002891489 001__ 2891489 002891489 005__ 20241011065221.0 002891489 0248_ $$aoai:cds.cern.ch:2891489$$pcerncds:FULLTEXT$$pcerncds:CERN:FULLTEXT$$pcerncds:CERN 002891489 0247_ $$2DOI$$9APS$$a10.1103/PhysRevLett.130.122502$$qpublication 002891489 037__ $$9arXiv$$aarXiv:2302.07394$$cnucl-ex 002891489 035__ $$9arXiv$$aoai:arXiv.org:2302.07394 002891489 035__ $$9Inspire$$aoai:inspirehep.net:2632787$$d2024-10-09T16:35:10Z$$h2024-10-11T02:34:44Z$$mmarcxml$$ttrue$$uhttps://inspirehep.net/api/oai2d 002891489 035__ $$9Inspire$$a2632787 002891489 041__ $$aeng 002891489 100__ $$aRocchini, M.$$uGuelph U.$$vDepartment of Physics, University of Guelph, N1G 2W1 Guelph, Canada 002891489 245__ $$9APS$$aFirst Evidence of Axial Shape Asymmetry and Configuration Coexistence in <math display="inline"><mrow><mmultiscripts><mrow><mi>Zn</mi></mrow><mprescripts/><none/><mrow><mn>74</mn></mrow></mmultiscripts></mrow></math>: Suggestion for a Northern Extension of the <math display="inline"><mi>N</mi><mo>=</mo><mn>40</mn></math> Island of Inversion 002891489 260__ $$c2023-03-24 002891489 269__ $$c2023-02-14 002891489 300__ $$a6 p 002891489 520__ $$9APS$$aThe excited states of <math display="inline"><mi>N</mi><mo>=</mo><mn>44</mn></math> <math display="inline"><mrow><mmultiscripts><mrow><mi>Zn</mi></mrow><mprescripts/><none/><mrow><mn>74</mn></mrow></mmultiscripts></mrow></math> were investigated via <math display="inline"><mi>γ</mi></math>-ray spectroscopy following <math display="inline"><mrow><mmultiscripts><mrow><mi>Cu</mi></mrow><mprescripts/><none/><mrow><mn>74</mn></mrow></mmultiscripts></mrow></math> <math display="inline"><mi>β</mi></math> decay. By exploiting <math display="inline"><mrow><mi>γ</mi><mtext>-</mtext><mi>γ</mi></mrow></math> angular correlation analysis, the <math display="inline"><msubsup><mn>2</mn><mn>2</mn><mo>+</mo></msubsup></math>, <math display="inline"><msubsup><mn>3</mn><mn>1</mn><mo>+</mo></msubsup></math>, <math display="inline"><msubsup><mn>0</mn><mn>2</mn><mo>+</mo></msubsup></math>, and <math display="inline"><msubsup><mn>2</mn><mn>3</mn><mo>+</mo></msubsup></math> states in <math display="inline"><mrow><mmultiscripts><mrow><mi>Zn</mi></mrow><mprescripts/><none/><mrow><mn>74</mn></mrow></mmultiscripts></mrow></math> were firmly established. The <math display="inline"><mi>γ</mi></math>-ray branching and <math display="inline"><mi>E</mi><mn>2</mn><mo>/</mo><mi>M</mi><mn>1</mn></math> mixing ratios for transitions deexciting the <math display="inline"><msubsup><mn>2</mn><mn>2</mn><mo>+</mo></msubsup></math>, <math display="inline"><msubsup><mn>3</mn><mn>1</mn><mo>+</mo></msubsup></math>, and <math display="inline"><msubsup><mn>2</mn><mn>3</mn><mo>+</mo></msubsup></math> states were measured, allowing for the extraction of relative <math display="inline"><mi>B</mi><mo stretchy="false">(</mo><mi>E</mi><mn>2</mn><mo stretchy="false">)</mo></math> values. In particular, the <math display="inline"><msubsup><mn>2</mn><mn>3</mn><mo>+</mo></msubsup><mo stretchy="false">→</mo><msubsup><mn>0</mn><mn>2</mn><mo>+</mo></msubsup></math> and <math display="inline"><msubsup><mn>2</mn><mn>3</mn><mo>+</mo></msubsup><mo stretchy="false">→</mo><msubsup><mn>4</mn><mn>1</mn><mo>+</mo></msubsup></math> transitions were observed for the first time. The results show excellent agreement with new microscopic large-scale shell-model calculations, and are discussed in terms of underlying shapes, as well as the role of neutron excitations across the <math display="inline"><mi>N</mi><mo>=</mo><mn>40</mn></math> gap. Enhanced axial shape asymmetry (triaxiality) is suggested to characterize <math display="inline"><mrow><mmultiscripts><mrow><mi>Zn</mi></mrow><mprescripts/><none/><mrow><mn>74</mn></mrow></mmultiscripts></mrow></math> in its ground state. Furthermore, an excited <math display="inline"><mi>K</mi><mo>=</mo><mn>0</mn></math> band with a significantly larger softness in its shape is identified. A shore of the <math display="inline"><mi>N</mi><mo>=</mo><mn>40</mn></math> “island of inversion” appears to manifest above <math display="inline"><mi>Z</mi><mo>=</mo><mn>26</mn></math>, previously thought as its northern limit in the chart of the nuclides. 002891489 520__ $$9arXiv$$aThe excited states of $N=44$$^{74}$Zn were investigated via $\gamma$-ray spectroscopy following $^{74}$Cu $\beta$ decay. By exploiting $\gamma$-$\gamma$ angular correlation analysis, the $2_2^+$, $3_1^+$, $0_2^+$ and $2_3^+$ states in $^{74}$Zn were firmly established. The $\gamma$-ray branching and $E2/M1$ mixing ratios for transitions de-exciting the $2_2^+$, $3_1^+$ and $2_3^+$ states were measured, allowing for the extraction of relative $B(E2)$ values. In particular, the $2_3^+ \to 0_2^+$ and $2_3^+ \to 4_1^+$ transitions were observed for the first time. The results show excellent agreement with new microscopic large-scale shell-model calculations, and are discussed in terms of underlying shapes, as well as the role of neutron excitations across the $N=40$ gap. Enhanced axial shape asymmetry (triaxiality) is suggested to characterize $^{74}$Zn in its ground state. Furthermore, an excited $K=0$ band with a significantly larger softness in its shape is identified. A shore of the $N=40$``island of inversion'' appears to manifest above $Z=26$, previously thought as its northern limit in the chart of the nuclides. 002891489 540__ $$3preprint$$aarXiv nonexclusive-distrib 1.0$$uhttp://arxiv.org/licenses/nonexclusive-distrib/1.0/ 002891489 542__ $$3publication$$dAmerican Physical Society$$g2023 002891489 595__ $$cCDS 002891489 595__ $$cHAL 002891489 65017 $$2arXiv$$anucl-th 002891489 65017 $$2SzGeCERN$$aNuclear Physics - Theory 002891489 65017 $$2arXiv$$anucl-ex 002891489 65017 $$2SzGeCERN$$aNuclear Physics - Experiment 002891489 690C_ $$aCERN 002891489 690C_ $$aARTICLE 002891489 700__ $$aGarrett, P.E.$$uGuelph U.$$vDepartment of Physics, University of Guelph, N1G 2W1 Guelph, Canada 002891489 700__ $$aZielínska, M.$$uIRFU, Saclay$$vIRFU, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France 002891489 700__ $$aLenzi, S.M.$$uPadua U.$$uINFN, Padua$$vDipartimento di Fisica, Università di Padova, I-35122 Padova, Italy$$vINFN Sezione di Padova, I-35131 Padova, Italy 002891489 700__ $$aDao, D.D.$$uStrasbourg, IPHC$$vUniversité de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France 002891489 700__ $$aNowacki, F.$$uStrasbourg, IPHC$$vUniversité de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France 002891489 700__ $$aBildstein, V.$$uGuelph U.$$vDepartment of Physics, University of Guelph, N1G 2W1 Guelph, Canada 002891489 700__ $$aMacLean, A.D.$$uGuelph U.$$vDepartment of Physics, University of Guelph, N1G 2W1 Guelph, Canada 002891489 700__ $$aOlaizola, B.$$uTRIUMF$$uCERN$$vTRIUMF, V6T 2A3 Vancouver, Canada$$vPresent address: CERN, CH-1211 Geneva, Switzerland. 002891489 700__ $$aAhmed, Z.T.$$uGuelph U.$$vDepartment of Physics, University of Guelph, N1G 2W1 Guelph, Canada 002891489 700__ $$aAndreoiu, C.$$uSimon Fraser U.$$vDepartment of Chemistry, Simon Fraser University, V5A 1S6 Burnaby, Canada 002891489 700__ $$aBabu, A.$$uTRIUMF$$vTRIUMF, V6T 2A3 Vancouver, Canada 002891489 700__ $$aBall, G.C.$$uTRIUMF$$vTRIUMF, V6T 2A3 Vancouver, Canada 002891489 700__ $$aBhattacharjee, S.S.$$uTRIUMF$$vTRIUMF, V6T 2A3 Vancouver, Canada 002891489 700__ $$aBidaman, H.$$uGuelph U.$$vDepartment of Physics, University of Guelph, N1G 2W1 Guelph, Canada 002891489 700__ $$aCheng, C.$$uTRIUMF$$vTRIUMF, V6T 2A3 Vancouver, Canada 002891489 700__ $$aColeman, R.$$uGuelph U.$$vDepartment of Physics, University of Guelph, N1G 2W1 Guelph, Canada 002891489 700__ $$aDillmann, I.$$uTRIUMF$$uVictoria U.$$vDepartment of Physics and Astronomy, University of Victoria, V8P 5C2 Victoria, Canada$$vTRIUMF, V6T 2A3 Vancouver, Canada 002891489 700__ $$aGarnsworthy, A.B.$$uTRIUMF$$vTRIUMF, V6T 2A3 Vancouver, Canada 002891489 700__ $$aGillespie, S.$$uTRIUMF$$vTRIUMF, V6T 2A3 Vancouver, Canada 002891489 700__ $$aGriffin, C.J.$$uTRIUMF$$vTRIUMF, V6T 2A3 Vancouver, Canada 002891489 700__ $$aGrinyer, G.F.$$uRegina U.$$vDepartment of Physics, University of Regina, S4S 0A2 Regina, Canada 002891489 700__ $$aHackman, G.$$uTRIUMF$$vTRIUMF, V6T 2A3 Vancouver, Canada 002891489 700__ $$aHanley, M.$$uColorado School of Mines$$vDepartment of Physics, Colorado School of Mines, Golden, Colorado 80401, USA 002891489 700__ $$aIllana, A.$$uJyvaskyla U.$$vAccelerator Laboratory, Department of Physics, University of Jyväskylä, FI-40014 Jyväskylä, Finland 002891489 700__ $$aJones, S.$$uTennessee U.$$vDepartment of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA 002891489 700__ $$aLaffoley, A.T.$$uGuelph U.$$vDepartment of Physics, University of Guelph, N1G 2W1 Guelph, Canada 002891489 700__ $$aLeach, K.G.$$uColorado School of Mines$$vDepartment of Physics, Colorado School of Mines, Golden, Colorado 80401, USA 002891489 700__ $$aLubna, R.S.$$uTRIUMF$$vTRIUMF, V6T 2A3 Vancouver, Canada 002891489 700__ $$aMcAfee, J.$$uTRIUMF$$uSurrey U.$$vDepartment of Physics, University of Surrey, GU2 7XH Guildford, United Kingdom$$vTRIUMF, V6T 2A3 Vancouver, Canada 002891489 700__ $$aNatzke, C.$$uTRIUMF$$uColorado School of Mines$$vDepartment of Physics, Colorado School of Mines, Golden, Colorado 80401, USA$$vTRIUMF, V6T 2A3 Vancouver, Canada 002891489 700__ $$aPannu, S.$$uGuelph U.$$vDepartment of Physics, University of Guelph, N1G 2W1 Guelph, Canada 002891489 700__ $$aPaxman, C.$$uTRIUMF$$uSurrey U.$$vDepartment of Physics, University of Surrey, GU2 7XH Guildford, United Kingdom$$vTRIUMF, V6T 2A3 Vancouver, Canada 002891489 700__ $$aPorzio, C.$$uTRIUMF$$uINFN, Milan$$uMilan U.$$vDipartimento di Fisica, Università di Milano, I-20133 Milano, Italy$$vINFN Sezione di Milano, I-20133 Milano, Italy$$vTRIUMF, V6T 2A3 Vancouver, Canada 002891489 700__ $$aRadich, A.J.$$uGuelph U.$$vDepartment of Physics, University of Guelph, N1G 2W1 Guelph, Canada 002891489 700__ $$aRajabali, M.M.$$uTennessee Tech. U.$$vPhysics Department, Tennessee Technological University, Cookeville, Tennessee 38505, USA 002891489 700__ $$aSarazin, F.$$uColorado School of Mines$$vDepartment of Physics, Colorado School of Mines, Golden, Colorado 80401, USA 002891489 700__ $$aSchwarz, K.$$uTRIUMF$$vTRIUMF, V6T 2A3 Vancouver, Canada 002891489 700__ $$aShadrick, S.$$uColorado School of Mines$$vDepartment of Physics, Colorado School of Mines, Golden, Colorado 80401, USA 002891489 700__ $$aSharma, S.$$uRegina U.$$vDepartment of Physics, University of Regina, S4S 0A2 Regina, Canada 002891489 700__ $$aSuh, J.$$uRegina U.$$vDepartment of Physics, University of Regina, S4S 0A2 Regina, Canada 002891489 700__ $$aSvensson, C.E.$$uGuelph U.$$vDepartment of Physics, University of Guelph, N1G 2W1 Guelph, Canada 002891489 700__ $$aYates, D.$$uTRIUMF$$uBritish Columbia U.$$vDepartment of Physics and Astronomy, University of British Columbia, V6T 1Z4 Vancouver, Canada$$vTRIUMF, V6T 2A3 Vancouver, Canada 002891489 700__ $$aZidar, T.$$uGuelph U.$$vDepartment of Physics, University of Guelph, N1G 2W1 Guelph, Canada 002891489 773__ $$c122502$$mpublication$$n12$$pPhys. Rev. Lett.$$v130$$y2023 002891489 8564_ $$82517943$$s14703$$uhttps://cds.cern.ch/record/2891489/files/new_transitions.png$$y00001 Portions of the $^{74}$Zn $\gamma$-ray spectra in coincidence with $\gamma$ rays: (a) 812 keV ($4_1^+ \to 2_1^+$) (b) 1183 keV ($0_2^+ \to 2_1^+$). The 730-keV and 359-keV $\gamma$ rays are newly assigned as the $2_3^+ \to 4_1^+$ and $2_3^+ \to 0_2^+$ transitions, respectively. The 681-keV and 710-keV $\gamma$ rays were observed previously~\cite{tracy-2018}. 002891489 8564_ $$82517944$$s43740$$uhttps://cds.cern.ch/record/2891489/files/AC.png$$y00000 Measured $\gamma$-$\gamma$ angular correlation functions $W(\theta)$, where $\theta$ is the opening angle between the GRIFFIN detectors, and reduced $\chi^2$ as a function of the arctangent of the mixing ratio $\delta$, for the $0_2^+ \to 2_1^+ \to 0_1^+$ (panels a and b) and $3_1^+ \to 2_1^+ \to 0_1^+$ cascades (panels c and d). The energies of the states involved in each cascade (in keV) are indicated. The $\chi^2$ distributions corresponding to different spin hypotheses for the initial state are labelled accordingly, with the continuous lines indicating the $99\%$ confidence limit. 002891489 8564_ $$82517945$$s15750$$uhttps://cds.cern.ch/record/2891489/files/occupations.png$$y00004 Difference in occupation numbers with respect to the normal filling of the proton ($\pi$) and neutron ($\nu$) orbitals considered in the present LSSM calculations for $^{74}$Zn (left panel: ground-state band, right panel: band built on the $0_2^+$ state). 002891489 8564_ $$82517946$$s9979$$uhttps://cds.cern.ch/record/2891489/files/spectra.png$$y00002 Partial experimental level scheme of $^{74}$Zn (EXP) compared with shell-model calculations (SM) and shell-model calculations in a deformed Hartree-Fock basis (DNO-SM). The states are labelled with their spin, parity, and energy (in keV) and organized in bands. Only in-band transitions are displayed, and their labels correspond to calculated $B(E2)$ values in W.u. 002891489 8564_ $$82517947$$s119959$$uhttps://cds.cern.ch/record/2891489/files/shapes.png$$y00003 Normalized probability to find a deformation $(\beta,\gamma)$ in specific $^{74}$Zn states represented with circles on the PES, whose radii are proportional to the probability. 002891489 8564_ $$82517948$$s854827$$uhttps://cds.cern.ch/record/2891489/files/2302.07394.pdf$$yFulltext 002891489 8564_ $$82517949$$s13428$$uhttps://cds.cern.ch/record/2891489/files/excitations.png$$y00005 Neutron excitations from the $pf$ shell into the $0g_{9/2}$, $1d_{5/2}$ orbitals (red) and percentage of the $0p0h$ configuration (blue) in the ground state and the $0^+_2$ state (continuous and dashed lines, respectively) in Zn isotopes with $40\le N\le50$. 002891489 960__ $$a13 002891489 980__ $$aARTICLE