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Abstract: The emission of collinear radiation off an elementary lepton can be factorised
from the hard scattering process by introducing Parton Distribution Functions of a Lepton
(LePDF), which, contrary to protons, can be derived from first principles. In case of multi-
TeV lepton colliders, such as the muon colliders currently being proposed, the complete
structure of Standard Model interactions must be taken into account. In this work we solve
numerically the corresponding DGLAP equations at the double-log order and provide public
files with LePDFs for both muons and electrons, including polarisation effects. We discuss
several interesting aspects of the resulting PDFs and compare them with the Effective Vector
Approximation, showing that the latter fails to describe well the vector bosons PDFs at
small momentum fractions, unless it is extended to higher orders.
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Figure 1. Diagram of a process AX → CY with an initial-state splitting A→ BC.

1 Introduction

At present, the Large Hadron Collider at CERN is our only tool for direct exploration of
physics at the electroweak scale and above and the high-luminosity phase is planned to last
until the early 2040s. It proved to be a formidable machine for both searches of new heavy
particles as well as precision studies at the electroweak scale, of which the Higgs discovery
and the precision study of its coupling is a prime example. Nevertheless, the next large-scale
experiment in high-energy physics is likely to be a lepton collider. The proposed options
include circular or linear electron-positron colliders (FCC-ee [1] and CEPC [2] for the former,
ILC [3], CLIC [4] and CCC [5] for the latter) as well as µ+µ− colliders [6–10]. Among these,
the linear e+e− colliders and the muon colliders could achieve multi-TeV center-of-mass
energies.

While leptons are elementary particles in the Standard Model (SM), the process of
collinear emission of initial state radiation (ISR), with transverse momentum pT much
smaller than the energy of the hard scattering process, can be factorized and a description
in terms of parton distribution functions (PDFs) can be introduced, similarly to what is
done in case of proton colliders and the parton content of a proton. The case of collinear
photon emission from an electron is known since almost a century and at leading order can
be described using the effective photon approximation (EPA) [11–14]

fEPAγ (x) =
αγ
2π
Pγe(x) log

E2

m2
e

, (1.1)

where E is the energy of the initial electron and Pγe(x) =
1+(1−x)2

x is the splitting function,
that describes the probability of an electron to emit a photon with a fraction x of its energy
and virtuality −p2T /(1− x).

When E ≫ me the large logarithms can be resummed in order to improve the perturba-
tive expansion, and the factorization scale Q is introduced. Invariance of the physics under
the factorization scale leads to the DGLAP equations [15–17]. For a generic splitting of
massless partons A→ B + C (as in Fig. 1), choosing pT as factorization scale and working
at the leading logarithm (LL) order one has

Q2dfB(x,Q
2)

dQ2
= P vB fB(x,Q

2) +
∑
A,C

αABC(Q)

2π

∫ 1

x

dz

z
PCBA (z) fA

(x
z
,Q2

)
, (1.2)
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where PCBA(z) are the leading order (LO) splitting functions (listed in App. B), αABC(Q)
the corresponding running coupling, and the term P vBfB describes virtual corrections (see
App. C for details). In case of a proton, due to its non-perturbative nature, the initial
conditions for this system must be fitted from collider data. For a lepton, instead, the initial
condition can be computed perturbatively and the system can be solved from first principles.
The initial condition is

fℓ(x,m
2
ℓ ) = δ(1− x) +O(α) , (1.3)

for initially unpolarised beams1, while all other PDFs vanish for Q2 = m2
ℓ at this order.

Next-to-leading order (NLO) corrections to the initial conditions have also been computed
[18] and become relevant when next-to-leading log (NLL) evolution is considered [19, 20].
In this work we limit ourselves to LL evolution and LO initial conditions.

In case of multi-TeV lepton colliders one can be interested in factorization scales much
higher than the electroweak scale. In this case all SM interactions and fields should be
considered [21]. In this aspect, lepton colliders differ qualitatively from hadron colliders. For
the latter, QCD interactions are the dominant contributions to the DGLAP evolution in the
whole energy range (see however e.g. Refs. [22–26] about the photon and lepton content of
the proton). In the case of lepton collider, instead, QED and electroweak (EW) interactions
are the leading ones, with QCD playing an important but not dominant role.

The facts that SM gauge group is non abelian, that it is spontaneously broken at the
electroweak scale, and that interactions are chiral have several crucial implications for the
evaluation of collinear radiation in this regime. The non abelian nature of EW interactions
imply a lack of cancellation of infrared (IR) divergencies between virtual corrections and
real emission, which generates Sudakov double logarithms [27–29]. Electroweak symmetry
breaking effects have been shown to provide important contributions and to be the dominant
ones in case of longitudinal polarisations of electroweak gauge bosons [30]. Since the SM
interactions are chiral, PDFs become polarized above the EW scale [31].

The goal of this work is to numerically solve the DGLAP equations from the initial
condition at Q = mℓ up to multi-TeV scales, taking into account all SM interactions
(including the effects mentioned above), and to provide public results with the complete
LePDFs. For concreteness, in the following we assume the initial lepton to be a muon,
since muon colliders could achieve higher energies, for which our discussion is more relevant.
However, all results can be equally applied to e+e− colliders with suitable substitutions thus
we provide numerical results for both.

A preliminary study of PDFs for muon colliders by us, mainly focusing on the fermionic
degrees of freedom, was included in Ref. [32]. In this work we extend it by including all SM
interactions, Sudakov double logs, polarisation, and EW symmetry breaking effects. One
similar study has already been performed in the literature, specifically in Refs. [33, 34], and
we compare our results with the plots presented in those works. We also compare against
approximate solutions obtained by solving iteratively, at fixed-order, the DGLAP equations,

1Here we assume unpolarised beams, so that polarisation effects are only due to the DGLAP evolution.
If needed, it will be straightforward to implement a given intrinsic beam polarisation in future versions of
the code.
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which provide the analogous of the Effective Vector Boson Approximation (EVA) [35–37]. A
noteworthy result of this comparison is the realisation that the LO EVA for transverse EW
gauge bosons PDFs is insufficient for correctly describing the full result, which is instead well
approximated by including contributions up to O(α2). Crucially, Sudakov double logarithms
appear at this order due to the gauge boson splitting V → V V and the virtual corrections
to the muon PDF.

In Section 2 we present the first part of the evolution below the EW scale, where only
QED and QCD interactions are relevant. In Section 3 we discuss the main aspects of the evolu-
tion above the EW scale. Our results are collected in Section 4, where several notable features
of LePDFs are showed, and a comparison with EVA is presented. We conclude in Section 5,
while many details of our computations, the numerical implementation and the formatting of
our LePDF files are collected in several Appendices. The numerical results for the LePDFs
can be downloaded from GitHub at the link: https://github.com/DavidMarzocca/LePDF.

2 QED and QCD evolution

For factorization scales below the EW scale the relevant degrees of freedom are light quarks
and charged leptons, with vectorlike QED and QCD gauge interactions. Neutrinos, while
having negligible masses, become relevant only above the EW scale where the W boson can
go on-shell.2 Because the initial condition and the evolution equations are vectorlike, in
this regime no polarisation effects are induced, i.e. PDFs will be the same for both fermion
chiralities or gauge boson polarisation.

In the DGLAP evolution from the muon mass up to the EW scale one encounters several
mass thresholds for each fermion species as well as at the QCD scale QQCD. At each threshold
a matching should be performed. For our purposes, we take all fermions except bottom
and top quarks to be massless.3 The QQCD scale sets the onset of QCD interactions, which
become relevant after the γ → qq̄ splitting. This can be interpreted as the QCD structure
of a photon, and can be divided into a perturbative and a non-perturbative component,
mainly due to the photon mixing with QCD vector mesons [41–45]. The latter one will
be power-suppressed at the large scales we are eventually interested in, so we neglect it.
The choice of QQCD depends on how many resonances are included in the non-perturbative
component and a value close to mρ has been argued to provide a good benchmark [43–45].
In practice, we follow the prescription of Ref. [34, 43] with QQCD = 0.7 GeV.4

Therefore, from mµ to QQCD we consider only QED interactions, including all charged
leptons ad well as the light quarks (u, d, s, c). At QQCD we match the PDFs and continue
the evolution up to the bottom mass scale adding also QCD interactions and setting the

2A possible effect of neutrinos even below the EW scale is due to neutrinos from muon decay µ− → e−ν̄eνµ
which present IR singularities in the physical region when scattering with the incoming µ+ (or viceversa)
[38]. In case of muon colliders such singularities are cutoff by the finite width of the muon beam [39, 40].
We neglect such effects with our PDF formalism, assuming that it can be described independently of PDFs.

3In future versions we plan to add also the τ and charm quark mass thresholds.
4We study the dependence of our results on QQCD by running the evolution also for values QQCD =

0.52(1.0) GeV and interpreting the differences as theory uncertainty on our final results due to non-
perturbative QCD dynamics, see dedicated discussion in Sec. 4.6.
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initial condition for the gluon PDF as fg(x,QQCD) = 0. At Q = mb we perform another
matching and continue the evolution up to the EW scale QEW including also the bottom
quark, setting fb(x,mb) = fb̄(x,mb) = 0 as its initial conditions.

Given the C and P symmetries of QED and QCD, and the fact that all fermions except
for bottom and top quarks are taken massless, below QEW several PDFs are related:

fℓsea = fe = fτ = fē = fµ̄ = fτ̄ ,

fqu = fu = fū = fc = fc̄ ,

fqd = fd = fd̄ = fs = fs̄ ,

fb = fb̄ .

(2.1)

The DGLAP equations, according to Eq. (1.2), are then given by

dfℓ
dt

=P vℓ fℓ +
αγ(t)

2π

[
P Vff ⊗ fℓ + P ffV ⊗ fγ

]
,

dfqu

dt
=P vqufqu +

αγ(t)

2π
Q2
u

[
P Vff ⊗ fqu +NcP

f
fV ⊗ fγ

]
+
α3(t)

2π

[
CFP

V
ff ⊗ fqu + TFP

f
fV ⊗ fg

]
,

dfqd,b
dt

=P vqdfqd +
αγ(t)

2π
Q2
d

[
P Vff ⊗ fqd,b +NcP

f
fV ⊗ fγ

]
+
α3(t)

2π

[
CFP

V
ff ⊗ fqd,b + TFP

f
fV ⊗ fg

]
,

dfγ
dt

=P vγ fγ +
αγ(t)

2π

∑
f

Q2
fP

f
V f ⊗

(
ff + ff̄

)
,

dfg
dt

=P vg fg +
α3(t)

2π

[
CAPV V ⊗ fg + CFP

f
V f ⊗

∑
q

(fq + fq̄)

]
,

(2.2)

where ℓ = {ℓsea, µ}, ⊗ indicates a convolution as in Eq. (1.2) and we defined the evolution
variable t as

t ≡ log
(
Q2/m2

µ

)
, (2.3)

such that we start the evolution with the initial condition in Eq. (1.3) at t = 0. The
splitting functions are listed in App. B (we regulate the (1− z)−1 poles using the standard
+-distribution, see Eq. (B.1)), while the values of the virtual coefficients P vB can be found in
App. C. Finally, the details for the RG evolution of QED and QCD couplings are reported
in App. A.1. In Fig. 2 we show the result of our numerical solution of DGLAP equations for
a muon, evolved from the muon mass up to the EW scale QEW = mW (solid lines). As can
be seen, at small x the gluon PDF becomes rather important, while quark PDFs have a size
similar to the muon itself or sea leptons, as already showed in Refs. [32–34].

– 5 –



μ
ℓsea

g

γ

u

db

Q=mW

0.001 0.005 0.010 0.050 0.100 0.500 1
0.001

0.010

0.100

1

10

100

x

f i(
x,
Q
)

Figure 2. PDFs of a muon evaluated at the EW scale QEW = mW . The colored regions
corresponds to the variation obtained by modifying QQCD between 0.5 and 1 GeV (see Sec. 4.6 for
details). Here ℓsea is defined as in Eq. (2.1).

2.1 Iterative solution for QED

By solving iteratively the DGLAP equations order by order in (αγt) = (αγ logQ
2/m2

Q), one
gets approximate solutions for the PDFs. The LO contribution for the photon PDF is given
by Eq. (1.1) with the crucial substitution E → Q. By including terms up to O(α2t2) we get

f (α
2)

µ (x, t) = δ(1− x) + αγ
2π

t

(
3

2
δ(1− x) + P Vff (x)

)
+

1

2

(αγ
2π

t
)2 [9

4
δ(1− x) + 3P Vff (x) + IfV V f (x) + Iffff (x)

]
,

f
(α2)
ℓsea

(x, t) =
1

2

(αγ
2π

t
)2
IfV V f (x) ,

f (α
2)

γ (x, t) =
αγ
2π

t P fV f (x) +
1

2

(αγ
2π

t
)2 [(3

2
− 2

3
NQED
f

)
P fV f (x) + IV fff (x)

]
,

(2.4)

where t is defined in Eq. 2.3 and the IABBC(x) ≡
∫ 1
x
dz
z P

X
AB(z)P

Y
BC(x/z) integrals are

collected in Eq. (B.7). Going up to O(α2t2) is required in order to describe the low-x
behavior of valence and sea lepton PDFs, that is dominated by the γ → ℓ+ℓ− splitting (i.e.
the IfV V f (x) term above). We find good agreement between these expressions and our
numerical results.

The gluon PDF starts formally at O(α2
γαst

3). However, due to the large value of αs
at low energies and the importance of a careful treatment of the matching at the QQCD, a
fixed-order solution would not be a good approximation for the correct result. For the same
reason we do not report here also the approximated expression for quark PDFs, even if they
formally arise already at O(α2

γt
2), since they receive large a QCD contribution from gluon

splitting into qq̄. A correct description of the quark and gluon PDFs in a lepton therefore
motivates a complete numerical solution of the DGLAP equations [34].
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Leptons µL µR eL eR νµ νe ℓ̄L ℓ̄R ν̄ℓ
Quarks uL dL uR dR tL tR bL bR + h.c.

Gauge Bosons γ± Z± Z/γ± W±
± g±

Scalars h ZL h/ZL W±
L

Table 1. Independent degrees of freedom for our DGLAP evolution above the EW scale.

3 DGLAP evolution in the SM

For energies above the EW scale, the splitting processes in the initial states can involve all
SM interactions and fields, which must then be included in the DGLAP equations. The
chiral nature of EW interactions induces polarisation effects on PDFs, so in this region all
gauge bosons and fermions polarisations are treated separately. Splitting functions for SM
interactions in the unbroken phase have been computed in Refs. [21, 30, 31, 46–48], with
which we agree. Another well known effect in EW PDFs is the interference between photon
and transverse ZT , which must be described with a Z/γ mixed PDF, as well as between the
Higgs boson and the longitudinal ZL, which induces a h/ZL mixed PDF [21, 30, 49]. Also,
the non-abelian nature of EW interactions induces Sudakov double logarithms, which must
be resummed when one is interested at high energies [27–29].

Since we neglect all fermion masses except than the top and bottom quarks, several
PDFs are related:

feL = fτL , fℓ̄L = fēL = fµ̄L = fτ̄L ,

feR = fτR , fℓ̄R = fēR = fµ̄R = fτ̄R ,

fνe = fντ , fν̄ℓ = fν̄e = fν̄µ = fν̄τ ,

fuL = fcL , fūL = fc̄L , fuR = fcR , fūR = fc̄R ,

fdL = fsL , fd̄L = fs̄L , fdR = fsR , fd̄R = fs̄R .

(3.1)

The fact that PDFs for right-handed fermions and their conjugate are different is due to
the induced polarisation effects in the gluon, photon, and Z boson PDFs. The independent
degrees of freedom are given in Table 1 in the case of PDFs of a muon beam, the final count
is 42 independent PDFs. Regarding the mass thresholds, we include each degrees of freedom
right at the corresponding mass scale.

3.1 Electroweak symmetry breaking effects

EW symmetry breaking effects can be classified as either due to non-vanishing parton
masses or as new contributions to the splitting functions that vanish in the limit of unbroken
symmetry [30]. The latter are the so-called ultra-collinear splittings, which are particularly
relevant for the longitudinal polarisations of EW gauge bosons [30, 50], providing the leading
contributions for their PDFs even when Q≫ QEW. In order to easily keep track of all these
effects near the EW scale it is convenient to work in the broken phase and with the mass
eigenstates. Then, as the DGLAP equations remain the same also for higher energies, we
remain in the broken phase for any Q > QEW. We compute the splitting functions in the
Goldstone equivalence gauge, following Ref. [30]. However, we checked that the results are
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the same as the ones in [50], in which the theory is formulated in a standard Rξ-gauge, with
a 5-dimensional polarisation vector for the longitudinal component of gauge bosons to take
into account the Goldstone contribution.

In case any of the particles involved in the splitting A→ B+C is massive, the kinematics
of the process and the ensuing splitting functions are modified. The relation between the pT
and the virtuality of the parton B entering the hard scattering process becomes

p̃2T ≡ z̄(m2
B − p2B) = p2T + zm2

C + z̄m2
B − zz̄m2

A +O
(
m2

E2
,
p2T
E2

)
, (3.2)

where z̄ = 1−z andm2/E2 or p2T /E
2 terms can be neglected in the regime where factorization

can be applied. In the DGLAP equations, this modified propagator of the virtual parton B
effectively corresponds to a rescaling of the splitting functions as [30]

PCBA(z) → P̃CBA(z, p
2
T ) =

(
p2T
p̃2T

)2

PCBA(z) . (3.3)

Mass effects in matrix elements that are also present in the unbroken (i.e. massless) theory
are instead suppressed by powers of m/E, therefore negligible.

Regarding the ultra-collinear splitting functions, the main feature of these contributions
is that they do not scale logarithmically with Q2 but at large factorization scales are
suppressed as v2/Q2 . Nevertheless, they provide important contributions that accumulate
during the DGLAP evolution in the region Q ∼ QEW and then remain almost constant at
higher scales, see for instance the WL PDF in the right panel of Fig. 3. We report the full
set of splitting functions in App. B, while the list of SM DGLAP equations can be found in
App. D.

In principle, with massive partons we should care of kinematics bounds: the splittings
described by DGLAP equations involve partons A, B and C with energies zE, xE and
(z − x)E respectively, all fractions of the energy of the beam E. Since the particle C is
emitted on-shell, we need EC ≥ mC , that is z ≥ x+ mC

E . This means that the lower extreme
of integration in Eq. (1.2) should be modified. However, as in Eq. (3.2), m/E terms can be
neglected and we can safely start the integration from x.

3.2 Electroweak double logarithms

The fact that the initial and final states are EW non-singlets has important implications,
even for inclusive processes. The Bloch-Nordsieck theorem [51], that guarantees cancellation
of IR divergencies between real emission and virtual corrections in such processes, is violated
for non-abelian symmetries, which implies the presence of Sudakov double logarithms. While
in the QCD case this effect vanishes upon averaging over color of the initial states, for
SU(2)L we do not take such average and the initial state breaks explicitly the symmetry,
hence double logs do appear also in inclusive processes [27–29, 49, 52]. In our context they
can be seen appearing in the terms of the DGLAP equations containing a 1/(1− z) pole
and can be made explicit by introducing an IR cutoff in the integral, which allows also to
resum the Sudakov double logs related to ISR [46–48, 53, 54].5 We implement this following

5A complete description of all double logarithms in a full process requires, however, the inclusion of further
contributions (e.g. virtual corrections, soft radiation, fragmentation, etc.), see for instance [27, 54–59].
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Ref. [47], by modifying the boundaries of the integral in Eq. (1.2) as

αABC(Q)

2π

∫ 1

x

dz

z
PCBA(z)fA

(x
z
,Q2

)
→ αABC(Q)

2π

∫ zABC
max (Q)

x

dz

z
PCBA(z)fA

(x
z
,Q2

)
,

(3.4)
where zABCmax (Q) plays the role of an explicit IR cutoff for the 1/(1 − z) poles, and is set
equal to 1 (in which case we use the +-distribution to regulate the divergence and perform
the numerical evaluation) except for the cases where the soft divergence is not cancelled
between real emission and virtual corrections, in which case we set zABCmax (Q) = 1−QEW/Q.
This modifies the computation of the virtual corrections, that becomes (see App. C)

P vA(Q) ⊃ −
∑
B,C

αABC(Q)

2π

∫ zABC
max (Q)

0
dz z PCBA(z) + ultra-collinear . (3.5)

The mismatch of IR divergencies between real and virtual contributions takes place in
processes where the emitted radiation (e.g. a W± boson) changes the SU(2)L component of
the initial state, and is always proportional to the amount of explicit breaking of the SU(2)L
symmetry. In fact, the physical effect of these double logs is to restore SU(2)L invariance at
high scales. The case of PDFs of a proton is discussed in Ref. [48]. As an explicit example
for leptons, let us consider the DGLAP equations for the µL and the corresponding SU(2)L
partner νµ

dfµL
d logQ2

=
α2

2π

1

2

∫ zmax(Q)

0
dzP Vff (z)

(
1

z
fνµ

(x
z
,Q2

)
− zfµL(x,Q

2)

)
+ . . . ,

dfνµ
d logQ2

=
α2

2π

1

2

∫ zmax(Q)

0
dzP Vff (z)

(
1

z
fµL

(x
z
,Q2

)
− zfνµ(x,Q2)

)
+ . . . ,

(3.6)

where the ellipses include other finite contributions to the integral, as well as other interac-
tions. In the two parentheses, the first term is due to real emission of a W±

T boson, while
the second is the corresponding virtual correction. The fact that the muon and neutrino
PDFs are different is an explicit breaking of SU(2)L and implies a non-cancellation of the
pole for z → 1 inside P Vff (z), which in turn generates the double log. To see this explicitly,
let us isolate on the right-hand side only the terms that are singular in z → 1, fixing z = 1

everywhere else:

dfµL
d logQ2

≈ −α2

4π
∆fL2(x)

∫ zmax(Q)

0
dz

2

1− z
+ . . . ≈ −α2

4π
log

Q2

Q2
EW

∆fL2(x) + . . . ,

dfνµ
d logQ2

≈ α2

4π
∆fL2(x)

∫ zmax(Q)

0
dz

2

1− z
+ . . . ≈ α2

4π
log

Q2

Q2
EW

∆fL2(x) + . . . ,

(3.7)

where ∆fL2 ≡ fµL − fνµ . Upon integration in Q2, a log2Q2/Q2
EW contribution is generated,

that tends to deplete the muon PDF and enhance the neutrino one. This example also
clearly shows how no such double log is generated for photon or ZT emission from a fermion
or W , since the real and virtual contribution would be proportional to the PDF of the

– 9 –



same parton. A Sudakov double log is instead expected for splittings such that the splitting
function is divergent in the soft limit, z → 1, and the A and B partons are different:

zABCmax (Q) = 1− QEW

Q
if PCBA, U

C
BA ∝

1

1− z
and A ̸= B , (3.8)

otherwise we put zmax = 1 and employ the standard +-distribution (see Eq. (B.1)) to
regulate the z → 1 divergence, for a more stable numerical evaluation of the DGLAP
equations.

In practice, this happens for W±
T emission off any parton (in correspondence to the poles

in the P Vff , P
V
V V , and P Vhh splittings) and for ZT boson emission from an initial longitudinal

ZL or Higgs (due to the P Vhh splitting), since Z emission changes ZL ←→ h. Analogously,
for ultra-collinear splittings this takes place for any WL emission and for ZL emission off
and initial Higgs or ZL.

This procedure amounts to a double-logarithmic (DL) approximation to the Sudakov
factor for initial-state radiation. This could be further improved to LL or NLL resummation
by suitably modifying the scale at which the coupling constant α2(Q) is evaluated, as
discussed in Refs. [31, 60]. Since we are interested in energies where α2 log

2Q2/Q2
EW ∼ O(1)

but α2 logQ
2/Q2

EW ≪ 1, we limit ourselves to the DL approximation for electroweak
corrections in the present work.

3.3 Top quark as parton

When the energy of the hard process Q is much larger than the top mass, processes with
a collinearly emitted top quark can develop a logarithmic enhancement proportional to
logQ2/m2

t . It can therefore become useful to resum these logarithms by including the top
quark among the other partons [61, 62]. The question of whether or not one should include
it as a parton depends on the process considered and on the optimal way to rearrange the
perturbative series [63, 64]. With this in mind, we provide two versions of our PDFs of
leptons, one in the 5-flavour-scheme (5FS) and one in a 6FS, where the top quark is added
in the DGLAP evolution for scales above mt. While codes that include the top quark in
proton PDFs assume it is massless, in our approach we keep a finite top mass in the same
spirit in which we keep finite W and Z masses for the weak bosons PDFs. This is justified
by the fact that in our case, contrary to proton PDFs, EW interactions and EW symmetry
breaking effects are crucial, and the top mass is one of such effects. For a detailed discussion
of different schemes for the top mass in the computation of hadron collider observables with
a top quark PDF see [64].

The DGLAP equations for the tL, t̄L, tR, t̄R are reported explicitly in Eqs. (D.11,
D.12, D.19, D.20). We checked numerically that the dominant contributions are those from
initial transverse gauge bosons, with electroweak bosons, photon and gluon terms being
approximately of similar size. Instead, ultra-collinear contributions are practically negligible.
Nevertheless, in our numerical evaluation we keep all terms.
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Figure 3. Integrand functions (left) and resulting PDFs (right) for the computation of the EW
PDFs for transverse and longitudinal W boson of Eqs. (3.9,3.10).

3.4 Effective Vector Boson Approximation

The EPA has been generalized to describe EW gauge bosons in high-energy collisions since
the ’80s [65–68], in what is now known as the Effective Vector Boson Approximation (EVA)
[36, 37]. When the hard scattering energy is much larger than the EW gauge boson mass
and the pT of the collinearly emitted gauge boson, then the cross section of the process can
be factorized into an almost on-shell collinear emission and the subsequent hard scattering
[35, 69–71].

One can compute the EW gauge bosons PDFs by evaluating the DGLAP equations at
fixed order, similarly to what we did in Section 2 for QED, using f (0)µL (x) = f

(0)
µR (x) =

1
2δ(1−x)

for the muon PDF. Taking the DGLAP equations for the transverse and longitudinal W−

boson, Eqs. (D.33,D.34,D.38) one gets the leading order results

f
(α)

W−
±
(x,Q2) =

∫ Q2

m2
µ

dp2T
1

2

dPψ→WTψ

dp2T
(x, p2T ) =

∫ Q2

m2
µ

dp2T
α2

8π

p2T
(p2T + (1− x)m2

W )2
P fV±fL(x) =

=
α2

8π
P fV±fL(x)

(
log

Q2 + (1− x)m2
W

m2
µ + (1− x)m2

W

− Q2

Q2 + (1− x)m2
W

)
=

≈ α2

8π
P fV±fL(x)

(
log

Q2

m2
W

− log(1− x)− 1

)
+O

(
m2
W

Q2

)
, (3.9)

f
(α)

W−
L

(x,Q2) =

∫ Q2

0
dp2T

1

2

dPψ→WLψ

dp2T
(x, p2T ) =

∫ Q2

0
dp2T

α2

4π

m2
W

(p2T + (1− x)m2
W )2

(1− x)2

x
=

=
α2

4π

1− x
x

Q2

Q2 + (1− x)m2
W

≈ α2

4π

1− x
x

+O
(
m2
W

Q2

)
, (3.10)

and analogously for the Z and Z/γ PDFs

f
(α)
Z±

(x,Q2) =
α2

4πc2W

(
P fV±fL(x)(Q

Z
µL

)2 + P fV±fR(x)(Q
Z
µR

)2
)

(
log

Q2 + (1− x)m2
Z

m2
µ + (1− x)m2

Z

− Q2

Q2 + (1− x)m2
Z

)
, (3.11)
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f
(α)
Z/γ±

(x,Q2) = −
√
αγα2

2πcW

(
P fV±fL(x)Q

Z
µL

+ P fV±fR(x)Q
Z
µR

)
log

Q2 + (1− x)m2
Z

m2
µ + (1− x)m2

Z

,(3.12)

f
(α)
ZL

(x,Q2) =
α2

2πc2W

1− x
x

(
(QZµL)

2 + (QZµR)
2
) Q2

Q2 + (1− x)m2
Z

, (3.13)

where P fV+fL(x) = P fV−fR(x) = (1−x)2/x and P fV−fL(x) = P fV+fR(x) = 1/x. The muon mass
here serves as an IR cutoff for the logarithm in the transverse case to cure the x→ 1 limit,
while we neglect it in the other terms. Notably, the W+ has no contribution at this order.

In Fig. 3 we show the dependence in
√
p2T of the integrands (left), and the resulting

PDFs (right), fixing a value x = 0.3 and showing separately the two polarisation of the
transverse W−

± . One can see that the integrands are peaked before the EW scale and, while
in the case of WT it decreases as ∼ 1/p2T inducing the logarithmic grow of the PDF, for the
longitudinal W polarisation the contribution to the integral is localised in p2T before the
EW scale and the PDF tends to a constant at large scales.

In our numerical integration of DGLAP equations, the effects due to EW interactions
are introduced only above the QEW matching scale. Since we employ pT as factorization
scale, this effectively corresponds to performing the integration in Eqs. (3.9,3.10) only for
p2T > Q2

EW, missing the region 0 < p2T < Q2
EW. To address this issue we match the gauge

bosons PDFs at QEW to the analytically computed one for the same scale and use it as
boundary conditions,

fA(x,Q
2
EW) ≡ f (α)A (x,Q2

EW) for A =W−
L,±, ZL,±, Z/γ± , (3.14)

and then continue the integration numerically to higher scales. The boundary conditions
for the PDFs of other heavy states (h, h/ZL, top quark) are instead set to zero at the
corresponding mass scales.

4 Results

Here we discuss several aspects of our LePDFs. The details of our numerical implementation
of the DGLAP equations are collected in App. E.

Fig. 4 (top panel) collects, as an example, a set of PDFs evaluated at the scale Q = 3 TeV.
One first thing to notice is that, as expected, for x ≳ 0.5 the muon PDF dominates, while
for smaller x the largest PDF is the photon one. However, the transverse negative W−

T PDF
is only a factor ∼ 2 smaller and the transverse ZT boson is another factor of 2 smaller than
that: they both receive contributions from the emission off an initial muon. Analogously,
the muon neutrino νµ has a large PDF at large x values due to the emission off a µ−L , which
has also a Sudakov double-log enhancement. The positive transverse W+

T PDF is instead
more suppressed because its leading contribution arises from the emission off the muon
neutrino and off another gauge boson. The importance of EW gauge bosons PDFs reflects
the common lore that a high-energy lepton collider is also a weak boson collider.

In the bottom panel of Fig. 4 we show the PDFs for the longitudinal polarisations of
EW gauge bosons and the Higgs, evaluated at scales of 3 TeV (solid lines) and 30 TeV
(dashed lines). The PDFs for W−

L and ZL are mostly scale independent, since they receive
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Figure 4. (Top panel): Sample of PDFs evaluated at a scale Q = 3 TeV for a muon. For this plot
we sum over polarisations and q represents the sum of all quark PDFs except for the top. (Bottom
panel): PDFs for the scalar degrees of freedom in the SM. Solid (dashed) lines are evaluated at a
scale of Q = 3 (30) TeV.

the dominant contribution from the ultra-collinear splitting off a muon. On the other hand,
the ultra-collinear contribution to the W+

L PDF comes mostly from the muon neutrino,
which has a PDF suppressed with respect to the muon one. Therefore, other contributions
from standard splitting functions (e.g. from P hhV and P Vhh) are sizeable and induce a scale
dependence. In case of the Higgs boson there is no ultra-collinear contribution from massless
fermions, so one does not expect ultra-collinear terms to dominate and indeed its PDF
shows a large scale dependence.

The fraction of the momentum carried by each of the partonic components is given by
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field Q = 3 TeV Q = 10 TeV Q = 30 TeV

µL 49.48% 48.72% 47.76%

µR 46.98% 44.12% 41.12%

νµ 1.28% 2.83% 4.85%

νℓ 0.0004% 0.0009% 0.001%

ℓ 0.005% 0.007% 0.01%

q 0.038% 0.05% 0.07%

γ 1.3% 1.4% 1.46%

W−
T 0.52% 0.64% 0.74%

W+
T 0.03% 0.06% 0.11%

ZT 0.17% 0.22% 0.28%

g 0.001% 0.002% 0.003%

Table 2. Fraction of the momentum carried by each parton at Q = 3, 10, 30 TeV.
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Figure 5. Examples of parton luminosities at a 3 TeV (left) and 10 TeV (right) MuC. Unless
specified, for this plot we sum over polarizations.

the n = 2 Mellin transform of the PDF (see App. C for more details) and it can be used to
evaluate the relevant role of the various individual components at different scales. To this
end, in Table 2 we give three examples for the set of PDFs shown in Fig. 4 at scales 3 TeV,
10 TeV, and 30 TeV. We observe that as the energy of the hard process is increased the
percentages of both the left- and right-handed muon components are decreased and those of
all other partons increased, which illustrates the importance of electroweak interactions at
higher energies.

In Fig. 5 we show some examples of parton luminosities for a 3 and 10 TeV muon
colliders where, unless specified, we sum over polarizations. Parton luminosities can be
useful for computing cross sections integrated over angular variables. In case of a muon
collider they are defined from the convolution of the PDFs of parton i from the muon and
parton j from the anti-muon, as follows:

Lij(ŝ) ≡
∫ 1

ŝ/s0

dx

x
f
(µ)
i

(
x,

√
ŝ

2

)
f
(µ̄)
j

(
ŝ

xs0
,

√
ŝ

2

)
, (4.1)
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Figure 6. Polarisation ratios for the PDFs of leptons (left), quarks (center), and gauge bosons
(right) at a scale Q = 3 TeV. Dashed lines in the central panel are for the corresponding anti-quarks.

where
√
s0 is the collider center of mass energy and

√
ŝ is the invariant mass of the two-parton

system. From Fig. 5 we can notice that, even at small invariant masses, the µµ̄ luminosity
is much larger than the W+W− luminosity (also the charged-current µLν̄µ luminosity is
sizeable). The impact of this channel in VBF studies at muon colliders should therefore be
studied in more details. It is also interesting to point out that the QCD-related luminosities
(gluons and quarks) are very small, which is going to strongly suppress QCD-induced
backgrounds in electroweak processes.

4.1 Polarisation

The chiral structure of SM interactions above the EW scale induces polarisation effects for
the PDFs [31]. In Fig. 6 we show polarisation ratios for several PDFs at a scale Q = 3 TeV.
The observed behavior can be easily understood as follows. The W−

T , W+
T , and ZT PDFs

receive the dominant contribution from the emission off an initial µ−L,R or νµ. Since the
P fV+fL splitting function goes to zero for z → 1, while P fV−fL tends to a constant, the positive
helicity of the EW gauge bosons will be suppressed for x→ 1. In case of the photon, the
leading contribution comes from the muon splitting and it is vector-like at leading order, so
the polarisation effect will be suppressed.

In case of fermions, left-handed chiralities (and their conjugate) receive contributions
from W bosons splitting to ψLψ̄′

L, therefore their PDF is expected to be larger than the
right-handed counterparts. The tendency increases with x in the case of the leptons (except
for the muon) and down-type quarks as opposed to antileptons and up-type quarks, since
the left-handed parts of the former receive contributions from W−

T , while the latter from
W+
T , and the W+

T PDF falls faster than the W−
T PDF at high x (see Fig. 4) This effect can

be of O(1), since the W− PDF is comparable in size to the photon one. The bL PDF is
further enhanced compared to bR due to the W−

L → bLt̄R splitting proportional to yt.
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Figure 7. PDFs for EW gauge bosons (plus muon and muon neutrino) at a scale Q = 3 TeV.
Solid lines are from the numerical solution of DGLAP equations while dashed ones are from the LO
EVA expressions in Eqs. (3.9)-(3.13).

4.2 Comparison with the Effective Vector Boson Approximation

In Fig. 7 we show our results for EW gauge bosons PDFs, compared with the LO EVA
result discussed in Section 3.4 (to reduce the number of lines plotted we show the sum of
transverse polarisations). Several things can be noticed.

For Z/γ, the EVA result is two orders of magnitude smaller than what we find with the
numerical evolution. This is due to the fact that QZµL +QZµR = −1

2 +2s2W ≪ 1 is accidentally
suppressed (indeed, it becomes zero when evolving the Weinberg angle at a scale of about
3.6TeV). This cancellation takes place because in EVA it is assumed that the initial-state
muon is not polarised. However, in the evolution from the EW scale upward, electroweak
interactions induce a polarisation of the muon PDF, which becomes up to ∼ 40% at a scale
of 3 TeV, as can be seen in Fig. 6 (left panel). Therefore, in the full numerical evolution
there is no such tuned cancellation in the Z/γ PDF. This clearly shows that the EVA result
is not reliable for this PDF.

For the longitudinal polarisations, the EVA provides a good description of the PDFs,
to within ∼ 10% accuracy. In case of the transverse W and Z polarisations, instead, there
is a noticeable discrepancy which grows even up to O(50%) at multi-TeV scales for small
x values. This is dominantly due to the missing contributions from V → V V splittings,
that start at NLO. Such contributions become important due to two effects: the PDF
of the initial-state gauge boson at small x is much larger than the muon PDF and they
include IR Sudakov corrections that induce a parametric dependence as α2 log3(Q2/m2

W ).
We perform two checks to verify this. First, we do a run of our numerical code setting
to zero the PV V splitting functions (both in real emission and radiative corrections): the
resulting EW gauge bosons PDFs agree well with LO EVA. Second, focussing only on the
W−

+ PDF for simplicity, we compute iteratively the O(α2) contributions to the weak bosons
PDFs, adding the real emissions from P VV V and P fV f splittings, and the corresponding virtual
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Figure 9. Parton luminosities for W−
+W

+
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L W
+
L (right) at a 10 TeV muon collider.

We show a comparison with luminosities obtained with the LO EVA result in Eq. (3.9) (dashed)
and with the Q≫ mW approximation, implemented in [37] (dot-dashed).

corrections. In practice, we take the DGLAP equations for transverse EW gauge bosons
in Section D.3 and use the O(α) results for the gauge bosons PDFs (i.e. the LO EVA of
Eqs. (3.9-3.13)) and the muon. For simplicity, at this step we use approximate expressions
for the LO EVA by keeping only the log Q2

m2
W,Z

term, which makes our NLO EVA result
reliable only for Q ≫ mW and x ≪ 1. We also neglect contributions from longitudinal
modes and ultra-collinear ones. We then perform analytically the convolution with the
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splitting functions and finally the integral from mW up to the factorization scale Q:

f (α)µL
(x, t) ≃

∫ t

tmW

dt′
(
1

2
P vµL(t

′)δ(1− x) + αγ
4π
P Vff (x) +

α2

4πc2W
(QZµL)

2P Vff (x)

)
,

f
(α2)

W−
+

(x, t) ≃
∫ t

tmW

dt′
(
P v
W−

+
f
(α)

W−
+

+
α2

4π
P fV+fL ⊗ f

(α)
µL

+
α2

2π
c2WPV+Vs ⊗ (f

(α)

W−
s
+ f

(α)
Zs

)+

+
αγ
2π
PV+Vs ⊗ (f

(α)

W−
s
+ f (α)γs ) +

√
αγα2

2π
cWPV+Vs ⊗ f

(α)
Z/γs

)
.

(4.2)

It can be noted that Sudakov double logs appear here in the virtual contributions to f (α)µL

and to f (α
2)

W−
+

, as well as in the PV+V+ terms from the neutral gauge bosons.

In Fig. 8 we show the relative deviation of the LO (dashed) and NLO (dot-dashed) EVA
results from the complete numerical PDF as function of x (left panel) and as function of
the scale (right panel). We observe that the NLO EVA result improves substantially the
agreement with the full numerical result, while the LO EVA has large deviations at small
x. The missing terms in the LO EVA become more and more important with larger scales,
confirming the argument made above.

In Fig. 9, instead, we plot the W−
+W

+
− (left panel) and W−

LW
+
L (right panel) parton

luminosities for a 10 TeV MuC. We show a comparison between the LePDF result (solid
lines) and the LO EVA expression in the Q ≫ mW approximation (dot-dashed), that is
the one implemented in Ref. [37], or with the complete W mass dependence as in Eq. (3.9)
(dashed). We see that, at the level of luminosity, the LO EVA with the complete mass
dependence provides a good approximation of the resummed LePDF result up to ∼ 15%

deviations for the transverse modes. This means that the much larger deviations we observe
at the PDF level for small x are diluted when the luminosities are calculated. On the other
hand, the massless approximation deviates up to O(1) even at the luminosity level and in
particular at partonic center of mass energies of few hundreds of GeV, where the weak-boson
fusion process cross sections are the largest.

4.3 Muon neutrino PDF

The leading contribution to the muon neutrino PDF arises already at O(α2) from the
µL →W−νµ splitting, which presents an IR soft divergence that is cutoff by the W mass.
As already discussed in Sec. 3.2, the missing counterpart of this divergence in the virtual
correction is at the origin of the Sudakov double log. In the same spirit as done for the
EVA, we can compute the neutrino PDF by iteratively solving the DGLAP equations up to
O(α), using the zeroth-order expression for the µL PDF:

dfνµ
d logQ2

=
α2

4π

∫ 1−mW /Q

x

dz

z

Q4

(Q2 + zm2
W )2

P Vff (z)
1

2
δ
(
1− x

z

)
+O(α2) =

=
α2

8π

Q4

(Q2 + xm2
W )2

P Vff (x) θ

(
1− mW

Q
− x
)
+O(α2) .

(4.3)

– 18 –



Q = 3TeV

g

γ

WT

WL

ZL

ZT

0.001 0.005 0.010 0.050 0.100 0.500 1
0.01

0.10

1

10

100

x

f i(
x,
Q
)

Q = 3TeV

μ

νμ

νμ

ℓsea

q

t

h

0.001 0.005 0.010 0.050 0.100 0.500 1
0.01

0.05

0.10

0.50

1

5

10

x

f i(
x,
Q
)

Figure 10. PDFs for gauge bosons (left), fermions and Higgs (right) at a scale Q = 3 TeV. Solid
lines are the full result while dashed ones are obtained neglecting the masses in the propagators.
For simplicity in this plot we sum over polarisations.

The Heaviside theta is the result of the IR cutoff zmax = 1− mW
Q in the integral. Integrating

this differential equation from m2
W up to Q2 we get:

f (α)νµ (x,Q2) =
α2

8π
θ

(
Q2 −

m2
W

(1− x)2

)
P Vff (x)

(
log

Q2 + xm2
W

m2
W

+

+ log
(1− x)2

1 + x(1− x)2
+

xm2
W

Q2 + xm2
W

+
1

1 + x(1− x)2
− 1

)
.

(4.4)

We observe here the single logarithm due to the standard collinear divergence, while the
Sudakov log is absent because the initial muon PDF at zeroth order is just a delta function.
It will appear, however, in the computation of an inclusive cross section upon integration
of the PDF, due to the x→ 1 divergence inside P Vff (x), that is not cancelled by a virtual
correction at the same order but is instead cut off at the W mass by the theta function.

In Fig. 7 we show a comparison between this O(α) approximation of the muon neutrino
PDF (dashed gray line) with the one from LePDF (solid gray), at a scale Q = 3TeV.
We obseve a very good agreement at large x values, i.e. where the µL → W−νµ splitting
dominates. At smaller x values the O(α2) contribution from Z → νµν̄µ will instead dominate.
Comparing to the results of Refs. [33, 34], we observe a different behavior of the νµ PDF for
x→ 1: while both our analytic result described above and LePDF show a cutoff (due to the
IR mW cutoff) at x ≲ 1, in their result the νµ PDF increases similarly to the muon PDF up
to x = 1.

4.4 Mass effects

We showed in Section 3.1 that massive particles modify the virtuality of the particle B as in
Eq. (3.2). As already discussed in [30, 36], the impact of the latter effect is important since,
due to the presence of the masses in the denominators of the DGLAP equations, the PDFs
are lowered or enhanced when mB,C ̸= 0 and mA ≠ 0 respectively. In Fig. 10 we show the
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Figure 11. Comparison between 5-flavour-scheme (dashed) and 6-flavour-schemes (solid) at a
scale Q = 3 TeV.

PDFs computed keeping and neglecting the masses in p̃T , still starting the evolution of a
given massive parton at the scale corresponding to its mass.

For instance, in case of EW gauge bosons (both transverse and longitudinal) one can
expect that mass effects lower their PDFs, with the biggest effects at small x due to the
(1− x) factor appearing in front of the mass corrections. This can also be verified from the
LO EVA in Eqs. (3.9-3.13). In case of the Higgs, its interactions have the form A→ h+A,
with A =W,Z, t, which implies δ2pT = x2m2

A+(1−x)m2
h > 0, which explains why the Higgs

PDF is bigger when masses are neglected.

4.5 Top quark PDF

In Fig. 11 we compare the results between the 5FS and the 6FS showing the top PDFs
together with the PDFs mostly affected by the inclusion of the top. As already mentioned
in Section 3.3 the top PDFs are mainly driven by the collinear emission off the transverse
gauge bosons and the differences are more noticeable in high energies (we use the benchmark
Q = 3 TeV). Since the PDFs of W−

T and W−
L are large compared to the Z and W+

T , we
expect a larger PDF for t̄L and t̄R than tL or tR. Also, the same splittings W−

T → bLt̄L and
W−
L → bLt̄R will induce a large enhancement of the bL PDF compared to bR in the 6FS.

Additionally, we observe that the PDFs of the EW transverse gauge bosons themselves
are almost unaffected, since they are dominated by splitting off a muon. The gluon PDF,
instead, receives a noticeable further contribution. Shifts of comparable size are also induced
in the PDFs of the longitudinal gauge bosons (and even smaller for the Higgs), but in this
case the PDFs are decreased due to a mass effect similar to the ones discussed in the previous
Section 4.4.

4.6 Uncertainties

Here we discuss several sources of uncertainties in our computation. Some are physical, such
as the choice of QQCD or missing higher orders, while others are intrinsic in the numerical
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Figure 12. Effects of the choice of QQCD on the PDFs of gluon (left) and quarks (right) at the
EW scale Q = mW .

implementation of the DGLAP equations and can be improved simply by dedicating more
computational time to the task.

QCD matching scale

As already discussed in Section 2 the QCD scale QQCD is not clearly determined and different
choices of this parameter can have a non negligible impact on the PDF, in particular for the
colored particles. To study the dependence of our results on QQCD we repeat the evolution
for QQCD = 0.52 GeV and QQCD = 1 GeV and we compute the relative differences with
respect to the chosen value of 0.7 GeV

δQQCD
[fA(x,Q)] =

fA(x,Q)|QQCD
− fA(x,Q)|0.7 GeV

fA(x,Q)|0.7 GeV
, QQCD = {0.52 GeV, 1 GeV} .

(4.5)
In Fig. 12 we show the results for the colored particles, which are the most affected by the
choice of the QCD scale, while for the photon and the leptons the relative differences are
smaller than 10−5. We report the results at Q = mW after the QED+QCD evolution, since
this is the phase in which these effects are stronger.

Discretization

The second source of uncertainty we take into account is the discretization, that is the
number of grid points Nx. Again we focus for simplicity on the first phase of the evolution,
since these effects do not change much with the energy scale6. As for QQCD we repeat
the evolution for different values of Nx and compute the relative differences of the PDFs
obtained. The results at the EW scale mW , obtained varying Nx from 300 to 600 and then
to 1000, are reported in Fig. 13: it is clear that as we increase Nx the relative differences
are reduced, as expected since in this way we are approaching the continuum limit. Being

6We checked that this is actually the case computing the PDFs in the full SM both with Nx = 600 and
Nx = 1000: for instance at a scale Q = 3TeV the relative differences are smaller then 2%.
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Figure 13. Effects of Nx on the PDFs at the EW scale Q = mW . The relative differences
correspond to Nx = {300; 600} (left) and to Nx = {600; 1000} (right).

the relative difference between Nx = 600 and Nx = 1000 already of O(10−2), we take the
latter as reference value, since a further increase will introduce even smaller corrections.

Integration step

Numerical uncertainties also arise due to the discretization in t, depending on the choice
of the integration step dt, as shown in Eq. (E.7). As for the previous cases, we compute
the relative differences of the PDFs obtained for two different values of dt, in particular we
choose dt = t(mW )/Nt, with Nt = {100; 200}: this means that we consider Nt steps in the
first phase of the evolution. We do not report any plot, since we checked that the relative
differences are at most of O(10−3), both at Q = mW and at higher scales.

Higher orders

The largest theoretical uncertainties in our results originate from neglecting higher order
corrections. In particular, in the DL approximation terms of O(α2 log(Q/QEW)) are not
consistently resummed [60]. For example, at Q = 3 TeV, these terms already amount to
10%, while at Q = 10 TeV to 14%. We notice that promoting our approximation to the full
LL result does not improve the situation [60], since single-log terms of the same size from
the NLL expansion are still present. However, performing the NLO matching as prescribed
in Refs. [48] can reduce the uncertainties to 4% for Q = 3 TeV. Extending our formalism to
NLL order would eventually correspond to < 3% accuracy regardless of the energy scale.

4.7 PDFs for electron beams

Our numerical code, with obvious substitutions, can also be used to derive LePDFs for
electron beams. While most future projects for e+e− colliders are focussed on EW-scale
energies to perform high-precision studies of EW gauge bosons, the Higgs, and top quark,
linear collider projects also envisage later stages with TeV-scale center of mass energies. In
this case our SM PDFs can provide a useful tool. We therefore provide public PDFs for
electron/positron beams alongside those for muons and anti-muons. In Fig. 14 we show
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Figure 14. In this plot we show some PDFs evaluated at a scale Q = 3 TeV for an electron beam.
For this plot we sum over polarisations and q represents the sum of all quark PDFs except for the
top.

only an example plot for some PDFs of an electron. As for the muon case, in case of EW
gauge bosons PDFs we did a comparison with the EVA approximation at LO and NLO,
obtaining similar results as shown above for the muon. The main difference in the PDFs
of an electron compared to those of a muon is that photon, charged leptons and quarks
PDFs are larger. This is due to the longer QED evolution from me to mµ. A consequence of
larger quarks PDF is also a larger gluon one, even if QQCD > mµ. On the other hand, EW
gauge boson PDFs are very similar since, at first order, their PDF is insensitive on physics
at scales below the EW one.

5 Conclusions

Obtaining precise predictions for multi-TeV lepton colliders is a topic of active studies. In
fact, while QCD radiation plays a minor role, in comparison to hadron colliders, electroweak
corrections in this energy regime can become very large due to single and double logarithmic
enhancements. Furthermore, the electroweak sector presents several features that are absent
when dealing with QED or QCD radiation. Within this context, the resummation of a
subset of large logarithms related to the factorisable emission of initial-state radiation can
be viewed as an ingredient for a complete description of collider phenomenology at such
machines.

In this paper we solved the set of DGLAP equations for an initial-state lepton, evolving
the complete set of PDFs from the infrared up to multi-TeV scales. Our computation is
performed with LO splitting functions, keeping into account all relevant mass thresholds,
EW symmetry breaking terms, masses of all EW states, and resumming EW Sudakov logs
at the double-logarithmic level. The residual uncertainty is dominated by the incomplete
single-log EW resummation and can be estimated to be of O(10%), while we show that
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other systematic uncertainties are fully under control. Improving our results to include
single-log resummation is left for future work.

Using this result we discuss several notable features of LePDFs. Polarisation effects,
due to the chiral nature of SM interactions, are shown to be of O(1) in Fig. 6, or even larger
than that in case of the b quark. This last effect is due to the interaction with the top quark
via the large top Yukawa coupling, and becomes much smaller in the 5FS, where the top
is not included in the evolution. As already observed in previous studies, we confirm that
including EW states masses in the propagators gives sizeable correction to the PDFs, even
for large factorisation scales.

Furthermore, we perform a detailed comparison of our results for the EW gauge bosons
PDFs with the widely used Effective Vector Approximation. This comparison, presented in
Fig. 7, illustrates how the EVA fails to describe correctly the transverse EW gauge bosons
PDFs at small x values, with deviations reaching even O(50%) for W±

T and ZT at large
scales, or even missing the target by more than one order of magnitude in case of the
off-diagonal Z/γ PDF. The cause of the latter large deviation is the well-known accidental
cancellation in the vector-like coupling of a lepton to the Z boson, which does not take place
in the full result since the muon gains a strong polarisation. The smaller, but still substantial
deviations in the PDFs of transverse EW gauge bosons are due to the fact that the EVA,
treated at LO, does not include contributions from gauge boson splitting off an initial gauge
boson. Such terms, while being formally of higher order, become enhanced due to the large
γ,W,Z PDFs and the fact that these splittings come with associated Sudakov double logs.
In fact, by extending iteratively the EVA up to O(α2) we obtain a much better agreement
with the complete numerical result, as shown in Fig. 8. In light of this, we recommend the
use of LePDF to derive precision predictions for SM and BSM processes at high-energy
electron or muon colliders (they could also be used for lepton-hadron collisions), when one
is interested in being inclusive on radiation emitted at small pT compared to the typical
energy of the hard scattering, E ≫ pcoll.rad.T , and when E ≫ mW , which are the conditions
for factorisation to be valid.

Our numerical results for the LePDFs are made public7 in the LHAPDF6 format (with
some modifications due to the necessity of describing independently all helicity states). We
provide results for initial-state muons, anti-muons, electrons, and positrons, all in both the
5 and 6 flavour schemes.
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Parameter α3 α2 α1 αyt
Value 0.1057 0.03329 0.01025 0.0679

Table 3. Numerical inputs for the SM parameters at a scale Q = 200 GeV from [72].

A Inputs and Formalism

A.1 Standard Model inputs

In order to set our notation, we define the covariant derivatives as

Dµ = ∂µ − ig3GAµ tA − ig2W a
µT

a − ig1Y Bµ , (A.1)

where tA and T a are SU(3) and SU(2) generators, respectively, while Y is the hypercharge.
The electric charge is given by Q = Y + T 3. In our analysis we neglect the CKM matrix
and work with diagonal Yukawas

LY = −yiuQ̄iLuiRHc − yidQ̄iLdiRH − yieL̄iLeiRH + h.c. , (A.2)

where Hc = iσ2H
∗. In particular, in our implementation we keep only y3u ≡ yt ≠ 0. Finally,

we define the Higgs potential as

V (H) = λh

(
H†H − v2

2

)2

. (A.3)

To shorten the notation, we define the following quantities

c2W =
g22

g11 + g22
, e = g1cW , αgx ≡

g2x
4π

, αγ =
e2

4π
, QZf = T3 −Qfs2W ,

αγ2(t) =
√
αγ(t)α2(t) , CF =

N2
c − 1

2Nc
, TF = 1/2 , (A.4)

where Nc = 3.
We evaluate the RG evolution for the QCD coupling using the 3-loop result [73] with

mass thresholds for the charm, bottom, and top quarks. For the QED and EW couplings,
as well as for the top Yukawa, we employ the corresponding 1-loop RGE. The numerical
boundary conditions are taken at Q = 200 GeV from [72], we report the relevant ones in
Table 3 for convenience.

A.2 Formalism for the DGLAP equations

We consider a process A+X → C + Y mediated by the particle B at tree level, with B

carrying a fraction z ∈ [0, 1] of the energy of A, as in Fig. 1. The kinematics, up to quadratic
order in the transverse momentum pT , is the following

pµA =

(
EA, 0, 0,

√
E2
A −m2

A

)
, (A.5)

pµB =

zEA, pT , 0,√E2
A −m2

A −
√
z̄2E2

A −m2
C +

p2T

2
√
z̄2E2

A −m2
C

 , (A.6)

– 25 –



pµC =

z̄EA,−pT , 0,√z̄2E2
A −m2

C −
p2T

2
√
z̄2E2

A −m2
C

 , (A.7)

where we remind that z̄ = 1− z. In this way the emitted particle C is on-shell (p2C = m2
C),

while for the particle B, neglecting O(p4T ) terms, we have

p2B = m2
A +m2

C − 2z̄E2
A + 2

√
(E2

A −m2
A)(z̄

2E2
A −m2

C)−

√
(E2

A −m2
A)

(z̄2E2
A −m2

C)
p2T . (A.8)

Since we are working with high-energy initial beams, we can expand p2B neglecting terms of
order m/E and pT /E or higher, so that the virtuality of the particle B is given by

m2
B − p2B =

1

z̄
(p2T + zm2

C + z̄m2
B − zz̄m2

A) +O
(
m2

E2
,
p2T
E2

)
≡
p̃2T
z̄
. (A.9)

Invariance of the cross section on the factorization scale Q, that we choose to be the pT
of the emitted parton, gives the DGLAP equations [43, 74]

Q2dfB(x,Q
2)

dQ2
= P vB(x,Q

2)fB(x,Q
2) +

∑
A,C

∫ zABC
max

x

dz

z
Q2dPA→B+C

dzdp2T

(
z,Q2

)
fA

(x
z
,Q2

)
,

(A.10)
where P vB represents the virtual corrections (see App. C) and

dPA→B+C

dzdp2T
(z, p2T ) =

1

16π2p̃4T
zz̄ |MA→B+C |2 , (A.11)

describes the splitting process. The standard matrix elements, which are also present in the
unbroken phase (i.e. in a massless theory), are typically parametrized as

|MA→B+C |2 ≡ 8παABC
p2T
zz̄
PCBA(z) , (A.12)

where PCBA(z) is the splitting function and αABC the corresponding coupling. Ultra-collinear
matrix elements are instead proportional to v2 and they can be parametrized with new
splitting functions UCBA as

|MA→B+C |2 ⊃
v2

zz̄
UCBA(z) . (A.13)

The general DGLAP equation for a parton B is then given by

Q2dfB(x,Q
2)

dQ2
= P vB fB(x,Q

2) +
∑
A,C

αABC
2π

P̃CBA ⊗ fA +
v2

16π2Q2

∑
A,C

ŨCBA ⊗ fA , (A.14)

where P̃ and Ũ are the splitting functions for massive partons and are obtained from those
for massless ones with the redefinition in Eq. (3.3)

P̃CBA(z, p
2
T ) =

(
p2T
p̃2T

)2

PCBA(z) , (A.15)

with

p̃2T ≡ z̄(m2
B − p2B) = p2T + zm2

C + z̄m2
B − zz̄m2

A +O
(
m2

E2
,
p2T
E2

)
. (A.16)
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B Splitting Functions

Here we list all the splitting functions, including ultra-collinear ones. Some of them have a
z̄ pole and therefore they introduce divergences in the DGLAP equations when zmax = 1.
To deal with such divergences, we use the + distribution, defined as∫ 1

x
dz

f(z)

(1− z)+
=

∫ 1

x
dz
f(z)− f(1)

1− z
−f(1)

∫ x

0

dz

1− z
=

∫ 1

x
dz
f(z)− f(1)

1− z
+f(1) log(1−x) .

(B.1)
As already discussed, since the SM is a chiral theory we separate vector polarizations and
fermion helicities in the splitting functions.

B.1 Massless splitting functions

We start with the splitting functions of the form in Eq. (A.12). Here f labels a fermion, V
a gauge boson and h a scalar. We do not specify the polarization of the particle C, since in
the computation we sum over it.

P Vff (z) ≡ P VfLfL(z) = P VfRfR(z) =
1 + z2

z̄+
,

P fV+fL(z) = P fV−fR(z) =
z̄2

z
,

P fV−fL(z) = P fV+fR(z) =
1

z
,

P ffLV+(z) = P ffRV−(z) = z̄2 ,

P ffLV−(z) = P ffRV+(z) = z2 ,

(B.2)

P hff (z) ≡ P hfLfR(z) = P hfRfL(z) =
z̄

2
,

P fhf (z) ≡ P
f
hfL

(z) = P fhfR(z) =
z

2
,

P ffh(z) ≡ P
f
fLh

(z) = P ffRh(z) =
1

2
,

(B.3)

P hV±h(z) =
z̄

z
,

P hV h(z) ≡ P hV+h(z) + P hV−h(z) =
2z̄

z
,

P Vhh(z) =
2z

z̄+
,

P hhV (z) ≡ P hhV+(z) = P hhV−(z) = zz̄ ,

(B.4)

P VV+V+(z) = P VV−V−(z) =
1 + z4

zz̄+
,

P VV+V−(z) = P VV−V+(z) =
z̄3

z
.

(B.5)
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Since QED and QCD are vectorlike theories, we also define the splitting functions properly
summed over the vector polarizations and fermion helicities:

P fV f (z) ≡
P fV+fL(z) + P fV+fR(z) + P fV−fL(z) + P fV−fR(z)

2
=

1 + z̄2

z
,

P ffV (z) ≡
P ffLV+(z) + P ffRV+(z) + P ffLV−(z) + P ffRV−(z)

2
= z2 + z̄2 ,

P VV V (z) ≡
P VV+V+(z) + P VV+V−(z) + P VV−V+(z) + P VV−V−(z)

2
= 2

(1− zz̄)2

zz̄+
.

(B.6)

Finally, we report here the integrals appearing in Eq. (2.4):

IfV V f (x) =

∫ 1

x

dz

z
P ffV (z)P

f
V f

(x
z

)
=

4 + 3x− 3x2 − 4x3

3x
+ 2(1 + x) log x ,

IV fff (x) =

∫ 1

x

dz

z
P fV f

(x
z

)
P Vff (z) =

= 2 log(1− x)P fV f (x) +
(1− x)(2x− 3)

x
+ (2− x) log x ,

Iffff (x) =

∫ 1

x

dz

z
P Vff

(x
z

)
P Vff (z) =

=
−2(1− x)2 + 4(1 + x2) log(1− x)− (1 + 3x2) log x

1− x
.

(B.7)

B.2 Ultra-collinear splitting functions

The top quark is explicitly written, while for other fermions we write f . s = L,R is the
helicity of the fermion, T = ± is a transverse polarization of the gauge bosons. If inside a
splitting we write fsf−s it means that the two fermions have opposite helicity (same for the
gauge bosons). Nf

c is 1 for leptons and Nc for quarks.

Splitting f → f + VT (f = t, b):

U
W−

−
tRbL

(z) = U
W+

+

t̄Rb̄L
(z) =

1

2
g22y

2
t z̄ ,

U tR
W−

− bL
(z) = U t̄R

W+
+ b̄L

(z) =
1

2
g22y

2
t z ,

U
W+

+

bLtR
(z) = U

W−
−

b̄L t̄R
(z) =

1

2
g22y

2
t z̄z

2 ,

U bL
W+

+ tR
(z) = U b̄L

W−
− t̄R

(z) =
1

2
g22y

2
t zz̄

2 ,

(B.8)

Ugtt(z) ≡ U
g−
tRtL

(z) = U
g+
t̄R t̄L

(z) = U
g+
tLtR

(z) = U
g−
t̄L t̄R

(z) = CF g
2
3y

2
t z̄

3 ,

U tgt(z) ≡ U
tR
g−tL

(z) = U t̄R
g+ t̄L

(z) = U tLg+tR(z) = U ,t̄L
g− t̄R

(z) = CF g
2
3y

2
t z

3 ,

Uγtt(z) ≡ U
γ−
tRtL

(z) = U
,γ+
t̄R t̄L

(z) = U
γ+
tLtR

(z) = U
γ−
t̄L t̄R

(z) = Q2
ue

2y2t z̄
3 ,

U tγt(z) ≡ U
tR
γ−tL

(z) = U t̄R
γ+ t̄L

(z) = U tLγ+tR(z) = U t̄L
γ− t̄R

(z) = Q2
ue

2y2t z
3 ,

(B.9)
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U
Z−
tRtL

(z) = U
Z+

t̄R t̄L
(z) =

g22y
2
t

c2W
z̄

(
1

2
−Qus2W z̄

)2

,

U tRZ−tL
(z) = U t̄R

Z+ t̄L
(z) =

g22y
2
t

c2W
z

(
1

2
−Qus2W z

)2

,

U
Z+

tLtR
(z) = U

Z−
t̄L t̄R

(z) =
g22y

2
t

c2W
z̄
(z
2
+Qus

2
W z̄
)2

,

U tLZ+tR
(z) = U t̄L

Z− t̄R
(z) =

g22y
2
t

c2W
z
( z̄
2
+Qus

2
W z
)2

,

U tRZ/γ−tL(z) = U t̄R
Z/γ+ t̄L

(z) = 2Qu
eg2
cW

y2t z
2

(
1

2
−Qus2W z

)
,

U tLZ/γ+tR(z) = U t̄L
Z/γ− t̄R

(z) = −2Qu
eg2
cW

y2t z
2
( z̄
2
+Qus

2
W z
)
.

(B.10)

Splitting VT → f + f̄ (f = t, b):

U t̄R
bLW

−
−
(z) = U tR

b̄LW
+
+

(z) =
Nc

2
g22y

2
t z

2 ,

U bL
t̄RW

−
−
(z) = U b̄L

tRW
+
+

(z) =
Nc

2
g22y

2
t z̄

2 ,

(B.11)

U ttg(z) ≡ U
t̄R
tLg−

(z) = U tL
t̄Rg−

(z) = U t̄LtRg+(z) = U tR
t̄Lg+

(z) = TF g
2
3y

2
t ,

U ttγ(z) ≡ U
t̄R
tLγ−

(z) = U tL
t̄Rγ−

(z) = U t̄LtRγ+(z) = U tR
t̄Lγ+

(z) = NcQ
2
ue

2y2t ,
(B.12)

U t̄RtLZ−
(z) = U tR

t̄LZ+
(z) = Nc

g22y
2
t

c2W

(z
2
−Qus2W

)2
,

U tL
t̄RZ−

(z) = U t̄LtRZ+
(z) = Nc

g22y
2
t

c2W

( z̄
2
−Qus2W

)2
,

U t̄RtLZ/γ−(z) = U tR
t̄LZ/γ+

(z) = NcQue
g2
cW

y2t

(z
2
−Qus2W

)
,

U tL
t̄RZ/γ−

(z) = U t̄LtRZ/γ+(z) = NcQue
g2
cW

y2t

( z̄
2
−Qus2W

)
.

(B.13)

Splitting f → f + VL:

UZL
fLfL

(z) = UZL

f̄Lf̄L
(z) =

(
T3y

2
f z̄

2 +
g22
c2W

QZfLz

)2
1

z̄+
,

UfLZLfL
(z) = U f̄L

ZLf̄L
(z) =

(
T3y

2
fz

2 +
g22
c2W

QZfL z̄

)2
1

z
,

UZL
fRfR

(z) = UZL

f̄Rf̄R
(z) =

(
T3y

2
f z̄

2 − g22
c2W

QZfRz

)2
1

z̄+
,

UfRZLfR
(z) = U f̄R

ZLf̄R
(z) =

(
T3y

2
fz

2 − g22
c2W

QZfR z̄

)2
1

z
,

UWL

f
(2)
L f

(1)
L

(z) = UWL

f̄
(2)
L f̄

(1)
L

(z) =
(
y2f1zz̄ − y

2
f2 z̄ − g

2
2z
)2 1

2z̄+
,

U
f
(2)
L

WLf
(1)
L

(z) = U
f̄
(2)
L

WLf̄
(1)
L

(z) =
(
y2f1zz̄ − y

2
f2z − g

2
2 z̄
)2 1

2z
.

(B.14)
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Splitting VL → f + f̄ :

U f̄LfLZL
(z) = UfL

f̄LZL
(z) = Nf

c

(
T3y

2
f −

g22
c2W

QZfLzz̄

)2

,

U f̄RfRZL
(z) = UfR

f̄RZL
(z) = Nf

c

(
T3y

2
f −

g22
c2W

QZfRzz̄

)2

,

U
f̄
(2)
L

f
(1)
L WL

(z) = U
f
(2)
L

f̄
(1)
L WL

(z) =
Nf
c

2

(
y2f1 z̄ + y2f2z − g

2
2zz̄
)2

.

(B.15)

Splitting t→ t+ h:

Uhtt(z) ≡ UhtLtL(z) = UhtRtR(z) = Uht̄R t̄R(z) = Uht̄L t̄L(z) =
y4t
4
z̄(1 + z)2 ,

U tht(z) ≡ U
tL
htL

(z) = U tRhtR(z) = U t̄R
ht̄R

(z) = U t̄L
ht̄L

(z) =
y4t
4
z(1 + z̄)2 .

(B.16)

Splitting h→ t+ t̄:

U tth(z) ≡ U
t̄L
tLh

(z) = U t̄RtRh(z) = U tR
t̄Rh

(z) = U tL
t̄Lh

(z) = Nc
y4t
4
(z̄ − z)2. (B.17)

Splitting VT → VL + VT :

UγTWLWT
(z) = e2g22

z̄3

z
,

UWL
γTWT

(z) = e2g22
z3

z̄+
,

UZT
WLWT

(z) =
1

4
c2W g

4
2(1 + z̄ + t2W z)

2 z̄

z
,

UWL
ZTWT

(z) =
1

4
c2W g

4
2(1 + z + t2W z̄)

2 z

z̄+
,

UWL

Z/γTWT
(z) = cW eg

3
2(1 + z + t2W z̄)

z2

z̄+
,

UWT
ZLWT

(z) =
1

4
g42(1 + z̄)2

z̄

z
,

UZL
WTWT

(z) =
1

4
g42(1 + z)2

z

z̄+
,

UWT
WLγT

(z) = e2g22
z̄

z
,

UWL
WT γT

(z) = e2g22
z

z̄+
,

UWT
WLZT

(z) =
1

4
c2W g

4
2(1 + z̄ − t2W z)2

z̄

z
,

UWL
WTZT

(z) =
1

4
c2W g

4
2(1 + z − t2W z̄)2

z

z̄+
,

UWT

WLZ/γT
(z) =

1

2
cW eg

3
2(1 + z̄ − t2W z)

z̄

z
,

UWL

WTZ/γT
(z) =

1

2
cW eg

3
2(1 + z − t2W z̄)

z

z̄+
.

(B.18)
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Splitting VL → VT + V−T :

U
W−T

γTWL
(z) = e2g22z

3z̄ ,

U
γ−T

WTWL
(z) = e2g22zz̄

3 ,

U
W−T

ZTWL
(z) =

1

4
c2W g

4
2zz̄(z̄ − z + t2W )2 ,

U
Z−T

WTWL
(z) =

1

4
c2W g

4
2zz̄(z − z̄ + t2W )2 ,

U
W−T

Z/γTWL
(z) = −cW eg32z2z̄(z̄ − z + t2W ) ,

U
W−T

WTZL
(z) =

1

4
g42zz̄(z̄ − z)2 .

(B.19)

Splitting VT → h+ VT :

UWT
hWT

(z) = UhWTWT
(z) =

1

4
g42zz̄ ,

UZT
hZT

(z) = UhZTZT
(z) =

1

4

g42
c4W

zz̄ .
(B.20)

Splitting h→ VT + V−T :

U
W−T

WT h
(z) =

1

4
g42zz̄ ,

U
Z−T

ZT h
(z) =

1

8

g42
c4W

zz̄ .
(B.21)

Splitting VL → VL + VL:

UWL
ZLWL

(z) =
1

16
g42[(z̄ − z)(2 + zz̄)− t2W z̄(1 + z̄)]2

1

zz̄+
,

UZL
WLWL

(z) =
1

16
g42[(z − z̄)(2 + zz̄)− t2W z(1 + z)]2

1

zz̄+
,

UWL
WLZL

(z) =
1

16
g42(z − z̄)2(2 + zz̄ − t2W zz̄)2

1

zz̄+
.

(B.22)

Splitting h→ VL + VL:

UZL
ZLh

(z) =
1

8

[
g22
c2W

(1− zz̄)− 4λhzz̄

]2
1

zz̄+
,

UWL
WLh

(z) =
1

4
[g22(1− zz̄)− 4λhzz̄]

2 1

zz̄+
.

(B.23)

Splitting VL → h+ VL:

UZL
hZL

(z) =
1

4

[
g22
c2W

(1− zz̄) + 4λhz̄

]2
z

z̄+
,

UhZLZL
(z) =

1

4

[
g22
c2W

(1− zz̄) + 4λhz

]2
z̄

z
,

UWL
hWL

(z) =
1

4
[g22(1− zz̄) + 4λhz̄]

2 z

z̄+
,

UhWLWL
(z) =

1

4
[g22(1− zz̄) + 4λhz]

2 z̄

z
.

(B.24)
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Splitting h→ h+ h:
Uhhh(z) = 18λ2hzz̄ . (B.25)

Splitting involving the mixed state hZL:

U tLhZLtL
(z) = −U t̄L

hZL t̄L
(z) = y2t (1 + z̄)

(
y2t
2
z2 + g2ZQ

Z
tL
z̄

)
,

U tRhZLtR
(z) = −U t̄R

hZL t̄R
(z) = −y2t (1 + z̄)

(
y2t
2
z2 − g2ZQZtR z̄

)
,

U t̄LtLhZL
(z) = U tL

t̄LhZL
(z) = −y

2
t

2
(z̄ − z)

(
y2t
2
− g2ZQZtLzz̄

)
,

U t̄RtRhZL
(z) = U tR

t̄RhZL
(z) =

y2t
2
(z̄ − z)

(
y2t
2
− g2ZQZtRzz̄

)
,

(B.26)

UWL
hZLWL

(z) ≡ UW
+
L

hZLW
+
L

(z) = −UW
−
L

hZLW
−
L

(z)

=
g22
4
[g22(1− zz̄) + 4λhz̄][(z̄ − z)(2 + zz̄)− t2W z̄(1− z̄)]

1

z̄+
,

UWL
WLhZL

(z) ≡ UW
−
L

W+
L hZL

(z) = −UW
+
L

W−
L hZL

(z)

=
g22
8
[g22(1− zz̄)− 4λhzz̄](z̄ − z)[(2 + (1− t2W )zz̄]

1

zz̄+
,

(B.27)

UWT
hZLWT

(z) ≡ UW
+
T

hZLW
+
T

(z) = U
W−

T

hZLW
−
T

(z) =
g42
2
z̄(1 + z̄) ,

UWT
WT hZL

(z) ≡ UW
−
T

W+
T hZL

(z) = −UW
+
T

W−
T hZL

(z) = −g
4
2

4
zz̄(z̄ − z) .

(B.28)

C Radiative corrections

To cancel the IR divergences appearing in the splitting functions in the soft limit z → 1 we
need to add virtual corrections. Instead of explicitly computing the corresponding Feynman
diagrams, we use that virtual corrections correspond to a process in which the particles
B and A are the same and C is absent, so in the splitting formalism they can be treated
introducing a new splitting function for each particle of the form P vBB(x, t) = P vB(t)δ(1− x).
Inserting the new term in the DGLAP equations we get

dfB(x, t)

dt
⊃ P vBB ⊗ fB = P vB(t)fB(x, t) . (C.1)

The coefficients P vB(t) can be computed using momentum conservation∑
i

∫ 1

0
dxxfi(x, t) =

∑
i

f
(2)
i (t) = 1 ∀t , (C.2)

where f (2)i represents the n = 2 Mellin transform of the PDF

f (n) =

∫ 1

0

dx

x
xnf(x) . (C.3)
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Deriving in t and using Eqs. (A.10, C.1) we obtain for each particle A

P vA(t) +
∑
B,C

(
dPA→B+C

dzdp2T

)(2)

= 0 . (C.4)

From the definitions in Eqs. (A.11, A.12, 3.3, A.13), we get

P vA(t) = −
∑
B,C

(
αABC
2π

P̃
C(2)
BA +

v2

16π2Q2(t)
Ũ
C(2)
BA

)
. (C.5)

In order to reproduce the non cancellation of IR divergences in SU(2)L interactions, the
computation of virtual corrections is modified by changing the boundary of the integral as
discussed in Section 3.2

P vA(t) = −
∑
B,C

∫ zABC
max (t)

0
dzz

(
αABC
2π

P̃CBA(z) +
v2

16π2Q2(t)
ŨCBA(z)

)
. (C.6)

We show explicitly the virtual corrections for the QED+QCD phase, with Nℓ charged
leptons, Nu up and Nd down quarks. All the particles are treated as massless, so momentum
conservation equations become just relations between the n = 2 Mellin transform of the
splitting functions and the virtual coefficients. Applying Eq. (C.6) respectively to the
fermions, the photon and the gluon we get, using Eq. (2.2)

P vf =
3

2

(αγ
2π
Q2
f +

α3

2π
CF δf,q

)
,

P vγ = −αγ
2π

2

3
NQED
f ,

P vg =
α3

2π

(
11

6
CA −

2

3
TFNq

)
,

(C.7)

where NQED
f = Nℓ +Nc(NuQ

2
u +NdQ

2
d) is the effective number of fermions, Nq = Nu +Nd

is the number of quarks and δf,q = 1 for quarks and 0 for leptons. In our specific setup,
Nℓ = Nd = 3 and Nu = 2, so Nq = 5 and NQED

f = 20
3 . We omit writing the explicit

expressions for virtual corrections in the full SM phase, as they are many and too lengthy.

D DGLAP evolution equations in SM

Here we list the full set of DGLAP equations we used above the EW scale. We use the
following notation for transverse vector polarization:

PCBVs ⊗ fVs = PCBV+ ⊗ fV+ + PCBV− ⊗ fV− , (D.1)

PCBVs ⊗ fV−s = PCBV+ ⊗ fV− + PCBV− ⊗ fV+ . (D.2)

In the ultra-collinear terms the factor v2/(16π2Q(t)2) appearing in front of each splitting
function is omitted to shorten the notation.
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D.1 Leptons
dfνi
dt

= P vνifνi +
α2(t)

2πc2W (t)

1

4

[
P̃ Vff ⊗ fνi + P̃ ffLVs ⊗ fZs

]
+
α2(t)

2π

1

2

[
P̃ Vff ⊗ fℓL,i

+ P̃ ffLVs ⊗ fW+
s

]
+ Ũ

W−
L

νℓL
⊗ fℓL,i

+ Ũ ℓ̄L
νW+

L

⊗ fW+
L
+ ŨZL

νν ⊗ fνi + Ũ ν̄νZL
⊗ fZL

,

(D.3)

dfν̄i
dt

= P vν̄ifν̄i +
α2(t)

2πc2W (t)

1

4

[
P̃ Vff ⊗ fν̄i + P̃ ffLVs ⊗ fZ−s

]
+
α2(t)

2π

1

2

[
P̃ Vff ⊗ fℓ̄L,i

+ P̃ ffLVs ⊗ fW−
−s

]
+ Ũ

W+
L

ν̄ℓ̄L
⊗ fℓ̄L,i

+ Ũ ℓL
ν̄W−

L

⊗ fW−
L
+ ŨZL

ν̄ν̄ ⊗ fν̄i + Ũνν̄ZL
⊗ fZL

,

(D.4)

dfℓL,i

dt
= P vℓL,i

fℓL,i
+
αγ(t)

2π
Q2
ℓ

[
P̃ Vff ⊗ fℓL,i

+ P̃ ffLVs ⊗ fγs
]

+
α2(t)

2πc2W (t)

(
1

2
+Qℓs

2
W (t)

)2 [
P̃ Vff ⊗ fℓL,i

+ P̃ ffLVs ⊗ fZs

]
+
α2(t)

2π

1

2

[
P̃ Vff ⊗ fνi + P̃ ffLVs ⊗ fW−

s

]
− αγ2(t)

2πcW (t)
Qℓ

(
1

2
+Qℓs

2
W (t)

)
P̃ ffLVs ⊗ fZγs

+ Ũ
W+

L
ℓLν
⊗ fνi + Ũ ν̄

ℓLW
−
L
⊗ fW−

L
+ ŨZL

ℓLℓL
⊗ fℓL,i

+ Ũ ℓ̄LℓLZL
⊗ fZL

,

(D.5)

dfℓ̄L,i

dt
= P vℓ̄L,i

fℓ̄L,i
+
αγ(t)

2π
Q2
ℓ

[
P̃ Vff ⊗ fℓ̄L,i

+ P̃ ffLVs ⊗ fγ−s

]
+

α2(t)

2πc2W (t)

(
1

2
+Qℓs

2
W (t)

)2 [
P̃ Vff ⊗ fℓ̄L,i

+ P̃ ffLVs ⊗ fZ−s

]
+
α2(t)

2π

1

2

[
P̃ Vff ⊗ fν̄i + P̃ ffLVs ⊗ fW+

−s

]
− αγ2(t)

2πcW (t)
Qℓ

(
1

2
+Qℓs

2
W (t)

)
P̃ ffLVs ⊗ fZγ−s

+ Ũ
W−

L

ℓ̄Lν̄
⊗ fν̄i + Ũν

ℓ̄LW
+
L
⊗ fW+

L
+ ŨZL

ℓ̄Lℓ̄L
⊗ fℓ̄L,i

+ Ũ ℓL
ℓ̄LZL

⊗ fZL
,

(D.6)

dfℓR,i

dt
= P vℓR,i

fℓR,i
+
αγ(t)

2π
Q2
ℓ

[
P̃ Vff ⊗ fℓR,i

+ P̃ ffLVs ⊗ fγ−s

]
+

α2(t)

2πc2W (t)
Q2
ℓs

4
W (t)

[
P̃ Vff ⊗ fℓR,i

+ P̃ ffLVs ⊗ fZ−s

]
− αγ2(t)

2πcW (t)
Q2
ℓs

2
W (t)P̃ ffLVs ⊗ fZγ−s

+ ŨZL
ℓRℓR

⊗ fℓR,i
+ Ũ ℓ̄RℓRZL

⊗ fZL
,

(D.7)
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dfℓ̄R,i

dt
= P vℓ̄R,i

fℓ̄R,i
+
αγ(t)

2π
Q2
ℓ

[
P̃ Vff ⊗ fℓ̄R,i

+ P̃ ffLVs ⊗ fγs
]

+
α2(t)

2πc2W (t)
Q2
ℓs

4
W (t)

[
P̃ Vff ⊗ fℓ̄R,i

+ P̃ ffLVs ⊗ fZs

]
− αγ2(t)

2πcW (t)
Q2
ℓs

2
W (t)P̃ ffLVs ⊗ fZγs

+ ŨZL

ℓ̄R ℓ̄R
⊗ fℓ̄R,i

+ Ũ ℓR
ℓ̄RZL

⊗ fZL
.

(D.8)

D.2 Quarks
dfuL,i

dt
= P vuL,i

fuL,i +
αγ(t)

2π
Q2
u

[
P̃ Vff ⊗ fuL,i +NcP̃

f
fLVs
⊗ fγs

]
+

α2(t)

2πc2W (t)

(
1

2
−Qus2W (t)

)2 [
P̃ Vff ⊗ fuL,i +NcP̃

f
fLVs
⊗ fZs

]
+
α2(t)

2π

1

2

[
P̃ Vff ⊗ fdL,i

+NcP̃
f
fLVs
⊗ fW+

s

]
+
αγ2(t)

2π
QuNc

(
1

2
−Qus2W (t)

)
P̃ ffLVs ⊗ fZγs

+
α3(t)

2π

[
CF P̃

V
ff ⊗ fuL,i + TF P̃

f
fLVs
⊗ fgs

]
+ Ũ

W−
L

uLdL
⊗ fdL,i

+ Ũ d̄L
uLW

+
L

⊗ fW+
L
+ ŨZL

uLuL
⊗ fuL,i + Ũ ūLuLZL

⊗ fZL
,

(D.9)

dfūL,i

dt
= P vūL,i

fūL,i +
αγ(t)

2π
Q2
u

[
P̃ Vff ⊗ fūL,i +NcP̃

f
fLVs
⊗ fγ−s

]
+

α2(t)

2πc2W (t)

(
1

2
−Qus2W (t)

)2 [
P̃ Vff ⊗ fūL,i +NcP̃

f
fLVs
⊗ fZ−s

]
+
α2(t)

2π

1

2

[
P̃ Vff ⊗ fd̄L,i

+NcP̃
f
fLVs
⊗ fW−

−s

]
+
αγ2(t)

2π
QuNc

(
1

2
−Qus2W (t)

)
P̃ ffLVs ⊗ fZγ−s

+
α3(t)

2π

[
CF P̃

V
ff ⊗ fūL,i + TF P̃

f
fLVs
⊗ fg−s

]
+ Ũ

W+
L

ūLd̄L
⊗ fd̄L,i

+ ŨdL
ūLW

−
L

⊗ fW−
L
+ ŨZL

ūLūL ⊗ fūL,i + ŨuLūLZL
⊗ fZL

,

(D.10)
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dftL
dt

= P vtLftL +
αγ(t)

2π
Q2
u

[
P̃ Vff ⊗ ftL +NcP̃

f
fLVs
⊗ fγs

]
+

α2(t)

2πc2W (t)

(
1

2
−Qus2W (t)

)2 [
P̃ Vff ⊗ ftL +NcP̃

f
fLVs
⊗ fZs

]
+
α2(t)

2π

1

2

[
P̃ Vff ⊗ fbL +NcP̃

f
fLVs
⊗ fW+

s

]
+
αγ2(t)

2π
QuNc

(
1

2
−Qus2W (t)

)
P̃ ffLVs ⊗ fZγs

+
α3(t)

2π

[
CF P̃

V
ff ⊗ ftL + TF P̃

f
fLVs
⊗ fgs

]
+
αy(t)

2π

1

2

[
P̃ hff ⊗

(
f
(h)
tR

+ f
(ZL)
tR

)
+NcP̃

f
fh ⊗ (fh + fZL

+ fhZL
)
]

+ Ũgtt ⊗ ftR + Ũ ttg ⊗ fg−
+ Ũγtt ⊗ ftR + Ũ ttγ ⊗ fγ− + Ũ

Z+

tLtR
⊗ ftR + Ũ t̄RtLZ−

⊗ fZ− + Ũ t̄RtLZ/γ− ⊗ fZ/γ−

+ Ũ
W−

L
tLbL
⊗ fbL + Ũ b̄L

tLW
+
L

⊗ fW+
L

+ ŨZL
tLtL
⊗ ftL + Ũ t̄LtLZL

⊗ fZL
+ Ũhtt ⊗ ftL + Ũ tth ⊗ fh + Ũ t̄LtLhZL

⊗ fhZL
,

(D.11)

dft̄L
dt

= P vt̄Lft̄L +
αγ(t)

2π
Q2
u

[
P̃ Vff ⊗ ft̄L +NcP̃

f
fLVs
⊗ fγ−s

]
+

α2(t)

2πc2W (t)

(
1

2
−Qus2W (t)

)2 [
P̃ Vff ⊗ ft̄L +NcP̃

f
fLVs
⊗ fZ−s

]
+
α2(t)

2π

1

2

[
P̃ Vff ⊗ fb̄L +NcP̃

f
fLVs
⊗ fW−

−s

]
+
αγ2(t)

2π
QuNc

(
1

2
−Qus2W (t)

)
P̃ ffLVs ⊗ fZγ−s

+
α3(t)

2π

[
CF P̃

V
ff ⊗ ft̄L + TF P̃

f
fLVs
⊗ fg−s

]
+
αy(t)

2π

1

2

[
P̃ hff ⊗

(
f
(h)
t̄R

+ f
(ZL)
t̄R

)
+NcP̃

f
fh ⊗ (fh + fZL

− fhZL
)
]

+ Ũgtt ⊗ ft̄R + Ũ ttg ⊗ fg+
+ Ũγtt ⊗ ft̄R + Ũ ttγ ⊗ fγ+ + Ũ

Z−
t̄L t̄R
⊗ ft̄R + Ũ tR

t̄LZ+
⊗ fZ+ + Ũ tR

t̄LZ/γ+
⊗ fZ/γ+

+ Ũ
W+

L

t̄Lb̄L
⊗ fb̄L + Ũ bL

t̄LW
−
L

⊗ fW−
L

+ ŨZL

t̄L t̄L
⊗ ft̄L + Ũ tL

t̄LZL
⊗ fZL

+ Ũhtt ⊗ ft̄L + Ũ tth ⊗ fh + Ũ tL
t̄LhZL

⊗ fhZL
,
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dfdL,i

dt
= P vdL,i

fdL,i
+
αγ(t)

2π
Q2
d

[
P̃ Vff ⊗ fdL,i

+NcP̃
f
fLVs
⊗ fγs

]
+

α2(t)

2πc2W (t)

(
1

2
+Qds

2
W (t)

)2 [
P̃ Vff ⊗ fdL,i

+NcP̃
f
fLVs
⊗ fZs

]
+
α2(t)

2π

1

2

[
P̃ Vff ⊗ fuL,i +NcP̃

f
fLVs
⊗ fW−

s

]
− αγ2(t)

2π
QdNc

(
1

2
+Qds

2
W (t)

)
P̃ ffLVs ⊗ fZγs

+
α3(t)

2π

[
CF P̃

V
ff ⊗ fdL,i

+ TF P̃
f
fLVs
⊗ fgs

]
+ Ũ

W+
L

dLuL
⊗ fuL,i + Ũ ūL

dLW
−
L

⊗ fW−
L
+ ŨZL

dLdL
⊗ fdL,i

+ Ũ d̄LdLZL
⊗ fZL

,

(D.13)

dfd̄L,i

dt
= P vd̄L,i

fd̄L,i
+
αγ(t)

2π
Q2
d

[
P̃ Vff ⊗ fd̄L,i

+NcP̃
f
fLVs
⊗ fγ−s

]
+

α2(t)

2πc2W (t)

(
1

2
+Qds

2
W (t)

)2 [
P̃ Vff ⊗ fd̄L,i

+NcP̃
f
fLVs
⊗ fZ−s

]
+
α2(t)

2π

1

2

[
P̃ Vff ⊗ fūL,i +NcP̃

f
fLVs
⊗ fW+

−s

]
− αγ2(t)

2π
QdNc

(
1

2
+Qds

2
W (t)

)
P̃ ffLVs ⊗ fZγ−s

+
α3(t)

2π

[
CF P̃

V
ff ⊗ fd̄L,i

+ TF P̃
f
fLVs
⊗ fg−s

]
+ Ũ

W−
L

d̄LūL
⊗ fūL,i + ŨuL

d̄LW
+
L

⊗ fW+
L
+ ŨZL

d̄Ld̄L
⊗ fd̄L,i

+ ŨdL
d̄LZL

⊗ fZL
,

(D.14)

dfbL
dt

= P vbLfbL +
αγ(t)

2π
Q2
d

[
P̃ Vff ⊗ fbL +NcP̃

f
fLVs
⊗ fγs

]
+

α2(t)

2πc2W (t)

(
1

2
+Qds

2
W (t)

)2 [
P̃ Vff ⊗ fbL +NcP̃

f
fLVs
⊗ fZs

]
+
α2(t)

2π

1

2

[
P̃ Vff ⊗ ftL +NcP̃

f
fLVs
⊗ fW−

s

]
− αγ2(t)

2π
QdNc

(
1

2
+Qds

2
W (t)

)
P̃ ffLVs ⊗ fZγs

+
α3(t)

2π

[
CF P̃

V
ff ⊗ fbL + TF P̃

f
fLVs
⊗ fgs

]
+
αy(t)

2π

[
P̃ hff ⊗ ftR +NcP̃

f
fh ⊗ fW−

L

]
+ Ũ

W+
+

bLtR
⊗ ftR + Ũ t̄R

bLW
−
−
⊗ fW−

−

+ Ũ
W+

L
bLtL
⊗ ftL + Ũ t̄L

bLW
−
L

⊗ fW−
L
+ ŨZL

bLbL
⊗ fbL + Ũ b̄LbLZL

⊗ fZL
,

(D.15)
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dfb̄L
dt

= P vb̄Lfb̄L +
αγ(t)

2π
Q2
d

[
P̃ Vff ⊗ fb̄L +NcP̃

f
fLVs
⊗ fγ−s

]
+

α2(t)

2πc2W (t)

(
1

2
+Qds

2
W (t)

)2 [
P̃ Vff ⊗ fb̄L +NcP̃

f
fLVs
⊗ fZ−s

]
+
α2(t)

2π

1

2

[
P̃ Vff ⊗ ft̄L +NcP̃

f
fLVs
⊗ fW+

−s

]
− αγ2(t)

2π
QdNc

(
1

2
+Qds

2
W (t)

)
P̃ ffLVs ⊗ fZγ−s

+
α3(t)

2π

[
CF P̃

V
ff ⊗ fb̄L + TF P̃

f
fLVs
⊗ fg−s

]
+
αy(t)

2π

[
P̃ hff ⊗ ft̄R +NcP̃

f
fh ⊗ fW+

L

]
+ Ũ

W−
−

b̄L t̄R
⊗ ft̄R + Ũ tR

b̄LW
+
+

⊗ fW+
+

+ Ũ
W−

L

b̄L t̄L
⊗ ft̄L + Ũ tL

b̄LW
+
L

⊗ fW+
L
+ ŨZL

b̄Lb̄L
⊗ fb̄L + Ũ tL

b̄LZL
⊗ fZL

,

(D.16)

dfuR,i

dt
= P vuR,i

fuR,i +
αγ(t)

2π
Q2
u

[
P̃ Vff ⊗ fuR,i +NcP̃

f
fLVs
⊗ fγ−s

]
+

α2(t)

2πc2W (t)
Q2
us

4
W (t)

[
P̃ Vff ⊗ fuR,i +NcP̃

f
fLVs
⊗ fZ−s

]
−Nc

αγ2(t)

2πcW (t)
Q2
us

2
W (t)P̃ ffLVs ⊗ fZγ−s

+
α3(t)

2π

[
CF P̃

V
ff ⊗ fuR,i + TF P̃

f
fLVs
⊗ fg−s

]
+ ŨZL

uRuR
⊗ fuR,i + Ũ ūRuRZL

⊗ fZL
,

(D.17)

dfūR,i

dt
= P vūR,i

fūR,i +
αγ(t)

2π
Q2
u

[
P̃ Vff ⊗ fūR,i +NcP̃

f
fLVs
⊗ fγs

]
+

α2(t)

2πc2W (t)
Q2
us

4
W (t)

[
P̃ Vff ⊗ fūR,i +NcP̃

f
fLVs
⊗ fZs

]
−Nc

αγ2(t)

2πcW (t)
Q2
us

2
W (t)P̃ ffLVs ⊗ fZγs

+
α3(t)

2π

[
CF P̃

V
ff ⊗ fūR,i + TF P̃

f
fLVs
⊗ fgs

]
+ ŨZL

ūRūR ⊗ fūR,i + ŨuRūRZL
⊗ fZL

,
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dftR
dt

= P vtRftR +
αγ(t)

2π
Q2
u

[
P̃ Vff ⊗ ftR +NcP̃

f
fLVs
⊗ fγ−s

]
+

α2(t)

2πc2W (t)
Q2
us

4
W (t)

[
P̃ Vff ⊗ ftR +NcP̃

f
fLVs
⊗ fZ−s

]
−Nc

αγ2(t)

2πcW (t)
Q2
us

2
W (t)P̃ ffLVs ⊗ fZγ−s

+
α3(t)

2π

[
CF P̃

V
ff ⊗ ftR + TF P̃

f
fLVs
⊗ fg−s

]
+
αy(t)

2π

[
P̃ hff ⊗

(
f
(h)
tL

+ f
(ZL)
tL

2
+ fbL

)
+NcP̃

f
fh ⊗

(
fh + fZL

− fhZL

2
+ fW+

L

)]
+ Ũgtt ⊗ ftL + Ũ ttg ⊗ fg+
+ Ũγtt ⊗ ftL + Ũ ttγ ⊗ fγ+ + Ũ

Z−
tRtL
⊗ ftL + Ũ t̄LtRZ+

⊗ fZ+ + Ũ t̄LtRZ/γ+ ⊗ fZ/γ+

+ Ũ
W−

−
tRbL
⊗ fbL + Ũ b̄L

tRW
+
+

⊗ fW+
+

+ ŨZL
tRtR
⊗ ftR + Ũ t̄RtRZL

⊗ fZL
+ Ũhtt ⊗ ftR + Ũ tth ⊗ fh + Ũ t̄RtRhZL

⊗ fhZL
,

(D.19)

dft̄R
dt

= P vt̄Rft̄R +
αγ(t)

2π
Q2
u

[
P̃ Vff ⊗ ft̄R +NcP̃

f
fLVs
⊗ fγs

]
+

α2(t)

2πc2W (t)
Q2
us

4
W (t)

[
P̃ Vff ⊗ ft̄R +NcP̃

f
fLVs
⊗ fZs

]
−Nc

αγ2(t)

2πcW (t)
Q2
us

2
W (t)P̃ ffLVs ⊗ fZγs

+
α3(t)

2π

[
CF P̃

V
ff ⊗ ft̄R + TF P̃

f
fLVs
⊗ fgs

]
+
αy(t)

2π

P̃ hff ⊗
f (h)t̄L

+ f
(ZL)
t̄L

2
+ fb̄L

+NcP̃
f
fh ⊗

(
fh + fZL

+ fhZL

2
+ fW−

L

)
+ Ũgtt ⊗ ft̄L + Ũ ttg ⊗ fg−
+ Ũγtt ⊗ ft̄L + Ũ ttγ ⊗ fγ− + Ũ

Z+

t̄R t̄L
⊗ ft̄L + Ũ tL

t̄RZ−
⊗ fZ− + Ũ tL

t̄RZ/γ−
⊗ fZ/γ−

+ Ũ
W+

+

t̄Rb̄L
⊗ fb̄L + Ũ bL

t̄RW
−
−
⊗ fW−

−

+ ŨZL

t̄R t̄R
⊗ ft̄R + Ũ tR

t̄RZL
⊗ fZL

+ Ũhtt ⊗ ft̄R + Ũ tth ⊗ fh + Ũ tR
t̄RhZL

⊗ fhZL
,
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dfdR,i

dt
= P vdR,i

fdR,i
+
αγ(t)

2π
Q2
d

[
P̃ Vff ⊗ fdR,i

+NcP̃
f
fLVs
⊗ fγ−s

]
+

α2(t)

2πc2W (t)
Q2
ds

4
W (t)

[
P̃ Vff ⊗ fdR,i

+NcP̃
f
fLVs
⊗ fZ−s

]
−Nc

αγ2(t)

2πcW (t)
Q2
ds

2
W (t)P̃ ffLVs ⊗ fZγ−s

+
α3(t)

2π

[
CF P̃

V
ff ⊗ fdR,i

+ TF P̃
f
fLVs
⊗ fg−s

]
+ ŨZL

dRdR
⊗ fdR,i

+ Ũ d̄RdRZL
⊗ fZL

,

(D.21)

dfd̄R,i

dt
= P vd̄R,i

fd̄R,i
+
αγ(t)

2π
Q2
d

[
P̃ Vff ⊗ fd̄R,i

+NcP̃
f
fLVs
⊗ fγs

]
+

α2(t)

2πc2W (t)
Q2
ds

4
W (t)

[
P̃ Vff ⊗ fd̄R,i

+NcP̃
f
fLVs
⊗ fZs

]
−Nc

αγ2(t)

2πcW (t)
Q2
ds

2
W (t)P̃ ffLVs ⊗ fZγs

+
α3(t)

2π

[
CF P̃

V
ff ⊗ fd̄R,i

+ TF P̃
f
fLVs
⊗ fgs

]
+ ŨZL

d̄Rd̄R
⊗ fd̄R,i

+ ŨdR
d̄RZL

⊗ fZL
.

(D.22)

D.3 Transverse gauge bosons
dfg+
dt

= P vg+fg+ +
α3(t)

2π

[
C

(3)
A P VV+Vs ⊗ fgs + C

(3)
F P̃ fV+fL ⊗

∑
i

(
fuL,i + fdL,i + fūR,i + fd̄R,i

)
+ C

(3)
F P̃ fV−fL ⊗

∑
i

(
fuR,i + fdR,i + fūL,i + fd̄L,i

) ]
+ Ũ tgt ⊗ (ftR + ft̄L) ,

(D.23)

dfg−
dt

= P vg−fg− +
α3(t)

2π

[
C

(3)
A P VV−Vs ⊗ fgs + C

(3)
F P̃ fV−fL ⊗

∑
i

(
fuL,i + fdL,i + fūR,i + fd̄R,i

)
+ C

(3)
F P̃ fV+fL ⊗

∑
i

(
fuR,i + fdR,i + fūL,i + fd̄L,i

) ]
+ Ũ tgt ⊗ (ftL + ft̄R) ,

(D.24)

dfγ+
dt

= P vγ+fγ+ +
αγ(t)

2π
P̃ VV+Vs ⊗ (fW+

s
+ fW−

s
) +

αγ(t)

2π
P̃ hV+h ⊗ (fW+

L
+ fW−

L
)

+
αγ(t)

2π

∑
f

Q2
f

[
P̃ fV+fL ⊗

(
ffL + ff̄R

)
+ P̃ fV−fL ⊗

(
ffR + ff̄L

)]
+ Ũ tγt ⊗ (ftR + ft̄L) + ŨWL

γTWT
⊗ (fW+

+
+ fW−

+
) + ŨWT

γTWL
⊗ (fW+

L
+ fW−

L
) ,

(D.25)

dfγ−
dt

= P vγ−fγ− +
αγ(t)

2π
P̃ VV−Vs ⊗ (fW+

s
+ fW−

s
) +

αγ(t)

2π
P̃ hV−h ⊗ (fW+

L
+ fW−

L
)

+
αγ(t)

2π

∑
f

Q2
f

[
P̃ fV−fL ⊗

(
ffL + ff̄R

)
+ P̃ fV+fL ⊗

(
ffR + ff̄L

)]
+ Ũ tγt ⊗ (ftL + ft̄R) + ŨWL

γTWT
⊗ (fW+

−
+ fW−

−
) + ŨWT

γTWL
⊗ (fW+

L
+ fW−

L
) ,

(D.26)
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dfZ+

dt
= P vZ+

fZ+ +
α2(t)

2π
c2W (t)P̃ VV+Vs ⊗ (fW+

s
+ fW−

s
)

+
α2(t)

2π

c22W
4c2W

P̃ hV+h ⊗ (fW+
L
+ fW−

L
) +

α2(t)

2π

1

4c2W
P̃ hV+h ⊗ (fh + fZL

)

+
α2(t)

2πc2W

∑
f

[
P̃ fV+fL ⊗

(
Z2
fL
ffL + Z2

fR
ff̄R
)
+ P̃ fV−fL ⊗

(
Z2
fR
ffR + Z2

fL
ff̄L
)]

+ Ũ tLZ+tR
⊗ ftR + Ũ tRZ−tL

⊗ ft̄L
+ ŨWL

ZTWT
⊗ (fW+

+
+ fW−

+
) + ŨWT

ZTWL
⊗ (fW+

L
+ fW−

L
)

+ ŨhZTZT
⊗ fZ+ + ŨZT

ZT h
⊗ fh ,

(D.27)

dfZ−

dt
= P vZ−fZ− +

α2(t)

2π
c2W (t)P̃ VV−Vs ⊗ (fW+

s
+ fW−

s
)

+
α2(t)

2π

c22W
4c2W

P̃ hV−h ⊗ (fW+
L
+ fW−

L
) +

α2(t)

2π

1

4c2W
P̃ hV−h ⊗ (fh + fZL

)

+
α2(t)

2πc2W

∑
f

[
P̃ fV−fL ⊗

(
Z2
fL
ffL + Z2

fR
ff̄R
)
+ P̃ fV+fL ⊗

(
Z2
fR
ffR + Z2

fL
ff̄L
)]

+ Ũ tRZ−tL
⊗ ftL + Ũ tLZ+tR

⊗ ft̄R
+ ŨWL

ZTWT
⊗ (fW+

−
+ fW−

−
) + ŨWT

ZTWL
⊗ (fW+

L
+ fW−

L
)

+ ŨhZTZT
⊗ fZ− + ŨZT

ZT h
⊗ fh ,

(D.28)

dfZγ+
dt

=
αγ2(t)

2π
2cW (t)P̃ VV+Vs ⊗ (fW+

s
+ fW−

s
) +

αγ2(t)

2π

c2W (t)

cW (t)
P̃ hV+h ⊗ (fW+

L
+ fW−

L
)

+
αγ2(t)

2π

2

cW (t)

∑
f

Qf

[
P̃ fV+fL ⊗

(
ZfLffL + ZfRff̄R

)
+ P̃ fV−fL ⊗

(
ZfRffR + ZfLff̄L

)]
+ Ũ tLZ/γ+tR ⊗ ftR + Ũ tRZ/γ−tL ⊗ ft̄L
+ ŨWL

Z/γTWT
⊗ (fW+

+
+ fW−

+
) + ŨWT

Z/γTWL
⊗ (fW+

L
+ fW−

L
) ,

(D.29)

dfZγ−
dt

=
αγ2(t)

2π
2cW (t)P̃ VV−Vs ⊗ (fW+

s
+ fW−

s
) +

αγ2(t)

2π

c2W (t)

cW (t)
P̃ hV−h ⊗ (fW+

L
+ fW−

L
)

+
αγ2(t)

2π

2

cW (t)

∑
f

Qf

[
P̃ fV−fL ⊗

(
ZfLffL + ZfRff̄R

)
+ P̃ fV+fL ⊗

(
ZfRffR + ZfLff̄L

)]
+ Ũ tRZ/γ−tL ⊗ ftL + Ũ tLZ/γ+tR ⊗ ft̄R
+ ŨWL

Z/γTWT
⊗ (fW+

−
+ fW−

−
) + ŨWT

Z/γTWL
⊗ (fW+

L
+ fW−

L
) ,
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dfW+
+

dt
= P v

W+
+
fW+

+
+
α2(t)

2π
c2W (t)P̃ VV+Vs ⊗ (fW+

s
+ fZs) +

αγ(t)

2π
P̃ VV+Vs ⊗ (fW+

s
+ fγs)

+
αγ2(t)

2π
cW (t)P̃ VV+Vs ⊗ fZγs +

α2(t)

2π

1

4
P̃ hV+h ⊗ (fh + fZL

+ fhZL
+ f

(h)

W+
L

+ f
(ZL)

W+
L

)

+
α2(t)

2π

1

2

∑
i

[
P̃ fV+fL ⊗

(
fuL,i + fνi

)
+ P̃ fV−fL ⊗

(
fd̄L,i

+ fℓ̄L,i

)]
+ Ũ bL

W+
+ tR
⊗ ftR + Ũ tR

W−
− bL
⊗ fb̄L

+
(
ŨγTWTWL

+ ŨZT
WTWL

)
⊗ fW+

L
+
(
ŨhWTWT

+ ŨZL
WTWT

)
⊗ fW+

+

+ ŨWL
WT γT

⊗ fγ+ + ŨWL
WTZT

⊗ fZ+ + ŨWL
WTZγT

⊗ fZγ+
+ ŨWT

WT h
⊗ fh + ŨWT

WTZL
⊗ fZL

+ ŨWT
WT hZL

⊗ fhZL
,

(D.31)

dfW+
−

dt
= P v

W+
−
fW+

−
+
α2(t)

2π
c2W (t)P̃ VV−Vs ⊗ (fW+

s
+ fZs) +

αγ(t)

2π
P̃ VV−Vs ⊗ (fW+

s
+ fγs)

+
αγ2(t)

2π
cW (t)P̃ VV−Vs ⊗ fZγs +

α2(t)

2π

1

4
P̃ hV−h ⊗ (fh + fZL

+ fhZL
+ f

(h)

W+
L

+ f
(ZL)

W+
L

)

+
α2(t)

2π

1

2

∑
i

[
P̃ fV−fL ⊗

(
fuL,i + fνi

)
+ P̃ fV+fL ⊗

(
fd̄L,i

+ fℓ̄L,i

)]
+
(
ŨγTWTWL

+ ŨZT
WTWL

)
⊗ fW+

L
+
(
ŨhWTWT

+ ŨZL
WTWT

)
⊗ fW+

−

+ ŨWL
WT γT

⊗ fγ− + ŨWL
WTZT

⊗ fZ− + ŨWL
WTZγT

⊗ fZγ−
+ ŨWT

WT h
⊗ fh + ŨWT

WTZL
⊗ fZL

+ ŨWT
WT hZL

⊗ fhZL
,

(D.32)

dfW−
+

dt
= P v

W−
+
fW−

+
+
α2(t)

2π
c2W (t)P̃ VV+Vs ⊗ (fW−

s
+ fZs) +

αγ(t)

2π
P̃ VV+Vs ⊗ (fW−

s
+ fγs)

+
αγ2(t)

2π
cW (t)P̃ VV+Vs ⊗ fZγs +

α2(t)

2π

1

4
P̃ hV+h ⊗ (fh + fZL

− fhZL
+ f

(h)

W−
L

+ f
(ZL)

W−
L

)

+
α2(t)

2π

1

2

∑
i

[
P̃ fV+fL ⊗

(
fdL,i

+ fℓL,i

)
+ P̃ fV−fL ⊗

(
fūL,i + fν̄i

)]
+
(
ŨγTWTWL

+ ŨZT
WTWL

)
⊗ fW−

L
+
(
ŨhWTWT

+ ŨZL
WTWT

)
⊗ fW−

+

+ ŨWL
WT γT

⊗ fγ+ + ŨWL
WTZT

⊗ fZ+ + ŨWL
WTZγT

⊗ fZγ+
+ ŨWT

WT h
⊗ fh + ŨWT

WTZL
⊗ fZL

− ŨWT
WT hZL

⊗ fhZL
,
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dfW−
−

dt
= P v

W−
−
fW−

−
+
α2(t)

2π
c2W (t)P̃ VV−Vs ⊗ (fW−

s
+ fZs) +

αγ(t)

2π
P̃ VV−Vs ⊗ (fW−

s
+ fγs)

+
αγ2(t)

2π
cW (t)P̃ VV−Vs ⊗ fZγs +

α2(t)

2π

1

4
P̃ hV−h ⊗ (fh + fZL

− fhZL
+ f

(h)

W−
L

+ f
(ZL)

W−
L

)

+
α2(t)

2π

1

2

∑
i

[
P̃ fV−fL ⊗

(
fdL,i

+ fℓL,i

)
+ P̃ fV+fL ⊗

(
fūL,i + fν̄i

)]
+ P̃ tR

W−
− bL
⊗ fbL + P̃ bL

W+
+ tR
⊗ ft̄R

+
(
ŨγTWTWL

+ ŨZT
WTWL

)
⊗ fW−

L
+
(
ŨhWTWT

+ ŨZL
WTWT

)
⊗ fW−

−

+ ŨWL
WT γT

⊗ fγ− + ŨWL
WTZT

⊗ fZ− + ŨWL
WTZγT

⊗ fZγ−
+ ŨWT

WT h
⊗ fh + ŨWT

WTZL
⊗ fZL

− ŨWT
WT hZL

⊗ fhZL
.

(D.34)

D.4 Higgs and longitudinal gauge bosons
dfh
dt

= P vhfh +
α2(t)

2π

1

4

[
P̃ Vhh ⊗

(
fW+

L
+ fW−

L

)
+ P̃ hhV ⊗

(
fW+

+
+ fW+

−
+ fW−

+
+ fW−

−

) ]
+
α2(t)

2π

1

4c2W

[
P̃ Vhh ⊗ fZL

+ P̃ hhV ⊗
(
fZ+ + fZ−

) ]
+
αy(t)

2π

1

2
P̃ fhf ⊗

(
ftL + ftR + ft̄L + ft̄R

)
+ Ũ tht ⊗ (ftL + ftR + ft̄L + ft̄R)

+ ŨWT
hWT
⊗ (fW+

+
+ fW+

−
+ fW−

+
+ fW−

−
) + ŨZT

hZT
⊗ (fZ+ + fZ−)

+ ŨWL
hWL
⊗ (fW+

L
+ fW−

L
) + ŨZL

hZL
⊗ fZL

+ Ũhhh ⊗ fh ,
(D.35)

dfZL

dt
= P vZL

fZL
+
α2(t)

2π

1

4

[
P̃ Vhh ⊗ (fW+

L
+ fW−

L
) + P̃ hhV ⊗ (fW+

+
+ fW+

−
+ fW−

+
+ fW−

−
)
]

+
α2(t)

2π

1

4c2W

[
P̃ Vhh ⊗ fh + P̃ hhV ⊗ (fZ+ + fZ−)

]
+
αy(t)

2π

1

2
P̃ fhf ⊗

(
ftL + ftR + ft̄L + ft̄R

)
+
∑
fL

ŨfLZLfL
⊗ ffL +

∑
fR

ŨfRZLfR
⊗ ffR

+
∑
f̄L

Ũ f̄L
ZLf̄L

⊗ ff̄L +
∑
f̄R

Ũ f̄R
ZLf̄R

⊗ ff̄R

+ ŨWT
ZLWT

⊗ (fW+
+
+ fW+

−
+ fW−

+
+ fW−

−
)

+ ŨhZLZL
⊗ fZL

+ ŨZL
ZLh
⊗ fh + ŨWL

ZLWL
⊗ (fW+

L
+ fW−

L
) ,

(D.36)
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dfW+
L

dt
= P v

W+
L
fW+

L
+
α2(t)

2π

1

4

[
P̃ Vhh ⊗ (fh + fZL

− fhZL
) + P̃ hhV ⊗

(
f
(h)

W+
+

+ f
(ZL)

W+
+

+ f
(h)

W+
−
+ f

(ZL)

W+
−

)]
+
α2(t)

2π

c22W
4c2W

[
P̃ Vhh ⊗ fW+

L
+ P̃ hhV ⊗ (fZ+ + fZ−)

]
+
αγ(t)

2π

[
P̃ Vhh ⊗ fW+

L
+ P̃ hhV ⊗ (fγ+ + fγ−)

]
+
αγ2(t)

2π

c2W
2cW

P̃ hhV ⊗ (fZγ+ + fZγ−)

+
αy(t)

2π
P̃ fhf ⊗

(
ftR + fb̄L

)
+

∑
f
(1)
L f

(2)
L

Ũ
f
(2)
L

W+
L f

(1)
L

⊗ f
f
(1)
L

+
∑

f̄
(1)
L f̄

(2)
L

Ũ
f̄
(2)
L

W+
L f̄

(1)
L

⊗ f
f̄
(1)
L

+ ŨγTWLWT
⊗ (fW+

+
+ fW+

−
) + ŨZT

WLWT
⊗ (fW+

+
+ fW+

−
)

+ ŨWT
WLγT

⊗ (fγ+ + fγ−) + ŨWT
WLZT

⊗ (fZ+ + fZ−)

+ ŨWT
WLZγT

⊗ (fZγ+ + fZγ−)

+ ŨWL
WLh
⊗ fh + ŨWL

WLZL
⊗ fZL

+ ŨWL
WLhZL

⊗ fhZL

+ ŨhWLWL
⊗ fW+

L
+ ŨZL

WLWL
⊗ fW+

L
,
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dfW−
L

dt
= P v

W−
L
fW−

L
+
α2(t)

2π

1

4

[
P̃ Vhh ⊗ (fh + fZL

+ fhZL
) + P̃ hhV ⊗

(
f
(h)

W−
+

+ f
(ZL)

W−
+

+ f
(h)

W−
−
+ f

(ZL)

W−
−

)]
+
α2(t)

2π

c22W
4c2W

[
P̃ Vhh ⊗ fW−

L
+ P̃ hhV ⊗ (fZ+ + fZ−)

]
+
αγ(t)

2π

[
P̃ Vhh ⊗ fW−

L
+ P̃ hhV ⊗ (fγ+ + fγ−)

]
+
αγ2(t)

2π

c2W
2cW

P̃ hhV ⊗ (fZγ+ + fZγ−)

+
αy(t)

2π
P̃ fhf ⊗

(
fbL + ft̄R

)
+

∑
f
(1)
L f

(2)
L

Ũ
f
(2)
L

W−
L f

(1)
L

⊗ f
f
(1)
L

+
∑

f̄
(1)
L f̄

(2)
L

Ũ
f̄
(2)
L

W−
L f̄

(1)
L

⊗ f
f̄
(1)
L

+ ŨγTWLWT
⊗ (fW−

+
+ fW−

−
) + ŨZT

WLWT
⊗ (fW−

+
+ fW−

−
)

+ ŨWT
WLγT

⊗ (fγ+ + fγ−) + ŨWT
WLZT

⊗ (fZ+ + fZ−)

+ ŨWT
WLZγT

⊗ (fZγ+ + fZγ−)

+ ŨWL
WLh
⊗ fh + ŨWL

WLZL
⊗ fZL

− ŨWL
WLhZL

⊗ fhZL

+ ŨhWLWL
⊗ fW−

L
+ ŨZL

WLWL
⊗ fW−

L
,
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dfhZL

dt
=
αy(t)

2π
P̃ fhf ⊗ (ftL+ + ft̄R − ftR − ft̄L)

+
α2(t)

2π

1

4

[
P̃ Vhh ⊗ (fW−

L
− fW+

L
) + P̃ hhV ⊗ (fW+

+
+ fW+

−
− fW−

+
− fW−

−
)
]

+ Ũ tLhZLtL
⊗ (ftL − ft̄L) + Ũ tRhZLtR

⊗ (ftR − ft̄R)

+ ŨWL
hZLWL

⊗ (fW+
L
− fW−

L
) + ŨWT

hZLWT
⊗ (fW+

+
+ fW+

−
− fW−

+
− fW−

−
) .

(D.39)

E Numerical implementation

Here we show the details of our numerical implementation of the DGLAP equations. We
discretize the x-space from a minimum value x0 up to 1 in Nx bins, xα = {x0, x1, . . . , xNx ≡
1}, with spacing δxα = xα − xα−1. We choose a spacing that is denser near x = 1 and
sparser at small values, in practice we set xα = 10−6((Nx−α)/Nx)

2.5

for α = 0, 1, . . . , Nx to
get values from x0 = 10−6 to xNx = 1. This allows us to obtain a set of ODEs, where the
integrals are computed using the rectangles method.8

For the non-divergent terms or when zABCmax ̸= 1 we obtain

dfB(xβ, t)

dt
⊃
∫ zABC

max

xβ

dz

z
P̃CBA

(xβ
z

)
fA(z, t) =

NABC
max∑

α=β+1

δxα
xα

P̃CBA

(
xβ
xα

)
fA(xα, t), (E.1)

where NABC
max is the index of the greatest point of the grid which is smaller than zABCmax . The

remaining case is that of the splitting functions with the + distribution, which we can write
as

P̃CBA(z) =
D̃C
BA(z)

(1− z)+
. (E.2)

Using the definition in Eq. (B.1) the corresponding terms in the DGLAP equations are:

dfB(xβ, t)

dt
⊃
∫ 1

xβ

dy

y(1− y)+
D̃C
BA(y)fA

(
xβ
y
, t

)
= D̃C

BA(1) log(1− xβ)fA(xβ, t)

+

∫ zABC
max

xβ

dy

(1− y)

(
D̃C
BA(y)fA(

xβ
y , t)

y
− D̃C

BA(1)fA(xβ, t)

)
.

(E.3)

8Due to the use of the rectangles method, we note that special care should be taken when interpolating
the LePDFs near the region of x = 1, where the muon PDF changes very steeply. In this case we recommend
using zeroth order interpolation for consistency.
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With our discretization, the last integral becomes∫ 1

xβ

dy

(1− y)

(
D̃C
BA(y)fA(

xβ
y , t)

y
− D̃C

BA(1)fA(xβ, t)

)

=

∫ 1

xβ

dz
xβ
z2

1

1− xβ
z

[
z

xβ
D̃C
BA

(xβ
z

)
fA(z, t)− D̃C

BA(1)fA(xβ, t)

]

=

∫ 1

xβ

dz

[
1

z
(
1− xβ

z

)D̃C
BA

(xβ
z

)
fA(z, t)−

xβ
z2

1

1− xβ
z

D̃C
BA(1)fA(xβ, t)

]

=

Nx∑
α=β+1

δxα
xα

P̃CBA

(
xβ
xα

)
fA(xα, t)− D̃C

BA(1)fA(xβ, t)xβ

Nx∑
α=β+1

δxα
x2α

1

1− xβ
xα

≡
Nx∑

α=β+1

δxα
xα

P̃CBA

(
xβ
xα

)
fA(xα, t)− D̃C

BA(1)XβfA(xβ, t) ,

(E.4)

where Xβ is given by

Xβ ≡ xβ
Nx∑

α=β+1

δxα
x2α

1

1− xβ
xα

. (E.5)

With this discretization, starting with Nf PDFs we get a set of (Nx + 1)Nf equations for
the variables fBβ(t) ≡ fB(xβ, t), with β = {0, . . . , Nx} and B = {1, . . . , Nf}

dfBβ(t)

dt
= P vB(t)fBβ(t) +

∑
A,C

αABC(t)

2π
(log(1− xβ)−Xβ) D̃

C
BA(1)fAβ

+
∑
A,C

αABC(t)

2π

NABC
max∑

α=β+1

δxα
xα

P̃CBA

(
xβ
xα

)
fAα(t) .

(E.6)

Once we have the equations with the proper initial conditions, we solve them numerically
using a fourth order Runge-Kutta with integration step dt. For a set of equations of the
form y′i(t) = Fi(t, y), starting with the solution yi,n at t = tn the step of the algorithm is

k1,i = dtFi(tn, yi,n)

k2,i = dtFi(tn +
dt

2
, yi,n +

k1
2
)

k3,i = dtFi(tn +
dt

2
, yi,n +

k2
2
)

k4,i = dtFi(tn + dt, yi,n + k3)

yi,n+1 = yi,n +
k1,i
6

+
k2,i
3

+
k3,i
3

+
k4,i
6

+O(dt5) .

(E.7)

We then reduce the number of variables imposing momentum conservation after every step
of the evolution, since performing a numerical integration it will be more and more violated,
as done in [34]. With our discretization Eq. (C.2) becomes

Nf∑
i=1

Nx∑
α=1

δxαxαfiα(t) = 1 . (E.8)
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Since the initial conditions on PDFs are given by

fµ(0, xα) = δ(1− xα) =
1

δxNx

δαNx , fi ̸=µ(0, x) = 0 , (E.9)

only fµα will be nonzero for α = Nx throughout the evolution. Then we fix

fiNx(t) =

{
L(t)
δxNx

i = µ

0 i ̸= µ
, (E.10)

reducing by Nf the number of variables and solving the remaining equations. The factor
L(t) is computed using momentum conservation

1 =

Nf∑
i=1

Nx−1∑
α=1

δxαxαfiα(t) + L(t) , (E.11)

that is

L(t) = 1−
Nf∑
i=1

Nx−1∑
α=1

δxαxαfiα(t) . (E.12)

The uncertainties due to the discretizations in x and t spaces are discussed in Section 4.6.

F LHAPDF format

We publish our numerical results in a format inspired by the LHAPDF6 [75] one used for
proton PDFs. Some changes are required due to the polarisation of PDFs. The structure of
the output is then as follows:

• the first three lines just specify the format;

• in the fourth and fifth line are reported respectively the grids in x and in Q (the grid
in Q is a subset of the grid used in the numerical solution of the DGLAP equations);

• the next three lines report the particles’ list as in Table 4: name, PDG ID (for the
Z/γ and h/ZL interference we join the PDG ID of the two states) and the additional
label specifying the helicity (it is understood that for fermions or vectors it will be
±1/2 or ±1, respectively);

• in all the remaining lines we report the quantities xf(x,Q): each column corresponds
to a particle, following the order of the previous lines. We start at x = x0 increasing
Q at each row and repeating for each x, so that the data have the form reported in
Table 5.
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eL eL 11 -
eR eR 11 +
νe nue 12 -
µL muL 13 -
µR muR 13 +
νµ numu 14 -
τL taL 15 -
τR taR 15 +
ντ nuta 16 -
ēL eLb -11 +
ēR eRb -11 -
ν̄e nueb -12 +
µ̄L muLb -13 +
µ̄R muRb -13 -
ν̄µ numub -14 +
τ̄L taLb -15 +
τ̄R taRb -15 -
ν̄τ nutab -16 +

dL dL 1 -
dR dR 1 +
uL uL 2 -
uR uR 2 +
sL sL 3 -
sR sR 3 +
cL cL 4 -
cR cR 4 +
bL bL 5 -
bR bR 5 +
tL tL 6 -
tR tR 6 +
d̄L dLb -1 +
d̄R dRb -1 -
ūL uLb -2 +
ūR uRb -2 -
s̄L sLb -3 +
s̄R sRb -3 -
c̄L cLb -4 +
c̄R cRb -4 -
b̄L bLb -5 +
b̄R bRb -5 -
t̄L tLb -6 +
t̄R tRb -6 -

g+ gp 21 +
g− gm 21 -
γ+ gap 22 +
γ− gam 22 -
Z+ Zp 23 +
Z− Zm 23 -
ZL ZL 23 0
Z/γ+ Zgap 2223 +
Z/γ− Zgam 2223 -
W+

+ Wpp 24 +
W+

− Wpm 24 -
W+
L WpL 24 0

W−
+ Wmp -24 +

W−
− Wmm -24 -

W−
L WmL -24 0
h h 25 0

h/ZL hZL 2523 0

Table 4. Names, PDG ID and polarisations of the particles. In particular, the second, third and
fourth columns of the tables correspond to the sixth, seventh and eighth lines of the output file.
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