CERN Accélérateur de science

Article
Title DC Powering Solutions for the Future Circular Collider: Converter Topologies, Protection, and Control
Author(s) Colmenero, Manuel (CERN) ; Blanquez, Francisco Rafael (CERN) ; Blasco-Gimenez, Ramon (Valencia U., IFIC)
Publication 2023
Number of pages 15
In: IEEE Open J. Indust. Electron. Soc. 4 (2023) 694-708
DOI 10.1109/OJIES.2023.3336981
Subject category Accelerators and Storage Rings ; Engineering
Accelerator/Facility, Experiment CERN FCC
Abstract The future circular collider (FCC) is a cutting-edge particle accelerator being planned by the European Organization for Nuclear Research (CERN). It is designed to delve deeper into the mysteries of the universe than its predecessor, the large hadron collider (LHC). With a circumference of over 80 km, the FCC requires a reliable and efficient power transmission network to operate smoothly. The available power options for the FCC include a high-voltage dc transmission and radio frequency powering networks based on HVdc converters, such as the modular multilevel power converters or the 12-pulse thyristor rectifiers, each providing several benefits in power transmission efficiency and cost-effectiveness. However, the converter selection, its control, and the protection aspects must be carefully designed to meet the unique requirements of the installation. This article examines different dc powering scenarios for the FCC and proposes a control and protection scheme compatible with the accelerator’s operation mode. This approach ensures that the power system meets the FCC’s specific needs and operates safely and effectively. The validity of the proposed control and protection strategies is verified by means of detailed computer simulations.
Copyright/License publication: © 2023-2024 The Authors (License: CC-BY-4.0)

Corresponding record in: Inspire


 Notice créée le 2024-03-14, modifiée le 2024-09-10


Fichiers:
Télécharger le document
PDF