
High-energy frontier of the muon g− 2 at a muon collider

Paride Paradisi ,1,2 Olcyr Sumensari,3 and Alessandro Valenti 1,2

1Istituto Nazionale Fisica Nucleare, Sezione di Padova, I-35131 Padova, Italy
2Dipartamento di Fisica e Astronomia “G. Galilei”, Università di Padova, 35131 Padova, Italy
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The long-standing muon g − 2 anomaly can be explained by heavy new physics particles through chirally
enhanced contributions. It has been recently proposed that a muon collider running at center-of-mass
energies of several TeV could test these newphysics scenarios in amodel-independentway, through the study
of high-energy processes such as μþμ− → hγ. In this work, we validate these findings, based on effective
field theories, by considering selected renormalizable simplified models and by computing this one-loop
process in full generality. Furthermore, we explore the interplay of direct and indirect high-energy searches to
pin down the details of the underlying new physics model accommodating the muon g − 2 anomaly.
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I. INTRODUCTION

The anomalous magnetic moment of the muon aμ ¼
ðgμ − 2Þ=2 represents one of the most interesting and
long-standing hint for new physics (NP). Recently, the
E989 experiment at Fermilab [1] has confirmed previous
results by the E821 experiment at BNL [2], yielding the
experimental average aEXPμ ¼ 116592061ð41Þ × 10−11.
Comparing this value with the Standard Model (SM)
prediction aSMμ ¼ 116591810ð43Þ × 10−11, reported by the
Muon g − 2 Theory Initiative [3], leads to an interesting
4.2σ discrepancy [1]1

Δaμ ¼ aEXPμ − aSMμ ¼ 251ð59Þ × 10−11: ð1:1Þ

Since the observed deviation is comparable in size to the
SM electroweak contribution, it would be natural to invoke
new weakly-coupled particles at the electroweak scale to
solve this puzzle. However, this possibility is strongly

disfavoured by LEP and LHC data which push the NP scale
Λ to lie above Λ ≳ 1 TeV.2

Heavy NP contributions to Δaμ are captured by the
dimension-6 operator ðμ̄LσμνμRÞHFμν [8], where H is the
SMHiggs doublet andFμν denotes the electromagnetic field
strength tensor. After electroweak symmetry breaking, Δaμ
receives the contribution Δaμ ∼ ðg3NP=16π2Þ × ðmμv=Λ2Þ,
where v ¼ 246 GeV is the electroweak vacuum-
expectation-value (vev) and gNP denotes a generic NP
coupling. Therefore, the NP chiral enhancement v=mμ ∼
103 brings the sensitivity of Δaμ to NP scales of order Λ ∼
10 TeV even for weak couplings gNP ∼ 1 [9,10]. The same
dipole operator generating Δaμ induces also a NP contri-
bution to the process μþμ− → hγ that grows quadratically
with the center-of-mass energy

ffiffiffi
s

p
of the collisions, as

recently demonstrated in the context of effective field
theories (EFT) [11]. Therefore, measuring the cross section
of μþμ− → hγ would be equivalent to measuring Δaμ. This
goal can be achieved at a multi-TeV muon collider [12].
In this work, we revisit the connection between Δaμ and

μþμ− → hγ within simplified models which induce chirally
enhanced contributions to Δaμ. In particular, we focus on
models with new scalars and vectorlike fermions in various
SUð2ÞL ×Uð1ÞY representations, with an underlying Z2

symmetry to prevent dangerous mixing of the new states
with SM fields [13,14]. As already discussed in Ref. [13],
where the matching of these models onto the relevant set of
dimension-6 SMEFT operators [8] has been performed,
these scenarios display correlations between Δaμ and other
processes such as h → μþμ− and Z → μþμ−. Moreover,Published by the American Physical Society under the terms of

the Creative Commons Attribution 4.0 International license.
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1Recently, a lattice QCD collaboration computed the leading
hadronic contribution to the muon g − 2 with a comparable
precision to the dispersive determinations, finding a larger value
which weakens the discrepancy to 1.6σ [4]. However, this
increase to the hadronic contribution could imply tensions with
the electroweak fit, or with low-energy eþe− → hadron data [5].
For this reason, the findings of Ref. [4] should be verified by
independent lattice QCD studies which are underway or by
direct experimental measurements, as proposed by the MUonE
experiment [6].

2Other viable solutions are provided by very light and feebly
coupled NP particles such as axionlike particles [7].
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such models generally contain a stable particle and there-
fore they can also explain the observed dark matter relic
abundance [15,16].
The first goal of our analysis is to validate the findings of

previous EFT studies [11] by performing a full one-loop
calculation of the μþμ− → hγ cross section within the
simplified models of Ref. [13]. As our results hold for any
center-of-mass energy value

ffiffiffi
s

p
, they will complement the

findings of Ref. [11], which only apply in the EFT regimeffiffiffi
s

p
≪ Λ, and they will allow us to precisely assess the

validity limit of the EFT description for this particular
process. Another goal of our work is to study the direct
searches signatures of these simplified models (see also
Ref. [10]). On general grounds, the discovery of new
particles by their direct production can be hardly associated
in a nonambiguous way to Δaμ. However, this statement
strictly applies only to 2 → 2 processes as they are not
sensitive to the same combination of parameters entering
Δaμ. Instead, we point out that 2 → 3 processes with a
Higgs boson in the final state exhibit a stronger correlation
with Δaμ and with μþμ− → hγ. The correlated study of
these observables at a muon collider may allow to disen-
tangle among the underlying NP model accommodating
the Δaμ anomaly, therefore representing a very interesting
example of the interplay of the high-energy and high-
intensity frontiers of particle physics.
The paper is organized as follows. In Sec. II, we

introduce the simplified models and their predictions
for the muon g − 2. In Sec. III, we focus on indirect
high-energy probes of the muon g − 2 at a muon collider,
by computing the one-loop induced process μþμ− → hγ in
the context of simplified models and by establishing the
limit of validity of the EFT results. In Sec. IV, we analyze
direct high-energy probes of the muon g − 2 at a muon
collider which include both 2 → 2 and 2 → 3 scattering
processes. Our final remarks and conclusions are made
in Sec. V.

II. SIMPLIFIED MODELS FOR THE MUON g− 2
We consider the two classes of simplified models that

can provide a chiral enhancement to Δaμ, which consist in
extending the SM with two scalars ΦL;E and one vectorlike
fermion Ψ (model I), or two vectorlike fermions ΨL;E and
one scalar Φ (model II). These models are generically
described by the following Lagrangians [13,16],3

LI ¼ λILl̄ΨΦL þ λIEēΨΦE þ AΦ†
LΦEH þ H:c:; ð2:1Þ

LII ¼ λIILl̄ΨLΦþ λIIEēΨEΦþ κΨ̄LΨEH þ H:c:; ð2:2Þ

where l and e are the SM lepton doublet and singlet,
respectively, andH denotes the SM Higgs doublet. Note, in
particular, that we have imposed an underlying Z2 sym-
metry to prevent dangerous mixing of the new states with
SM fields [13]. By restricting the SUð2ÞL representations of
ΨðL;EÞ and ΦðL;EÞ up to triplets, there are four possibilities
in each of these models. The allowed SUð2ÞL ×Uð1ÞY
representations are listed in Table I, where X denotes the
hypercharge of the field Ψ (Φ) for the models of type I
(type II). The respective Lagrangians are spelled out in
Appendix A where the SUð2ÞL contractions are explicitly
written.4

The simplified models listed in Table I contribute to Δaμ
via the loop diagrams depicted in Fig. 1. These new
interactions are assumed to arise at the energy scale Λ,
which lies well above the electroweak scale, in such a way
that their contributions to Δaμ can be fully interpreted in
terms of the SMEFT Lagrangian [8],

LSMEFT ⊃ CeBðl̄σμνeÞHBμν þ CeWðl̄σμνeÞτIHWI
μν þ H:c:

ð2:3Þ

where we have only written the d ¼ 6 operators that
are relevant in our setup, and where flavor indices are
omitted. The leading contributions to Δal can then be
written as

Δal ≃
4mlvffiffiffi

2
p

e
ReðCeγÞ; ð2:4Þ

where the effective coefficientCl
eγ¼cosθWCl

eB−sinθWCl
eW

can be expressed, for the simplified models I and II, in a
very compact form

TABLE I. Charge assignments and representations under
SUð2ÞL × Uð1ÞY for the NP states.

R Ψ, Φ ΦL, ΨL ΦE, ΨE

SUð2ÞL
121 1 2 1
212 2 1 2
323 3 2 3
232 2 3 2

Y X − 1
2
− X −1 − X

3The quartic couplings between the SM Higgs and the new
scalars are not explicitly written since they are irrelevant for our
phenomenological study.

4The new particles could also be charged under SUð3Þc, which
would amount to multiplicative representation-dependent factors
in the expressions derived in this paper. In particular the fermions
ΨL;E in model II could be the top-quark, recovering the minimal
leptoquark solution to Δaμ where Φ could be either the state
ð3; 2; 7=6Þ or ð3̄; 1; 1=3Þ [17]. Instead, scenarios with two scalar
leptoquarks are fully described by model I upon matching
Ref. [18].
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½Ceγ�I ¼ −
eRe½λILðλIEÞ�A�

384π2M3

× f2X þ 1;−2X; 6X − 1; 2ð3X þ 2Þg; ð2:5Þ

½Ceγ�II ¼
eRe½λIILðλIIEÞ�κ�
384π2M2

× f2ðXþ 1Þ;−ð2Xþ 1Þ;2ð3Xþ 1Þ;6Xþ 7g;
ð2:6Þ

where a degenerate mass M is assumed for the NP states.
The expressions between brackets give the hypercharge
factors for the SUð2ÞL representations R ¼ f121; 212;
323; 232g of Table I. Our results shown in Eqs. (2.5)
and (2.6) are in full agreement with those from Ref. [13].
Since we are interested in scenarios with new particles in

the multi-TeV range, an explanation of the muon g − 2
anomaly would necessarily require Oð1Þ Yukawa cou-
plings. In particular, one typically finds that a contribution
of order Δaμ ∼ 10−9 can be obtained for λL; λE; κ ∼ 2,
A=M ∼ 1 and M ∼ 10 TeV. Two main concerns may arise
for such large couplings. First, the very same chiral
enhancement in Δaμ is also at work in the quantum
corrections to the muon mass. Therefore, a new naturalness
problem involving the muon mass is typically present in
these models, see for instance Ref. [10] where a careful
analysis of the parameter space of these models has been
performed. Secondly, for such large couplings the quantum

stability of the simplified models should be carefully
checked, as we do in the following.
The one-loop running of the model parameters for the

various choices of the SUð2ÞL ×Uð1ÞY representations is
reported in detail in Appendix A. As a result of this analysis,
we show in Fig. 2 (left and center panels) the Landau poles of
the new coupling constants λL, λE and κ for the representation
R ¼ 121 setting M ¼ 10 TeV and X ¼ 1=2.5 By requiring
that these couplings do not develop a Landau pole below
103 TeV, we conclude that they should be smaller than≈3. In
the right panel, we also plot the location of the Landau pole of
the SM gauge coupling g0 as a function of the hypercharge X.
Clearly, the absolute value of X cannot be arbitrarily large,
otherwise g0woulddevelop a polewell below thePlanck scale.
By combining these indirect bounds, we infer that the
simplified scenarios canonly be self-consistent,while explain-
ing explain the Δaμ discrepancy, if the mass M is below
≲15 TeV. These conclusions have been obtained for the
representation R ¼ 121 and X ¼ 1=2, but they can be easily
generalized to the other scenarios. Note, in particular, that in
the presence of weak triplets, one should also worry about the
Landau poles of the SUð2ÞL gauge coupling g since its β-
function becomes positive for some of the models from
Table I.

FIG. 1. Feynman diagrams contributing to the muon g − 2 at one-loop level in the simplified models I (left panel) and II (right panel).

FIG. 2. Landau poles of the new coupling constants of the simplified models I (left) and II (center) for the representation R ¼ 121 (see
Appendix A) settingM ¼ 10 TeV and X ¼ 1=2. The plot on the right shows the location of the Landau pole of the SM gauge coupling
g0 as a function of X.

5A similar analysis has been performed in Ref. [10], taking into
account the NP contributions to the running of the SM parameters.
In addition to these effects,we also account for the runningof theNP
couplings that can develop Landau poles even before the SM ones.
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III. INDIRECT HIGH-ENERGY PROBES
OF THE MUON g− 2

As recently discussed in Ref. [11], an interesting
signature which inevitably accompanies NP contributions
to Δaμ is the modification to the process μþμ− → hγ at
high-energies, which could be a target of the proposed
muon collider [12]. This complementarity becomes clear
when comparing the Feynman diagrams depicted in Figs. 1
and 3. In this section, we will compute the cross section of
μþμ− → hγ in the simplified models outlined above. Since
our results will be valid for any center-of-mass energy valueffiffiffi
s

p
, they will complement the results of Ref. [11] which

only apply in the EFT regime
ffiffiffi
s

p
≪ Λ. As a by-product,

the comparison between the computations made within
concrete scenarios and the corresponding EFTs will allow
us to precisely assess the limits of the EFT description for
this particular process.
We start by writing the most general Lorentz-invariant

amplitude contributing to μþμ− → hγ,

Aμ ¼ v̄ðp2Þ½Aγμ þ Bðp1 þ p2Þμ þ Ckμ þDσμνkν

þ Eσμνðp1 þ p2Þν þ A0γμγ5 þ B0γ5ðp1 þ p2Þμ
þ C0γ5kμ þD0γ5σμνkν þ E0γ5σμνðp1 þ p2Þν�uðp1Þ;

ð3:1Þ

where p1, p2 and k denotes the momentum of μ−, μþ and γ,
respectively. In this expression we exploited momentum
conservation, qμ ¼ pμ

1 þ pμ
2 − kμ, and neglected the masses

of the external states. The form factors fAð0Þ; Bð0Þ;…g are
functions of the Mandelstam variables s, t and u defined as
follows,

s ¼ ðp1 þ p2Þ2; t ¼ ðp1 − kÞ2; u ¼ ðp2 − kÞ2;
ð3:2Þ

which satisfy sþ tþ u ≈ 0. The expression of Eq. (3.1) has
been obtained taking into account that:

(i) The Gordon’s identity and the Dirac equation allow
to trade σμνðp1 ∓ p2Þν for ðp1 � p2Þμ in the mass-
less muon limit. The same holds for the correspond-
ing terms with an extra γ5;

(ii) A possible term v̄ϵμνρσpν
1p

ρ
2k

σu containing the
Levi-Civita tensor ϵμνρσ is not independent. In fact,
we can write ϵμνρσ ¼ −iγ5γ½μγνγργσ�, reducing this
term to v̄γμp1p2=kuþ permutations. Then, by using
=a=b¼a ·b− iσμνaμbν, we are able to recast this term as
a linear combination of the ones already listed
in Eq. (3.1). The same is true for the term
v̄γ5ϵμνρσpν

1p
ρ
2k

σu.
Furthermore, Eq. (3.1) can be simplified by imposing that
the amplitude Aμ is gauge invariant, that is imposing the
QED Ward identity kμAμ ¼ 0. As a result, we find that
A ¼ A0 ¼ 0, B0 ¼ −iE0 and sB ¼ ðu − tÞiE. Finally, drop-
ping the irrelevant kμ term which gives a vanishing
contribution for on-shell photons, we can write the ampli-
tude in a very compact form

Aμ ¼ v̄ðp2Þ
�
Diσμνkν þ F

�
t − u
s

ðp1 þ p2Þμ −
tþ u
s

ðp1 − p2Þμ
�
þD0iσμνγ5kν

þ F 0
�
t − u
s

ðp1 þ p2Þμ −
tþ u
s

ðp1 − p2Þμ
�
γ5

�
uðp1Þ; ð3:3Þ

where Dð0Þ and F ð0Þ are the only independent form-factors,
which are defined as linear combinations of the ones
defined above. The μþμ− → hγ differential cross section
can then be written as

dσhγ
dt

¼ tu
16πs2

ðjDþ F j2 þ jF j2 þ jD0 þ F 0j2 þ jF 0j2Þ:
ð3:4Þ

We are now ready to calculate the analytical expressions
of the form factors Dð0Þ and F ð0Þ in the simplified models I
and II.
Our approach is to evaluate the amplitudes associated

with the Feynman diagrams of Fig. 3 and then to project
them into the form factors of Eq. (3.3). The results of

FIG. 3. Feynman diagrams contributing to the high-energy
scattering μþμ− → hγ for the simplified models I (left panel) and
II (right panel).
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our full computation will be presented in Sec. III A. The
discussion for the EFT limit for the form-factors will be
made in Sec. III B and our numerical results will be
presented in Sec. III C.

A. μ+ μ− → hγ in simplified models

In this section, we explicitly evaluate the form-factors
Dð0Þ and F ð0Þ at one-loop for the simplified models defined
in Eq. (2.2). Our convention for the kinematical variables is
given in Eq. (3.2) and we use PACKAGE-X [19] to reduce the
one-loop integrals in terms of the Passarino-Veltman
functions. The masses of the external states are neglected
and, for simplicity, we assume a degenerate massM for the
new scalar and vectorlike fermion running in the loops.
Although we consider the case of degenerate scalar and
fermion masses, we provide aMathematica notebook in the
ancillary files of this paper with expressions that also hold
in the case of nondegenerate masses [20]. In particular, we
note that the cross section can be increased/decreased forffiffiffi
s

p
values above the lightest mass. In any case, for energies

below the lightest mass threshold, we stress that the EFT
predictions should be reproduced irrespectively of the
degenerate or nondegenerate case.

In order to obtain general results for all the models
appearing in Table I, we define the coefficients ξ and ξ̃ in
Table II which depend on the SUð2ÞL representation R that
is considered.6 To express the amplitude in terms of
physical parameters, we define in a first step the physical
muon Yukawa coupling as the sum of the tree-level
coupling and the 1-loop corrections. Then, we write the
μþμ− → hγ amplitude as the sum of the contributions from
the diagrams of Fig. 3 and the tree-level diagrams where the
bare muon Yukawa-coupling is replaced with the physical
Yukawa-coupling and the loop corrections computed in the
first step. This renormalization procedure automatically
removes all the possible divergences to the μþμ− → hγ
amplitude.
Model I: For the simplified model I, we find the

following results,

D ¼ ieMRe½λILðλIEÞ�A�
32

ffiffiffi
2

p
π2tu

�
2ðξX − ξ̃ÞtuD0ð0; 0; 0; 0; t; u;MÞ − 2ξuC0ð0; 0; t;MÞ − ξtC0ð0; 0; u;MÞ þ ξ

s
M2

�
; ð3:5Þ

F ¼ −
ieMRe½λILðλIEÞ�A�

32
ffiffiffi
2

p
π2tu

�
ðξð1þ XÞ − ξ̃ÞsuD0ð0; 0; 0; 0; s; u;MÞ þ tuðξX − ξ̃ÞD0ð0; 0; 0; 0; t; u;MÞ

þ stðξð1þ XÞ − ξ̃ÞD0ð0; 0; 0; 0; s; t;MÞ þ 2ðξsþ ðξ̃ − ξXÞuÞC0ð0; 0; u;MÞ

þ 2ðξsþ ðξ̃ − ξXÞtÞC0ð0; 0; t;MÞ−2ðξð1þ XÞ − ξ̃ÞsC0ð0; 0; s;MÞ − ξ
s
M2

�
; ð3:6Þ

where C0 and D0 are scalar Passarino-Veltman functions,
and we adopt the notation M≡ ðM;M;MÞ and M≡
ðM;M;M;MÞ in the arguments of C0 and D0, respectively.
The convention on the arguments of the scalar functions
follows Ref. [19]. The form factors F 0 and D0 are simply

obtained from the above expressions upon the substitution
Re½λILðλIEÞ�A� → iIm½λILðλIEÞ�A�.
In order to compare the above results with those obtained

with the EFTapproach (see Sec. III B), we perform a power
expansion in

ffiffiffi
s

p
=M ≪ 1,

D ≃
ieRe½λILðλIEÞ�A�
192

ffiffiffi
2

p
π2M3

�
½ξð1þ 2XÞ − 2ξ̃� − 1

15
½ξð1þ 3XÞ − 3ξ̃� s

M2

þ 1

280

�
ðξð3þ 8XÞ − 8ξ̃Þ − 6

tu
s2

ðξð1þ 2XÞ − 2ξ̃Þ
�
s2

M4
þO

�
s3

M6

��
; ð3:7Þ

TABLE II. Representation-dependent factors ξ entering the
μþμ− → hγ calculation for each of the models defined in Table I.

R 121 212 323 232

ξ 1 −1 3 3
ξ̃ 0 − 1

2
2 − 1

2

6These coefficients can be compared to Ref. [13] by identifying ξ ↔ ξeB, ξ̃ ↔ ξ̃eW and noting that their extra two coefficients are not
independent, i.e., ξEeW ¼ −ξ̃eW , ξLeW ¼ −ξ̃eW þ ξeB=2. The last relations follow from gauge invariance and can be obtained, for instance,
by explicitly checking the Ward identity in the μþμ− → hγ amplitude.
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F ≃
ieRe½λILðλIEÞ�A�
192

ffiffiffi
2

p
π2M3

�
1

30
½ξð2þ 3XÞ − 3ξ̃� s

M2

þ ξ

280

s2

M4
þO

�
s3

M6

��
: ð3:8Þ

A few comments on the above expressions are in order:
(i) at d ¼ 6 level, only the first term of the form factor Dð0Þ
survives and it precisely reproduces the EFT result, see

Eq. (3.13) in the following section; (ii) higher order terms
are highly suppressed by small numerical coefficients
making the EFT result quite accurate even for

ffiffiffi
s

p
∼M.

This finding is rather unexpected, since in most cases the
breakdown of the EFT description quickly arises as the
energy

ffiffiffi
s

p
approaches the EFT cutoff.

Model II: In the case of the simplified model II, we
follow the same procedure outlined above. The resulting
analytical expressions for the form factors read,

D ¼ ieM2Re½λIILðλIIEÞ�κ�
32

ffiffiffi
2

p
π2stu

�
−2u

�
2ξsþ ðξX − ξ̃Þ t2

M2

�
C0ð0; 0; t;MÞ − 2t

�
2ξsþ ðξX − ξ̃Þ u

2

M2

�
C0ð0; 0; u;MÞ

− 2ξ
st
M2

Λðu;MÞ − 2ξ
su
M2

Λðt;MÞþðξX − ξ̃Þtu
�
4sþ tu

M2

�
D0ð0; 0; 0; 0; t; u;MÞ þ 6ξ

s2

M2

�
; ð3:9Þ

F ¼ −
ieM2Re½λIILðλIIEÞ�κ�

32
ffiffiffi
2

p
π2stu

�
−4s2ðξð1þ XÞ − ξ̃ÞC0ð0; 0; s;MÞ þ 2

�
2sðξs − ðξX − ξ̃ÞtÞ − ut2

M2
X

�
C0ð0; 0; t;MÞ

þ 2

�
2sðξs − ðξX − ξ̃ÞuÞ − u2t

M2
X

�
C0ð0; 0; u;MÞ − 2ðξð1þ XÞ − ξ̃Þst2D0ð0; 0; 0; 0; s; t;MÞ

− 2ðξð1þ XÞ − ξ̃Þsu2D0ð0; 0; 0; 0; s; u;MÞ þ ðξX − ξ̃Þtu
�
tu
M2

þ 4s

�
D0ð0; 0; 0; 0; t; u;MÞ

− 2ξ
st
M2

Λðu;MÞ−2ξ su
M2

Λðt;MÞ þ 6ξ
s2

M2

�
; ð3:10Þ

where Λðx;M1;M2Þ is the part of the Passarino-Veltman B0 function containing the x plane branch cut [19]. Again, the
form factors for the γ5 terms are identical upon the substitution Re½λIILðλIIEÞ�κ� → iIm½λIILðλIIEÞ�κ�.
The low-energy expansion

ffiffiffi
s

p
=M ≪ 1 of the form-factors given above reads

D ≃ −
ieRe½λIILðλIIEÞ�κ�
96

ffiffiffi
2

p
π2M2

�
½ξð1þ XÞ − ξ̃� − 1

60
½ξð2þ 3XÞ − 3ξ̃� s

M2

þ 1

840

�
ðξð3þ 4XÞ − 4ξ̃Þ − 6ðξð1þ XÞ − ξ̃Þ tu

s2

�
s2

M4
þO

�
s3

M6

��
; ð3:11Þ

F ≃ −
ieRe½λIILðλIIEÞ�κ�
96

ffiffiffi
2

p
π2M2

�
1

60
½ξð8þ 9XÞ − 9ξ̃� s

M2
þ 1

840
½ξð15þ 14XÞ − 14ξ̃� s

2

M4
þO

�
s3

M6

��
: ð3:12Þ

As before, the EFT amplitude is correctly reproduced and
the subleading power corrections are suppressed by large
numerical factors.

B. μ+ μ− → hγ in EFT

Before presenting our numerical results, we remind the
reader of the EFT description of the μþμ− → hγ process. To
this purpose, we assume that the center-of-mass energy

ffiffiffi
s

p
is much larger than the masses involved in this process, but
still sufficiently smaller than the EFT cutoff. In this case,
the μþμ− → hγ scattering is dominated by a single d ¼ 6

operator, Oeγ ¼ l̄σμνeHFμν, which is a linear combination
of the operators defined in Eq. (2.3).

The EFT contribution to the μþμ− → hγ amplitude is
encapsulated in the form-factors Dð0Þ,

DEFT ¼ −i
ffiffiffi
2

p
ReðCeγÞ; D0

EFT ¼
ffiffiffi
2

p
ImðCeγÞ; ð3:13Þ

whereas F ð0Þ ¼ 0 at this order in the EFT expansion. By
using the effective coefficients Ceγ given in Eq. (2.5)–(2.6)
for the simplified models I and II, respectively, we retrieve
the first term in the s=M power expansion of Dð0Þ in
Sec. III A, which is an important cross-check of our results.
After integrating over t, the total μþμ− → hγ cross section
reads

PARADISI, SUMENSARI, and VALENTI PHYS. REV. D 106, 115038 (2022)

115038-6



σEFThγ ¼ sjCeγj2
48π

≈0.7 ab

� ffiffiffi
s

p
30TeV

�
2
�

Δaμ
3×10−9

�
2

: ð3:14Þ

in agreement with Ref. [11]. It is clear from this equation
that the sensitivity on Δaμ increases with

ffiffiffi
s

p
, as long as the

EFT approach is valid. The energy scale
ffiffiffi
s

p
at which the

total cross section departs from the EFT predictions for a
given mass M of the NP states will be derived along with
our numerical results in the following section.
In principle, the operator OeH ¼ ðH†HÞl̄eH would also

contribute to the μþμ− → hγ process via a modification of
the Higgs couplings to muons. However, this effect scales
as σ ∝ 1=s and, therefore, it is safely negligible at high-
energies compared to the NP contributions discussed
above. Interestingly, OeH also contributes to the processes
μþμ− → hh and μþμ− → hhh [21]. In particular, we find
that the cross section of μþμ− → hh is independent of the
collider energy, whereas the one of μþμ− → hhh grows
linearly with s and it has a comparable size to the μþμ− →
hγ cross section. However, in order to determine the NP
sensitivity of μþμ− → hhðhÞ, a detailed study of the SM
background [22] is mandatory, which is beyond the scope
of the present paper.7

C. Numerical results

First, we report in Fig. 4 the total cross section of
μþμ− → hγ as a function of

ffiffiffi
s

p
for the simplified models I

(left panel) and II (right panel), with the representation
R ¼ 121 and hyperchage X ¼ 1=2 taken as our benchmark.
The masses of the new states are fixed to three reference
values, namely M ¼ ð5; 10; 15Þ TeV, and the NP couplings
are fixed to solve the ðg − 2Þμ discrepancy. Interestingly, we

confirm numerically that the EFT agrees with the UV theory
remarkably well for energies as large as

ffiffiffi
s

p
∼M in both

scenarios. At
ffiffiffi
s

p
∼ 2M, the UV cross section shows a

resonance peak corresponding to the fact that the virtual
particles can then be produced on-shell. Finally, for energiesffiffiffi
s

p ≳ 2M the UV cross section scales as 1=s, as expected by
the unitarity of the S-matrix. The most prominent difference
between the two models is that in the model II the resonance
is larger and more peaked than in the model I.
Next, following the analysis of Ref. [11], we study the

capability of the process μþμ− → hγ to probe the muon g − 2
anomaly. The SM irreducible μþμ− → hγ background is
small and can be neglected for

ffiffiffi
s

p
≫ 1 TeV. Instead, the

main source of background comes from the μþμ− → Zγ
process, where the Z boson is misreconstructed as a Higgs
boson. An efficient way to isolate the hγ signal from the
background is to exploit the different angular distributions of
the two processes, requiring that the probability of misre-
constructing a Z boson as a Higgs is less than 10%.
In Fig. 5, we show the 95% C.L. reach from μþμ− → hγ

on the anomalous magnetic moment of the muon as a
function of the center-of-mass energy

ffiffiffi
s

p
for the simplified

model I (left panel) and II (right panel), and for three
reference NP masses M ¼ ð5; 10; 15Þ TeV. The dashed
lines correspond to the EFT limit derived from Eq. (3.14).
The NP sensitivity has been obtained imposing that the
significance of the signal satisfy S > 2, where S ¼
NS=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NB þ NS

p
, and NS and NB denote the number of

signal and background events, respectively. The number of
events is estimated considering a b̄b final state, with an
80% b−tagging efficiency and by imposing the kinematical
cut j cos θj < 0.6 for which S is maximized, where θ
denotes the photon scattering-angle.
As already discussed above, the EFT result is accurately

reproduced for
ffiffiffi
s

p ≲M. On the other hand, for energies
close to the resonant-production threshold, i.e.,

ffiffiffi
s

p ¼ 2M,
the simplified models have an even higher sensitivity to
Δaμ than the EFT, especially in the case of the model II.

FIG. 4. Left (right): Cross section of μþμ− → hγ for M ¼ ð5; 10; 15Þ TeV and X ¼ 1=2 for the simplified model I (II) in the
representation R ¼ 121 (see Appendix A). The NP couplings have been fixed to solve the ðg − 2Þμ discrepancy. The dashed lines
correspond to the EFT prediction.

7Note, also, that the dependence of the Wilson coefficient of
OeH on the NP couplings differs from the one of Ceγ by a factor
of ðA=MÞ2 (model I) or κ2 (model II), thus not being in direct
correspondence with Δaμ.
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Finally, for energies
ffiffiffi
s

p
≫ 2M, the μþμ− → hγ cross

section in the simplified models scales as σ ∼ 1=s and
therefore the number of signal events NS ∝ σ × L becomes
constant with respect to the energy, since the luminosity
scales as L ∝ s [12]. This behavior is in contrast with the
EFT expectation, for which σ ∼ s and therefore NS ∝ s2.
Although our simplified models can account for the

muon g − 2 anomaly only for
ffiffiffi
s

p ≳M, where the EFT
description breaks down, the capability of the process
μþμ− → hγ to probe NP effects in Δaμ is confirmed
provided that the mass M is sufficiently large, as shown
in Fig. 5. On the other hand, for light mediators, the
μþμ− → hγ process is no longer able to probe NP effects in
Δaμ. In this case, it is more convenient to directly produce
the new states instead of probing them indirectly, as we
explore in the following.

IV. DIRECT HIGH-ENERGY PROBES
OF THE MUON g− 2

In this section, we will analyse the capability of a high-
energy muon collider to discover the new particles of the
simplified models I and II via their direct production. In
particular, since we assume an underlying Z2 symmetry, the
new states are always produced in pairs. Since the muon
g − 2 anomaly can be typically accommodated for
M ≲ 15 TeV, it follows that a high-energy muon collider
running with energies

ffiffiffi
s

p ≳ 30 TeV should be able to
directly observe these new particles.

A. 2 → 2 processes

The most relevant 2 → 2 processes are schematically
represented by the Feynman diagrams of Fig. 6, where Φ,

Ψ refer collectively to the scalar and fermion fields of the
models I or II. In the following, we report the analytical
expressions of the relevant cross sections.
For the model I, we obtain

σðμþμ− → Φ̄iΦiÞ ¼
ηjλIij4
32πs

"
tanh−1

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4M2

s

r !

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4M2

s

r #
;

σðμþμ− → Φ̄iΦjÞ ¼
ηjλIiλIjj2
64πs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4M2

s

r
;

σðμþμ− → Ψ̄ΨÞ ¼ jλIEj4 þ ηjλILj4
64πs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4M2

s

r
; ð4:1Þ

whereas for the model II

FIG. 5. 95% C.L. reach on Δaμ as a function of the center-of-mass energy
ffiffiffi
s

p
from the process μþμ− → hγ in EFT (dashed line) and

in the simplified models I (left) and II (right) for three reference NP masses M ¼ ð5; 10; 15Þ TeV and for the hypercharge X ¼ 1=2.
The darker (lighter) green bands represent the 1σ (2σ) ranges for Δaμ given by Ref. [3].

FIG. 6. Feynman diagrams for 2 → 2 pair production processes
in the simplified models I and II.
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σðμþμ− → Ψ̄iΨiÞ ¼
ηjλIIi j4
64πs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4M2

s

r
;

σðμþμ− → Ψ̄iΨjÞ ¼
ηjλIIi λIIj j2
64πs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4M2

s

r
;

σðμþμ− → Φ̄ΦÞ ¼ jλIIEj4 þ ηjλIILj4
32πs

"
tanh−1

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4M2

s

r !

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4M2

s

r #
; ð4:2Þ

where i; j ∈ fE;Lg, i ≠ j and the factor η is equal to 1 for
the representations R ¼ f121; 212g, while η ¼ 1 or 4 for
R ¼ f323; 232g depending on the specific final state.8

For the references values
ffiffiffi
s

p ¼30TeV and M¼10TeV,
the above cross sections attain comparable values of order
104 ab. Note that in Eqs. (4.1) and (4.2), we have neglected
the contributions stemming from the s-channel exchange of
the SM gauge bosons γ and Z. Indeed, since the solution
of the muon g − 2 anomaly requires λE;L ≳ 2, the t-channel
diagrams of Fig. 6 are by far dominant.

B. 2 → 3 processes

Although the 2 → 2 processes shown in Fig. 6 are
unavoidably induced once a NP contribution to the muon
g − 2 is generated, it is important to stress that their
observation cannot be promoted by any means as an
unambiguous test of the Δaμ anomaly. Indeed, Δaμ and
the cross sections in Eq. (4.1) and (4.2) depend on different
combinations of the simplified models parameters. There-
fore, it would be desirable to identify high-energy proc-
esses (if any) that are in one-to-one correspondence with
the NP effects entering the muon g − 2. Interestingly, such
processes do exist and are given by μþμ− → hΨ̄Ψ in model
I and by μþμ− → hΦ̄Φ in model II, as illustrated in Fig. 7.9

This correspondence is evident by comparing this dia-
gram with the one for Δaμ depicted in Fig. 1. In particular,

the correlation between these processes with Δaμ is exact
for a degenerate spectrum of the new states, which we
consider in the following. For a general spectrum, this may
not be necessarily the case and a dedicated analysis would
be required.
The differential cross sections for these processes can be

written in the following form,

dσ2→3 ¼
jĀj2
256π3

λ1=2ð0; s; q2Þλ1=2ðq2;M2;M2Þ
s2q2

d cos θ1
2

×
dφ1

2π

d cos θ2
2

dφ2

2π
dq2 ð4:3Þ

where λðx; y; zÞ ¼ x2 þ y2 þ z2 − 2ðxyþ xzþ yzÞ is the
Källén function, and we define q ¼ k1 þ k2, with
q2 ∈ ½4M2; s�. The angles θi and φi are defined in
Fig. 9 and are integrated in the ranges θi ∈ ½0; π� and
φi ∈ ½0; 2π�. For a detailed discussion about the non-trivial
kinematics of 2 → 3 processes we refer to Appendix B.
The jĀj2 expression for the process μþðpbÞμ−ðpaÞ →
hðkÞΨ̄ðk2ÞΨðk1Þ in the model I reads10

jĀj2 ¼ η

4

jλILλIEAj2
½M2 − ðpa − k1Þ2�½M2 − ðpb − k2Þ2�

: ð4:4Þ

Similarly, the squared amplitude μþðpbÞμ−ðpaÞ →
hðkÞΦ̄ðk2ÞΦðk1Þ in the model II is given by

jĀj2 ¼ 2ηjλIILλIIEκj2M2

½M2 − ðpa − k1Þ2�2½M2 − ðpb − k2Þ2�2

×

�
pa · ðk2 − k1Þpb · ðk1 − k2Þ

− 2

�
pa · k1pb · k2 −

sM2

4

��
1 −

k1 · k2
2M2

��
; ð4:5Þ

FIG. 7. Feynman diagrams contributing to the direct production
channels μþμ− → hΨ̄Ψ; hΦ̄Φ in the simplified models I (left)
and II (right).

8In the presence of an SUð2ÞL triplet χa (a ¼ 1; 2; 3), the
electric charge eigenstates are χ� ¼ χ1∓iχ2ffiffi

2
p and χ3. Then, in

the model I, η ¼ 4 for the final states ðΨ̄−Ψ−Þ, ðΦ̄L;1
2
ΦL;1

2
Þ,

ðΦ̄L;1
2
ΦE;þÞ, ðΦL;1

2
Φ̄E;þÞ of the representation R ¼ 323, and

ðΨ̄1
2
Ψ1

2
Þ, ðΦ̄L;−ΦL;−Þ, ðΦ̄L;−ΦE;−1

2
Þ, ðΦL;−Φ̄E;−1

2
Þ for R ¼ 232. In

all other cases η ¼ 1. The lower index� 1
2
refers to the component

of the isospin doublets. For model II the situation is completely
analogous.

9Other possibilities are given by μþμ− → hΦ̄EðLÞΦEðLÞ in
model I and μþμ− → hΨ̄EðLÞΨEðLÞ in model II, where the Higgs
is emitted from the final state legs. Instead, the analogous
processes μþμ− → hΦ̄EðLÞΦLðEÞ and μþμ− → hΨ̄EðLÞΨLðEÞ do
not depend on the same combination of NP couplings as Δaμ. A
careful analysis of the different final state products and of the
Higgs kinematical properties may be exploited to disentangle
these processes.

10In this case, η ¼ 4 for μþμ− → hΨ̄−Ψ−ðR ¼ 323Þ and
μþμ− → hΨ̄1

2
Ψ1

2
ðR ¼ 232Þ, while η ¼ 1 otherwise.
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where the scalar products can be easily computed by using
the expressions from Appendix B.
In Fig. 8, we report the cross sections of μþμ− →

hΨ̄Ψ; hΦ̄Φ vs
ffiffiffi
s

p
setting X ¼ 1=2 and M ¼ 10 TeV.

Inner (outer) regions correspond to Δaμ values in the 1σ
(2σ) allowed range. As expected, the 2 → 3 cross sections
are typically 2-3 orders of magnitude smaller than those
for 2 → 2 processes [see Eqs. (4.1) and (4.2)] due to the
additional phase-space suppression. However, at a muon
collider running at

ffiffiffi
s

p ¼ 30 TeV, we expect several
hundreds events for these 2 → 3 processes that can be
discriminated from the background thanks to the coinci-
dence of two NP particles accompanied by a Higgs boson.
In Fig. 8, we also plot the cross section of μþμ− → hγ as a
function of

ffiffiffi
s

p
to stress its interplay with the direct search

processes μþμ− → hΨ̄Ψ and μþμ− → hΦ̄Φ. Indeed, for
collider energies below the threshold required for a direct
production of new states, μþμ− → hγ provides a unique
way to test the muon g − 2 anomaly. Instead, when the final
states hΨ̄Ψ and hΦ̄Φ are kinematically allowed, the study
of their correlation with the process μþμ− → hγ would still
be of great importance to pin down the details of the
underlying NP model.

V. CONCLUSIONS

In this paper, we have studied the solution of the muon
g − 2 anomaly through new physics scenarios with heavy
scalars and vectorlike fermions appearing above the TeV-
scale. Such a solution is only viable provided that a chiral
enhancement is at work, which in turn requires that the new
states couple to the SM Higgs boson. As already emphas-
ised in the EFT context, a muon collider running at center-
of-mass energies

ffiffiffi
s

p
in the multi-TeV range would be the

ideal machine to test this anomaly model-independently
through the study of the μþμ− → hγ process [11].
We have explored the connection between Δaμ and

μþμ− → hγ in the context of the concrete NP scenarios

mentioned above, which contribute to both observables at
one-loop level, extending the EFT results to the case whereffiffiffi
s

p
is larger than the mass of the new particles. In particular,

we have found that the EFT approach describes remarkably
well the μþμ− → hγ cross section for

ffiffiffi
s

p
values even at the

vicinity of the EFT cutoff, where the EFT description is
expected to break down, as shown in Figs. 4 and 5. These
results confirm and reinforce the complementarity of Δaμ
with the high-energy process μþμ− → hγ.
Another goal of this work has been to study the direct

search signatures of our simplified models, as well as their
interplay with the indirect search μþμ− → hγ. If kinemat-
ically allowed, the processes μþμ− → Ψ̄Ψ; Φ̄Φ, where Ψ
and Φ refer to heavy vectorlike fermions and scalars, are
unavoidably induced with sizable cross sections. However,
the cross sections of these 2 → 2 processes are not directly
correlated with Δaμ as they depend on different combina-
tions of NP couplings.
We have shown in this paper that the cross sections of the

processes μþμ− → hΨ̄Ψ; hΦ̄Φ with a Higgs boson in the
final state, which we have computed under the assumption
of degenerate masses, are in one-to-one correspondence
with the NP effects entering the muon g − 2, as shown in
Fig. 1 and 7. Although suppressed by two orders of
magnitude compared to the 2 → 2 processes, due to the
additional phase-space suppression, we still expect several
hundreds of events for μþμ− → hΨ̄Ψ; hΦ̄Φ at a muon
collider running at

ffiffiffi
s

p ¼ 30 TeV, which can be discrimi-
nated thanks to the coincidence of two NP particles
together with a Higgs boson in the final state. As shown
in Fig. 8, there is an interesting interplay between the
indirect probe μþμ− → hγ and the direct ones μþμ− →
hΨ̄Ψ and μþμ− → hΦ̄Φ. Indeed, for collider energies
below the threshold required for a direct production of
new states, μþμ− → hγ provides a unique way to access the
muon g − 2 anomaly. Instead, when μþμ− → hΨ̄Ψ and
μþμ− → hΦ̄Φ are kinematically allowed, they are typically

FIG. 8. Cross sections of μþμ− → hγ and μþμ− → hΨ̄Ψ; hΦ̄Φ vs
ffiffiffi
s

p
setting X ¼ 1=2 and M ¼ 10 TeV in the simplified model I

(left) and II (right). Inner (outer) regions correspond to Δaμ values in the 1σ (2σ) allowed range.
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the best probe of Δaμ. This complementarity illustrates the
fact that a correlated study of direct and indirect new
physics signals at a muon collider would be a powerful
handle to disentangle among the underlying model accom-
modating the Δaμ anomaly.
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APPENDIX A: SIMPLIFIED MODEL
LAGRANGIANS AND RGES

In this appendix, we collect the relevant expressions for
the running of the fundamental parameters of the simplified
models I and II introduced in Sec. I. Assuming a Z2

symmetry to avoid mixing of the new states with SM fields
and allowing SUð2ÞL representations up to triplets, the
most generic Lagrangians are [13]:

L121
I ¼ λILl̄

aΨΦa
L þ λIEēΨΦE þ AΦa†

L ΦEHa þ H:c:;

L121
II ¼ λIILl̄

aΦΨa
L þ λIIEēΨEΦþ κΨ̄a

LΨEHa þ H:c:

L212
I ¼ λILl̄

aΦLΨa þ λIEēΨaðiτ2ΦEÞa þ Aðiτ2HÞaΦ†
LΦa

E þ H:c:

L212
II ¼ λIILl̄

aΨLΦa þ λIIEēðiτ2ΨEÞaΦa þ κΨ̄Lðiτ2HÞaΨa
E þ H:c:

L323
I ¼ λILl̄

aðτ ·ΨÞabΦb
L þ λIEēΨαΦα

E þ AΦa†
L ðτ ·ΦEÞabHb þ H:c:

L323
II ¼ λIILl̄

aðτ ·ΦÞabΨb
L þ λIIEēΨα

EΦα þ κΨ̄a
Lðτ · ΨEÞabHb þ H:c:

L232
I ¼ λILl̄

aðτ ·ΦLÞabΨb þ λIEēΨaðiτ2ΦEÞa þ Aðiτ2HÞaðτ ·Φ†
LÞabΦb

E þ H:c:

L232
II ¼ λIILl̄

aðτ ·ΨLÞabΦb þ λIIEēðiτ2ΨEÞaΦa þ κðτ · Ψ̄LÞabðiτ2HÞaΨb
E þ H:c: ðA1Þ

where a, b denote SUð2ÞL indices, τ are the Pauli matrices and the charges of the various fields are defined in Table I.
The RGEs for the simplified model Yukawa-couplings and for the SM gauge couplings, as well as for the Higgs boson

quartic coupling in the models of type-II,11 have been calculated using the tool RGBeta [23]. They read

Model I :

8>>>>>><
>>>>>>:

ð4πÞ2 dg2

d log μ ¼ βgg4

ð4πÞ2 dg02
d log μ ¼ βg0g04

ð4πÞ2 dλIL
d log μ ¼ λIL½−βgLg2 − βg

0
Lg

02 þ βLLλ
I2
L þ βyLy

2
μ�

ð4πÞ2 dλIE
d log μ ¼ λIE½−βgEg2 − βg

0
Eg

02 þ βEEλ
I2
E þ βyEy

2
μ�

; ðA2Þ

Model II :

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð4πÞ2 dg2

d log μ ¼ βgg4

ð4πÞ2 dg02
d log μ ¼ βg0g04

ð4πÞ2 dλIIL
d log μ ¼ λIIL½−βgLg2 − βg

0
Lg

02 þ βLLλ
II2
L þ βELλ

II2
E þ βκLκ

2 þ βyLy
2
μ� þ βyEκL yμλIIEκ

ð4πÞ2 dλIIE
d log μ ¼ λIIE½−βgEg2 − βg

0
Eg

02 þ βLEλ
II2
L þ βEEλ

II2
E þ βκEκ

2 þ βyEy
2
μ� þ βyLκE yμλIILκ

ð4πÞ2 dκ
d log μ ¼ κ½−βgκg2 − βg

0
κ g02 þ βLκ λ

II2
L þ βEκ λ

II2
E þ βκκκ

2 þ βyκðy2μ þ 3y2t Þ� þ βyLEκ yμλIILλ
II
E

ð4πÞ2 dλ
d log μ ¼ βSMλ ðg; g0; λ; ytÞ þ βλκλ λκ

2 − βκλκ
4

: ðA3Þ

The values of the coefficients of the β-functions for the various representation are given in Table III, where they are written
as vectors with components ordered as they appear in Eqs. (A2) and (A3).

11In the models of type-I, the Higgs quartic does not receive BSM contributions at one-loop.
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APPENDIX B: KINEMATICS OF 2 → 3
SCATTERING PROCESSES

As discussed in Sec. IV, the processes μþμ− → hΨ̄Ψ and
μþμ− → hΦ̄Φ are ideal tests of the muon g − 2 anomaly. In
this appendix, we give details about the kinematics of these
processes, which are depicted in Fig. 3. The integrated
cross section,

σ2→3 ¼
Z

1

2s
ð2πÞ4δð4Þðpa þ pb − k − k1 − k2ÞjĀj2dΦ3;

ðB1Þ
can be evaluated by splitting the phase-space into the
product of two-body phase spaces,

dΦ3¼
Z

dq2ð2πÞ3dΦ2ðpaþpb;k;qÞdΦ2ðq;k1;k2Þ; ðB2Þ

corresponding to a 2 → 2 scattering pa þ pb → kþ q and
a decay q → k1 þ k2, as depicted in Fig. 9. Exploiting
Lorentz invariance of dΦ2, we compute the 2 → 2 sub-
process in the center-of-mass frame of the 2 → 3 scattering,
with the four-vectors defined as,

8>>>>>><
>>>>>>:

pa ¼
	 ffiffi

s
p
2
; 0; 0

ffiffi
s

p
2



pb ¼

	 ffiffi
s

p
2
; 0; 0;−

ffiffi
s

p
2



q ¼ ðEq; 0; jqj sin θ1; jqj cos θ1Þ
k ¼ ðEk; 0;−jqj sin θ1;−jqj cos θ1Þ

; ðB3Þ

whereas the 1 → 2 process is evaluated in the rest frame of
the compound particle q, with the following parametriza-
tion of the four-vectors,

8<
:

q ¼ ðq; 0; 0; 0Þ
k10 ¼ ðEk10; jk0

1j sin θ2 cosφ2; jk0
1j sin θ2 sinφ2; jk0

1j cos θ2Þ
k20 ¼ ðEk20;−jk0

1j sin θ2 cosφ2;−jk0
1j sin θ2 sinφ2;−jk0

1j cos θ2Þ
: ðB4Þ

TABLE III. β-function coefficients of the RGEs in Eqs. (A2) and (A3), where βSMg ¼ − 19
3
and βSMg0 ¼ 41

3
. The upper

index i of βiX refers to its components as ordered in Eqs. (A2) and (A3); for example, in model I, βiL ¼ fβgL; βg
0
L ; β

L
L; β

y
Lg.

R Model I Model II

121

βg ¼ βSMg þ 1
3

βg ¼ βSMg þ 4
3

βg0 ¼ βSMg0 þ 1
3
ð3þ 8X þ 14X2Þ βg0 ¼ βSMg0 þ 2

3
ð6þ 16X þ 13X2Þ

βiL ¼ f9
4
; 3
4
ð1þ 4X2Þ; 5

2
; 1
2
g βiL ¼ f9

2
; 3
2
ð1þ 2X þ 2X2Þ; 3; 1; 1

2
; 1
2
; 2g

βiE ¼ f0; 3ð1þ X2Þ; 2; 1g βiE ¼ f0; 3ð2þ 2X þ X2Þ; 2; 2; 1; 1; 4g
βiκ ¼ f9

4
; 15
4
þ9X þ 6X2; 1

4
; 1
4
; 7
2
; 1; 1g

βiλ ¼ f4; 2g

212

βg ¼ βSMg þ 5
3

βg ¼ βSMg þ 5
3

βg0 ¼ βSMg0 þ 1
6
ð9þ 20X þ 44X2Þ βg0 ¼ βSMg0 þ 2

3
ð9þ 20X þ 14X2Þ

βiL ¼ f9
2
; 3
4
ð1þ 4X2Þ; 3; 1

2
g βiL ¼ f9

4
; 3
2
ð1þ 2X þ 2X2Þ; 5

2
; 1; 1; 1

2
;−2g

βiE ¼ f9
4
; 3ð1þ X2Þ; 5

2
; 1g βiE ¼ f9

4
; 3ð2þ 2X þ X2Þ; 1; 5

2
; 1
2
; 1;−2g

βiκ ¼ f9
4
; 15
4
þ9X þ 6X2; 1

2
; 1
4
; 7
2
; 1;−1g

βiλ ¼ f4; 2g

323

βg ¼ βSMg þ 7 βg ¼ βSMg þ 8

βg0 ¼ βSMg0 þ 1
3
ð7þ 16X þ 34X2Þ βg0 ¼ βSMg0 þ 2

3
ð14þ 32X þ 23X2Þ

βiL ¼ f33
4
; 3
4
ð1þ 4X2Þ; 11

2
; 1
2
g βiL ¼ f9

2
; 3
2
ð1þ 2X þ 2X2Þ; 5; 1; 3

2
; 1
2
;−2g

βiE ¼ f6; 3ð1þ X2Þ; 3; 1g βiE ¼ f6; 3ð2þ 2X þ X2Þ; 2; 3; 1; 1;−4g
βiκ ¼ f33

4
; 15
4
þ9X þ 6X2; 3

4
; 1
4
; 17
2
; 1;−1g

βiλ ¼ f12; 10g

232

βg ¼ βSMg þ 3 βg ¼ βSMg þ 7

βg0 ¼ βSMg0 þ 1
6
ð11þ 28X þ 52X2Þ βg0 ¼ βSMg0 þ 2

3
ð11þ 28X þ 22X2Þ

βiL ¼ f9
2
; 3
4
ð1þ 4X2Þ; 5; 1

2
g βiL ¼ f33

4
; 3
2
ð1þ 2X þ 2X2Þ; 11

2
; 1; 1; 1

2
; 2g

βiE ¼ f9
4
; 3ð1þ X2Þ; 5

2
; 1g βiE ¼ f9

4
; 3ð2þ 2X þ X2Þ; 3; 5

2
; 3
2
; 1; 6g

βiκ ¼ f33
4
; 15
4
þ9X þ 6X2; 1

2
; 1
4
; 17
2
; 1; 1g

βiλ ¼ f12; 10g
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In this expression, the energies and the 3-momenta are
evaluated in the respective frames. The angles have been
chosen in such a way that the decay frame is reached from
the 2 → 2 frame by a simple Lorentz transformation, R,
consisting of a rotation followed by a boost along the x̂
axis,

R ¼

0
BBB@

Eq=q 0 0 −jqj=q
0 1 0 0

0 0 1 0

−jqj=q 0 0 Eq=q

1
CCCA

×

0
BBB@

1 0 0 0

0 1 0 0

0 0 cos θ1 − sin θ1
0 0 sin θ1 cos θ1

1
CCCA; ðB5Þ

where Eq; jqj are defined in Eq. (B3). The scalar products
appearing in the amplitudes (4.4) and (4.5) are then
evaluated in the 2 → 2 frame by applying the R trans-
formation: k1 ¼ R−1k01 and k2 ¼ R−1k02. In our parametri-
zation, the integration intervals are given by θi ∈ ½0; π�,
φi ∈ ½0; 2π� and q2 ∈ ½4M2; s�, where the muon and Higgs-
boson masses have been neglected.
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