einstein frame.
As pointed out in [13], this formulation only works for R ̸= 0. In the flat case, R = 0,

and thus we have ϕ = 0. As a result, the conformally rescaled metric g̃µν is not defined, and
we cannot use the Einstein frame in order to describe R2 gravity in flat space-time.

We could also intuitively understand why the connection between the original and Einstein
frame is absent for the flat-space metric gµν = ηµν — the action (D.5) has cosmological
constant, and thus the flat space is not even the solution of the equations for the metric g̃µν .

D.2 The string frame

For non-zero curvature in the original (or conformal) frame, following the procedure of [142],
it can be shown that the string frame for the pure R2 gravity is defined by:

S(S) =
M2
pl

2

∫
d4x

√
−gSe−φ

(
RS + gµνS ∂µφ∂νφ− 2Λβe−φ

)
. (D.7)

Here, gS and RS are the metric and Ricci scalar corresponding to the string-frame, while
φ is the scalar field. By conformally rescaling the above action:

gSµν = eφg̃µν (D.8)

and by identifying

Φn = Mpl√
2
φ, (D.9)

it is easy to see that the action (D.7) becomes the action of the Einstein frame (D.5).
Let us now consider the R = 0 case. The string-frame metric is connected to the

original one with:

gSµν =
(

2ϕ
M2
pl

)1+
√

3

gµν . (D.10)
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Due to the constraint:

ϕ = 2βR, (D.11)

for R = 0, we have ϕ = 0. Thus, the string-frame metric is undefined in this case, similarly
to the Einstein-frame metric, g̃µν .

Therefore, we have seen that the two frames are not well defined in the case of flat
space. The way to study the perturbations of pure R2 gravity is thus with the direct method,
in the original frame.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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