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We compute the fifth post-Minkowskian (5PM) order contributions to the scattering angle and impulse
of classical black hole scattering in the conservative sector at first self-force order using the worldline
quantum field theory formalism. This challenging four-loop computation required the use of advanced
integration-by-parts and differential equation technology implemented on high-performance computing
systems. Use of partial fraction identities allowed us to render the complete integrand in a fully planar form.
The resulting function space is simpler than expected: In the scattering angle, we see only multiple
polylogarithms up to weight three and a total absence of the elliptic integrals that appeared at 4PM order.
All checks on our result, both internal—cancellation of dimensional regularization poles and preservation
of the on-shell condition—and external—matching the slow-velocity limit with the post-Newtonian (PN)
literature up to 5PN order and matching the tail terms to the 4PM loss of energy—are passed.
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Binary black hole (BH) and neutron star (NS) mergers
are today routinely observed by the LIGO-Virgo-KAGRA
gravitational wave detectors [1–3]. With the advent
of the third generation of gravitational wave detectors
[4–6] and LISA’s recent approval by the European Space
Agency, we anticipate an experimental accuracy increase
that will enable unprecedented insights into gravitational,
astrophysical, nuclear, and fundamental physics. From
these experimental programs emerges the theoretical imper-
ative to reach utmost precision in the gravitational wave-
forms emitted by these violent cosmic events. To meet this
demand, a synergy of perturbative analytical and numerical
approaches is needed to solve the classical general rela-
tivistic two-body problem. The former encompasses the
post-Newtonian (PN) [7–9] (weak gravitational fields
and nonrelativistic velocities) and post-Minkowskian
(PM) [10–14] (weak fields) expansions; the latter encom-
passes modern numerical relativity [15–17]. Gravitational
self-force (SF) (small mass ratio) [18–21], meanwhile, is a
hybrid approach: the perturbative SF equations typically
being solved numerically. On the analytical side, the
incorporation of perturbative quantum field theory (QFT)
techniques has significantly strengthened this program,
most recently within the PM expansion.

In the PM regime, which aligns closely with consider-
ations in particle physics, the focus is shifted from the
merger to the gravitational scattering of two BHs or NSs
[22–26]. The compact bodies are modeled as massive point
particles interacting through gravity—an effective worldline
description motivated by the scale separation between the
intrinsic sizes of the objects (∼Gm) and their separation
(∼jbj) [27]. Leveraging this effective worldline approach,
key observables in classical two-body scattering—including
the impulse (change of momentum), scattering angle, and
far-field waveform—have been systematically computed to
high orders in the PM expansion, organized in powers of
Newton’s constant G [28–38]. Spin and tidal effects have
also been incorporated [39–55]. Complementary perturba-
tive QFT strategies, rooted in scattering amplitudes, have
also received considerable attention and achieved compa-
rable precision [56–91]—see, in particular, Ref. [92] for
related work in electrodynamics.
The present state of the art is 4PM (G4), i.e., next-

to-next-to-next-to-leading order (N3LO), for the scattering
angle and impulse [37,38,53–55,80,81,84]. Determination
of these observables required the computation of three-
loop, one-parameter Feynman integrals. Including spin
degrees of freedom—parametrized by the ring radius
a ¼ S=m—yields a double expansion for the impulse
and spin kick as Gn1an2 . Here, we have knowledge of
the terms up to ðn1; n2Þ ¼ fð1;∞Þ [93], (2,5) [82,94], (3,2)
[44,45], (4,1) [53,54]}. As Kerr BHs obey the inequality
a ≤ Gm, the physical PM counting in (effective) powers of
G adds n1 þ n2. Hence, we presently have the complete
knowledge of the scattering observables for Kerr BHs up to
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and including the physical 4PM order. In order to advance
to 5PM order, we lack only (5,0), i.e., the spin-free four-
loop contribution.
The SF expansion [18–21] is a complementary pertur-

bative scheme in which one assumes a hierarchy in the two
BH or NS masses, m1 ≪ m2, but works exactly in G. The
self-force expansion, therefore, extends systematically
beyond the geodesic motion of a probe mass moving in
the background of a heavy BH or NS. One may overlay the
PM loop expansion with the SF expansion: The PM
problem factorizes into separate gauge-invariant SF sectors
that may be targeted individually. Concretely, for the 5PM
four-loop problem, one finds 0SF (known), 1SF (computed
here), and 2SF contributions. The complexity of the
Feynman integrals to be performed grows considerably
with the SF order. Moreover, overlaying the PM with the
SF expansion for the scattering scenario is also motivated
on astrophysical grounds: Statistical estimates for inspirals
of stars about supermassive (M > 106M⊙) or intermediate
mass (M ∼ 103M⊙) BHs display highly eccentric orbits,
potentially observable with LISA [95–97], which may be
well captured by PM-improved effective-one-body (EOB)
models [98–100].
In this Letter, we compute the previously unknown 5PM

contribution at first order in self-force. Our computation
lies at the frontier of present Feynman integration tech-
nology. In order to master it, we optimized on all aspects of
this high-precision challenge: The integrand was produced
using the worldline quantum field theory (WQFT) formal-
ism [14,31,43,46], with partial fraction identities used to
perform a “planarization” prior to integration. The integra-
tion-by-parts (IBP) reduction employed an improved
version of KIRA [101,102].
Worldline quantum field theory.—The nonspinning BHs

or NSs are modeled as point particles moving on trajecto-
ries xμi ðτÞ. In proper time gauge ẋ2i ¼ 1, the action takes the
simple form

S ¼ −
X2
i¼1

mi

2

Z
dτgμνẋ

μ
i ẋ

ν
i −

1

16πG

Z
dDx

ffiffiffiffiffiffi
−g

p
R; ð1Þ

suppressing a gauge-fixing term Sgf . We employ a non-
linearly extended de Donder gauge that maximally sim-
plifies the three- and four-graviton vertices and use
dimensional regularization with D ¼ 4 − 2ϵ in the bulk.
Both the worldline and gravitational fields are expanded
about their Minkowskian (G0) background configurations:

xμi ¼ bμi þ vμi τ þ zμi ; gμν ¼ ημν þ
ffiffiffiffiffiffiffiffiffiffiffi
32πG

p
hμν; ð2Þ

yielding the propagating worldline deflections zμi ðτÞ and
graviton fieldhμνðxÞ. The incomingdata are then spanned by
the impact parameter bμ ¼ bμ2 − bμ1 and the initial velocities

vμ1 and vμ2, with v21 ¼ v22 ¼ 1 and γ ¼ v1 · v2 ¼
ð1 − v2Þ−1=2.
The quest of solving the equations of motions of Eq. (1)

in a G expansion is solved upon quantizing the perturba-
tions zμi and hμν: The tree-level one-point functions then
solve the classical equations of motion [103]. The impulse
of (say) the first BH, Δpμ

1, then emerges from
Δpμ

1 ¼ limω→0ω
2hzμ1ðωÞi, working in momentum (energy)

space. The WQFT vertices are given by standard bulk
graviton vertices—at 5PM, we require the 3, 4, 5, and 6
graviton vertices—and worldline vertices coupling a single
graviton to ð0;…; 5Þ-worldline deflections [43,53]. We
access the conservative sector by employing Feynman
propagators (in-out) in the bulk and retarded on the
worldline (in-in) [46,104], taking the part real and even
in velocity v. Nontrivial Feynman loop integrals emerge in
WQFT due to the hybrid nature of the theory: The world-
lines conserve only the total inflowing energy, as opposed
to full four-momentum conservation in the bulk. The
(nonspinning) nth PM contribution to the impulse is given
by (n − 1)-loop integrals, plus a trivial Fourier transform
over the momentum transfer q.
Self-force expansion.—The 5PM contribution to the

complete impulse, Δpμ
1 ¼

P∞
n¼1 G

nΔpðnÞμ, factorizes into
(effectively) three SF contributions:

Δpð5Þμ¼m1m2

�
m4

2Δp
ð5Þμ
0SF þm1m3

2Δp
ð5Þμ
1SF

þm2
1m

2
2Δp

ð5Þμ
2SF þm3

1m2Δp
ð5Þμ
1SF

þm4
1Δp

ð5Þμ
0SF

�
; ð3Þ

each of which is separately gauge invariant. In fact, the SF
order may be directly read off a WQFT diagram: The power
of mi is given by the number of times the ith worldline is
“touched”—see, e.g., Fig. 1, which contains integral graphs
belonging to the 1SF ðm2

1m
4
2Þ sector. Simplest to compute

are the probe limit results Δpð5Þμ
0SF and Δpð5Þμ

0SF
, which

describe geodesic motion and are known to all orders in
G [105]. They encode the m1 ≪ m2 and m1 ≫ m2 limits,
respectively, and are related to each other by symmetry. For
the conservative dynamics that we focus on here, the

leading (1SF) self-force corrections Δpð5Þμ
1SF and Δpð5Þμ

1SF
are also related by swapping 1 ↔ 2. The conservative

1SF sector result Δpð5Þμ
1SF will be a central result of this

Letter.
Integrand generation.—The 5PM integrand is generated

with a Berends-Giele-type recursion relation employing the
automated vertex rules from the action (1), as discussed in
Ref. [53]. It is not a bottleneck of the computation. In the
1SF sector, this yields a total of 363 WQFT diagrams; the
probe limit (0SF sector), which we also generate as a test
bed, is comprised of 63 diagrams. After inserting the
Feynman rules using FORM [106], Δpð5Þμ may be reduced

PHYSICAL REVIEW LETTERS 132, 241402 (2024)

241402-2



to a sum of scalar-type integrals by replacing any loop
momenta with a free index as [44]

lμ
i →

X2
j¼1

ðli · vjÞv̂μj −
ðli · qÞ
jqj2 qμ: ð4Þ

The dual velocities v̂μ1 ¼ ðγvμ2 − vμ1Þ=ðγ2 − 1Þ and v̂μ2 ¼
ðγvμ1 − vμ2Þ=ðγ2 − 1Þ satisfy vi · v̂j ¼ δij. The momentum
impulse is then expressed as linear combinations of scalar
integrals depending trivially on the momentum transfer
jqj ≔

ffiffiffiffiffiffiffiffi
−q2

p
(this being the sole dimensionful quantity in

the problem) and nontrivially on γ ¼ v1 · v2.
In anticipation of the subsequent IBP reduction step, we

organize the resulting scalar integrals into families. We
introduce the following generic 1SF planar integral family,
valid at any L-loop order:

Ifσg
fng ¼

Z
l1…lL

�δ ðn̄1−1Þðl1 · v1Þ
Q

L
i¼2

�δ ðn̄i−1Þðli · v2ÞQ
L
i¼1D

ni
i ðσiÞ

Q
I<JD

nIJ
IJ

; ð5aÞ

where fσg and fng denote collections of i0þ signs and
integer powers of propagators, respectively. The worldline
propagators DiðσiÞ are

D1 ¼ l1 · v2 þ σ1i0þ; Di>1 ¼ li · v1 þ σii0þ; ð5bÞ

and the massless bulk propagators (gravitons)DIJ with I ¼
ð0; i; qÞ are (suppressing a Feynman i0þ prescription)

Dij¼ðli−ljÞ2; Dqi¼ðliþqÞ2; D0i¼l2
i : ð5cÞ

In total, we have L linear and LðLþ 3Þ=2 quadratic
propagators at L-loop order. We also allow for derivatives
of the one-dimensional delta function �δðωÞ ≔ 2πδðωÞ:

�δ ðnÞðωÞ
ð−1Þnn! ¼

i
ðωþ i0þÞnþ1

−
i

ðω − i0þÞnþ1
: ð6Þ

The four-loop family is illustrated in Fig. 1, with the
following diagrammatic rules:

ð7aÞ

ð7bÞ

ð7cÞ

The optional arrow in Eq. (7b) denotes causality flow. By
interpreting the background worldlines as cut propagators,
we “close” the loops of the tree-level WQFT diagrams and
may, thus, import the notion of planarity from regular QFT
Feynman diagrams. We note in passing that this matches
the velocity cuts in Refs. [64,66].
Remarkably, the entire 5PM-1SF result for the momen-

tum impulse may be expressed in terms of integrals
belonging to this planar integral family alone. To achieve
such a representation, graphs with a nonplanar structure—
such as the two depicted in Fig. 2—are systematically
eliminated in favor of planar ones. This is done using
partial fraction identities on the worldline propagators:

ð8Þ

where lμ
12 ¼ lμ

1 þ lμ
2 and each linear propagator carries an

implicit þi0þ prescription. This identity, which may be
applied internally within a multiloop integral containing
linearized propagators, has the effect of “untangling” the
crossed bulk propagators and can be applied repeatedly in
order to produce a fully planar integrand.

FIG. 2. Two examples of nonplanar loop integrals. By applying
the partial-fraction identity (8), we may reexpress them in terms
of the integrals in Figs. 1(e) and 1(f), respectively, and, thus,
include them in the planar loop integral family (5).

FIG. 1. The six top-level sectors of the four-loop planar integral family (5), yielding the m2
1m

4
2 5PM-1SF contributions. The �δðli · uiÞ

can here be interpreted as cut propagators—dotted lines, which in the WQFT context alternatively denote the background worldlines. In
each of these sectors, there are 13 propagators in the sense of (7) , the active graviton propagators that may become radiative (10) being
depicted in red.
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IBP reduction.—The planar integral family (5) splits into
two branches: even (b-type) and odd (v-type) under the
operation vμi → −vμi . These two branches are, thus, dis-
tinguished by the number of worldline propagators: even
(b-type) or odd (v-type), including also the number of
derivatives on the delta functions. They may be IBP
reduced separately, and in the final answer for the impulse
they contribute in the directions of bμ and vμi , respectively
(hence the name).
Crucially, all γ dependence in the integrals lies in the

linear propagators and delta functions. The analytic com-
plexity, therefore, depends highly on the combination of
contractions with vμ1 or v

μ
2 in these propagators. AtmSF and

nPM order, we have in the delta functionsm loop momenta
contracted with vμ1 and n −m − 1 loop momenta contracted
with vμ2. This yields at 0SF a trivial dependence on γ of the
integral. At 1SF, the functions space becomes more com-
plex due to a single loop momentum being contracted with
the velocity of the first worldline. At 2SF order, we would
have two loop momenta contracted with vμ1 and vμ2,
respectively, and see a significant increase in complexity.
At 5PM-1SF, we face four-loop integrals with 13 propa-

gators and nine irreducible scalar products (cf. Fig. 1),
whose reduction to master integrals poses a significant
challenge. We use Kira [101,102] to perform this integra-
tion-by-parts reduction to master integrals (MIs). We
encounter up to nine scalar products in the numerator and
up to eight powers (seven dots) of D’s in the denominators,
i.e., ni=IJ ∈ ½−9; 8� in Eq. (5). The IBP reductions utilize
FireFly [107,108], a library for reconstructing rational
functions from finite field samples generated with Kira.
Several new strategies have been implemented to

decrease the run-time of numerical evaluations in an IBP
reduction. The first key concept builds upon the modifi-
cation of the Laporta algorithm [109]. For every sector with
n absent propagators compared to the top-level sector, we
generate equations with the total number of allowed scalar
products reduced by n. This approach yields a remarkable
10ðL−1Þ run-time improvement compared to the current
implementation of the Laporta algorithm in Kira. The
incorporation of this feature is planned for a future release
of Kira 3.0 [110].
We further observe that the IBP vectors used to

formulate equations exhibit a useful feature. To reduce
a large number of scalar products on linear propagators, it
is sufficient for the IBP system to close by seeding at most
two scalar products on propagators associated with a
graviton. When reducing a high number of dots on linear
propagators, it is not necessary to seed dots on the
graviton propagators. Implementation of this feature
results in an additional factor of 10 in main memory
management improvement. The complete IBP reductions
took around 300 000 core hours on high performance
computing clusters. Both the IBP reductions and the
impulse were also assembled with the aid of Kira.

Differential equations.—After IBP reduction, we find a
total of 236þ 234MIs, which are solved using the method
of differential equations (DEs) [111,112]. The needed top
sectors of MIs are pictured in Fig. 1. Grouping them in a
vector I that obeys ðd=dxÞI ¼ Mðx; ϵÞI, we seek a trans-
formation J ¼ Tðx; ϵÞI such that the DE factorizes:

d
dx

J ¼ ϵAðxÞJ; ð9Þ

where x ¼ γ −
ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p
, which is chosen to rationalize the

equation. To simplify this task, it is important to first find a
basis in which the dependency on γ and ϵ factorizes
[113,114]. For this, it is helpful to allow for derivatives
on the delta functions. We employ the algorithms
CANONICA [115], INITIAL [116], and FiniteFlow [117].
More details on these transformations were given in
Ref. [118]. The function space of the integrals of the
ðIÞ family (5), which are needed for the conservative
calculation, is the same as at 4PM order [38], being
comprised of iterated integrals of the integration kernels
fð1=xÞ; ½1=ð1� xÞ�; ½x=1þ x2�g plus kernels containing
Kð1 − x2Þ2, K being the complete elliptic integral of the
first kind.
Boundary integrals.—From the solution of the ϵ-factor-

ized DE, the master integrals are determined up to
integration constants. We fix these in the static limit
(γ → 1, v → 0) using the method of regions [119–121]
by expanding the integrand in v. The regions are charac-
terized by different relative scalings of the bulk graviton
loop momenta of their spatial and timelike components:

lP
i ¼ ðl0

i ;liÞ ∼ ðv; 1Þ; lR
i ¼ ðl0

i ;liÞ ∼ ðv; vÞ; ð10Þ

referred to as potential (P) or radiative (R) modes. Only
gravitons which may go on shell can turn radiative, i.e., the
three propagators fD12; D13; D14g in Eq. (5c), in red in
Fig. 1. We, hence, encounter four possible regions (PPP),
(PPR), (PRR), and (RRR). Our definition of conservative
dynamics involves taking the even-in-velocity part; hence,
we consider only the (PPP) and (PRR) regions which have
this scaling. The (PRR) region comes with an overall
velocity scaling of ð1 − xÞ−4ϵ, which accounts for the tail
effect and all logð1 − xÞ functions in the final result. The
236þ 234 MIs reduce after IBP reduction of their static
limits to only 2þ 1 boundary integrals in the (PRR) and
14þ 12 integrals in the (PPP) region. We solve the (PPP)
integrals up to cuts by applying Eq. (6) in reverse; partial
fraction identities then constrain their values, making them
expressible in terms of Γ functions. Interestingly, two-
worldline integrals are not fully constrained by this
approach yet appear in linear combinations such that the
unknown factor cancels out in the final result. We are not
able to reduce the (PRR) integrals using cuts, and their
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expressions are more complicated, involving hypergeomet-
ric functions.
Function space.—Surprisingly, the resulting function

space is simpler than anticipated. The answer for Δpð5Þμ
1SF

in the bμ direction is given by multiple polylogarithms
(MPLs) [122–124] up to weight three. These MPLs are
defined by

Gða1;…; an; yÞ ¼
Z

y

0

dt
t − a1

Gða2;…; an; tÞ; ð11Þ

with Gð0⃗n; yÞ ¼ lognðyÞ=n! and ai; y∈C. Even though we
encounter the known elliptic integration kernels in the DEs
of these integrals, they contribute to the answer only at
OðϵÞ and, thus, disappear once we take the limit D → 4. In
the final result, complete elliptic integrals of the first and
second kind appear only in the v direction in the combi-
nations Kð1 − x2Þ2, Eð1 − x2Þ2, and Eð1 − x2ÞKð1 − x2Þ.
In fact, the v-direction component is entirely determined by
lower-order PM results upon momentum conservation. As
we shall see below, the function space of the scattering
angle, therefore, consists of only MPLs.
Results.—We begin with the 5PM-1SF momentum

impulse Δpð5Þμ
1SF . It may be decomposed as

Δpð5Þμ
cons;1SF ¼

1

jbj5
X

ρ¼b̂;v̂1;v̂2

ρμ
X
α

FðρÞ
α ðγÞdðρÞα ðγÞ; ð12Þ

with the basis vectors ρμ ¼ fbμ=jbj; v̂μ1; v̂μ2g. The dðρÞα ðγÞ
are rational functions (up to integer powers of

ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p
).

For the explicit expressions, we refer the reader to
Supplemental Material [125]. The nontrivial γ dependence

is spanned by the functions FðρÞ
α ðγÞ that take the surpris-

ingly simple form

Fb̂
αðγÞ ¼ ff1ðγÞ;…; f31ðγÞg; γ� ¼ γ � 1;

Fv̂1
α ðγÞ ¼

�
gkðγÞ; K2

�
γ−
γþ

�
; E2

�
γ−
γþ

�
; K

�
γ−
γþ

�
E

�
γ−
γþ

��
;

Fv̂2
α ðγÞ ¼ f1g; ð13Þ

where the 31 functions fkðγÞ are given by MPLs up to
weight three, explicitly stated in Table I in Supplemental
Material [125], and gkðγÞ involve MPLs up to weight two
known from the 4PM scattering angle [55]. We choose to
present our results in terms of y ¼ 1 − x, the five-letter
alphabet (shifted with respect to the DEs) then being
f0; 1; 2; 1� ig. This avoids a proliferation of ζ values
and renders the small-velocity expansion more natural.
Complex arguments always appear in conjugate combina-
tions, such that the imaginary part cancels. We also present
details on the 0SF computation that was done as a test bed
in Supplemental Material [125].

The conservative scattering angle θcons may be extracted
from the impulse using jΔpμ

i;consj ¼ 2p∞ sinðθcons=2Þ.
Here, p∞ ¼ m1m2

ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p
=E, the total (conserved) energy

is E ¼ M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2νðγ − 1Þp

, and the total mass is
M ¼ m1 þm2, with ν ¼ m1m2=M2 the symmetric mass
ratio. The scattering angle may then be double expanded as

θcons ¼
E
M

X
n≥1

Xbn−12 c

m¼0

�
GM
jbj

�
n
νmθðn;mÞ

cons ðγÞ; ð14Þ

where n denotes the PM andm the SF orders and we use the
floor function b:c. The central result of our Letter is the
5PM-1SF contribution that takes the form

θð5;1Þcons ¼
X31
k¼1

ckðγÞfkðγÞ; ð15Þ

where fkðγÞ are the linear combinations of MPLs up to
weight three [of Eq. (6)] and ckðγÞ are polynomials in γ

except for integer powers of
ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p
¼ γv and γ. Notice

here the total absence of elliptic functions. Both the
functions fkðγÞ and the coefficients ck have a definite
parity under v → −v such that the angle has even parity [up
to factors of logðvÞ]. They are explicitly stated in Tables I
and II in Supplemental Material [125].
Checks.—As a validation of our result for the impulse

Δpμ
1, the following checks were successfully performed:

(i) total momentum conservation p2
1 ¼ ðp1 þ Δp1Þ2,

(ii) reproduction of the geodesic motion (0SF), and
(iii) agreement in the v → 0 limit with the scattering angle
up to 5PN order [126,127]:

θð5;1Þcons ¼ 4

5v8
−
137

5v6
þ 41π2

4v4
−
3427

6v4
þ 3593π2

72v2
−
2 573 399

2160v2

þ 246 527π2

1440
−
1 099 195 703

756 000

−
128

45

�
98

v2
þ 59

35

�
log½2v� þ � � � ð16Þ

with the velocity v ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p
=γ. Finally, (iv) the disconti-

nuity of the scattering angle in the complex plane γ ∈C is
given by the radiated energy at one order lower in the PM
expansion [34,54,55,128,129]:

θconsð−γ−þ iϵÞ−θconsð−γ−− iϵÞ
2iπ

¼GE
∂Eradjodd-in-v

∂L
ð17Þ

with the total angular momentum L ¼ p∞jbj. This oper-
ation picks out the coefficient of logðγ−Þ ¼ logðγ − 1Þ,
with the branch cut naturally extending along the negative
real axis. Given that it is by definition even in v, our
conservative angle matches the odd-in-v part of the 4PM
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radiated energy Erad (L being odd in v). Upon including
dissipative effects in the scattering angle, we anticipate a
match to the full radiated energy. With our new 5PM-1SF
result, we have verified Eq. (17) to the corresponding
order with the 4PM-accurate loss of energy on the right-
hand side [37,54,84].
Outlook.—In this Letter, we have computed the first

complete results for scattering observables involving non-
spinning black holes and neutron stars at 5PM (G5) order—
the 1SF component. This was an exceptionally challenging
calculation requiring advances in IBP technology plus
high-performance computing. The biggest surprise, given
the appearance of elliptic E=K functions at 4PM order, was
the total absence of these terms in the 5PM-1SF scattering
angle, which consists only of MPLs up to weight three.
This happens despite these functions appearing in the
corresponding DEs. Having so far focused on the purely
conservative sector, the question now arises whether this
pattern persists when dissipative effects are also included.
It will also be fascinating to see whether the Calabi-Yau
threefold, which appears in the DE of the dissipative
effects [118], contributes to the full answer.
Looking further ahead, our main challenge will be to

complete 5PM with the missing 2SF component. This
represents another leap in complexity. Nevertheless, it is an
important task: With a complete knowledge of the 5PM
scattering dynamics (including spin, which appears at
lower loop orders), our results will fully encapsulate the
4PN conservative two-body dynamics. Our scattering angle
is in one-to-one correspondence with a hyperbolic two-
body Hamiltonian: Given recent promising work on map-
ping unbound to bound orbits in the presence of tails [130],
there is a prospect of incorporating our results into future-
generation gravitational waveform models. Resummation
into the strong-field regime for scattering events using
EOB [99,100] will also likely show further improvements
with respect to NR.
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