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We propose a new beam-dump experiment at a future TeV-scale muon collider. A beam dump would
be an economical and effective way to increase the discovery potential of the collider complex in a
complementary regime. In this Letter, we consider vector models such as the dark photon and Lμ-Lτ gauge
boson as new physics candidates and explore which novel regions of parameter space can be probed with
a muon beam dump. We find that for the dark photon model, we gain sensitivity in the moderate mass
(MeV–GeV) range at both higher and lower couplings compared to existing and proposed experiments, and
gain access to previously untouched areas of parameter space of the Lμ-Lτ model.
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Introduction.—The standard model (SM) of particle phy-
sics has proven to be remarkably successful. However,
there is an abundance of empirical evidence that it is
incomplete. While there are a variety of channels we can
explore to discover new physics, colliders provide a clean
and controlled experimental environment to identify the
particle content of beyond the SM phenomena.
As we look to advance the energy and intensity frontier of

collider physics, a possibility with growing interest is the
construction of a TeV-scale μþμ− collider [1–10]. Such a
muon collider (MuC) is a particularly compelling option as it
affords a complementary physics program to that of a high-
energy hadron collider like the LHC. For example, with a
MuC we gain access to direct couplings of both electro-
weak-mediated and second-generation processes [11–22].
Additionally, with increased available center-of-mass
energy, we can expand our discovery prospects for massive
new physics.
Since the cost of a MuC—or any future high-energy

collider—is substantial, it is prudent to consider possible
auxiliary experiments that extend the physics program of
the collider facility. An economical extension with remark-
able and complementary discovery potential is a beam
dump. In a beam-dump experiment, the high energy muon
beam is “dumped” into a dense material to greatly increase
the total rate of interaction at the price of center-of-mass
energy. This experimental setup can therefore test cou-
plings too small to be probed at the main collider by several
orders of magnitude in a slightly lower mass range [23–30].

In this Letter we propose the construction of a beam-
dump experiment to be included in the design of a future
MuC. We consider benchmark models of moderate-mass,
weakly coupled new vector particles that are inaccessible at
any other terrestrial experiment. First, we consider the dark
photon scenario [31–34], for which similar past proposals
have focused on electron beams; see, e.g., [23,35,36]. Here,
the main novelty of a proposed MuC is high energy, which
can provide access to a different range of masses and (due
to the large boost) lifetimes than lower-energy electron
beam dumps. We also consider a model for which a muon
beam is uniquely well suited, namely, the gauged flavor
symmetry Lμ-Lτ [37–41]. In this case, the gauge boson is
produced much more copiously from a muon beam than an
electron or proton beam. We present the projected reach
of such an experiment for several generic experimental
configurations.
Production from a high energy muon beam.—

Preliminaries: In what follows we restrict our attention
to the new physics scenario of a new vector particle, which
we generically call Z0, coupling to a current including
muons. The effective Lagrangian of interest for a newUð1Þ0
gauge boson is

L ⊃ LSM −
1

4
Z0
μνZ0μν þ 1

2
m2

Z0Z0μZ0
μ

−
X
l∈e;μ;τ

ðigQll̄γμZ0
μlþ igQ0

lν
†
l σ̄

μZ0
μνlÞ: ð1Þ

We consider two Uð1Þ models: dark photons ðQl ¼ 1;
Q0

l ¼ 0; g ¼ ϵeÞ and the gauged flavor symmetry Lμ-Lτ

ðQμ;τ ¼ Qμ;τ
0 ¼ �1Þ. In the latter case, kinetic mixing will

also be present (at least through loops of muons and taus;
see, e.g., [42]), but the effect is both small and dependent on
details of the UV completion, so we will neglect it in our
discussion.

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW LETTERS 130, 071803 (2023)

0031-9007=23=130(7)=071803(8) 071803-1 Published by the American Physical Society

https://orcid.org/0000-0001-5128-7919
https://orcid.org/0000-0002-0063-6856
https://orcid.org/0000-0001-9118-4172
https://orcid.org/0000-0003-2738-5695
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.130.071803&domain=pdf&date_stamp=2023-02-15
https://doi.org/10.1103/PhysRevLett.130.071803
https://doi.org/10.1103/PhysRevLett.130.071803
https://doi.org/10.1103/PhysRevLett.130.071803
https://doi.org/10.1103/PhysRevLett.130.071803
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


The photon–dark photon interaction is often defined via
kinetic mixing in a basis of quantized charges, but the
above formulation can be derived through the field redefi-
nition Aμ → Aμ þ ϵZ0

μ to generate a coupling to the
electromagnetic current. Both the dark photon and gauged
flavor symmetry models are of interest at a high-energy
muon collider, although they are differently motivated.
Dark photons can be produced directly at any charged
particle collider, but the extended reach of our proposed
experiment comes from the increased center-of-mass
energy. The Lμ-Lτ model, on the other hand, would benefit
uniquely from a muon collider, as this would be the first
experiment capable of direct production at high energies.
Cross section: The dominant production mechanism is

the 2 → 3 bremsstrahlung process shown in the top of
Fig. 1, where the incoming high-energy muon exchanges a
virtual photon with a nucleon in the target and radiates a Z0
[23,43–45]. To compute this cross section, we use the
Weizsäcker-Williams approximation [46,47]. For relativis-
tic incoming muons, the exchanged photon is nearly on
shell. We can therefore approximate the full scattering
process ½μðpÞ þ NðPiÞ → μðp0Þ þ N0ðPfÞ þ Z0ðkÞ� with
the 2 → 2 process ½μðpÞ þ γðqÞ → μðp0Þ þ Z0ðkÞ� shown
in the bottom of Fig. 1, evaluated at minimum virtuality
tmin ≡ −q2min, weighted by the effective photon flux. The
cross section in the lab frame is

dσðpþPi → p0 þ kþPfÞ
dEZ0d cos θZ0

¼
�
αEMχ

π

��
xE0βZ0

ð1− xÞ
�

×
dσðpþ q → p0 þ kÞ

dðp · kÞ
����
t¼tmin

;

ð2Þ
where E0 is the energy of the incoming muon beam, x≡
EZ0=E0 is the fraction of energy of the Z0, θZ0 is the angle of

emission, and βZ0 ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −m2

Z0=E2
Z0

q
. The effective photon

flux is parameterized by χ, defined as

χ ≡
Z

tmax

tmin

dt
t − tmin

t
G2ðtÞ; ð3Þ

where G2ðtÞ is the electric form factor of the target atom,
including both atomic and nuclear, as well as elastic and
inelastic effects, following the approximation in [23].
This approximation scheme is valid in the regime of

highly relativistic beam particles and emitted vector par-
ticles:

mμ

E0

;
mZ0

xE0

; θZ0 ≪ 1: ð4Þ

After integrating out the angular dependence, the differ-
ential cross section in x is

dσð2 → 3Þ
dx

¼ 8α2EMαgQ
2
μχβZ0

m2
Z0

1−x
x þm2

μx

�
1 − xþ x2

3

�
; ð5Þ

where αg ≡ ðg2=4πÞ. For all values of mass, we find that the
probability of emission has support primarily in the highly
relativistic regime. Note that in the context of an electron
beam-dump experiment, the term proportional to the beam
particle mass in the denominator of Eq. (5) can be
neglected. Here, on the other hand, we are interested in
mZ0 near the muon mass, so we cannot drop this term.
Signature: The signal of interest for this experimental

setup is a dilepton final state (eþe− or μþμ−). From the
Lagrangian defined in Eq. (1), the decay rate to massive
leptons is

ΓðZ0 → lþl−Þ ¼ g2Q2
l

12π
mZ0

�
1þ 2m2

l

m2
Z0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
l

m2
Z0

s
: ð6Þ

We restrict our attention to this signature for ease of
detection prospects.
Before we proceed with the details, we can check that a

multi-TeV muon collider provides the right environment to
extend the search boundaries of these models. Taking the
dark photon as a benchmark, the approximate decay length
[estimated from Eq. (6)]

lZ0 ≡ cγτZ0 ≈ x

�
E0

TeV

��
GeV
mZ0

�
2
�
10−7

ϵ

�
2

× 10 m; ð7Þ

where x ∼ 1. This suggests that with a modest-size experi-
ment, a TeV beam dump can dramatically expand the reach
of these vector models.
Number of signal events: The differential number of

signal Z0 events per energy fraction x and position z along
the beamline is given by the equation

dN
dxdz

¼ Nμ
X0

mT

Z
E0

EZ0
dE1

Z
T

0

dt IðE1;E0; tÞ

×

�
E0

E1

dσ
dx0

�
x0¼EZ0

E1

dPðz − X0

ρ tÞ
dz

; ð8ÞFIG. 1. Top: the dominant bremsstrahlung production for a
vector particle Z0 at a muon beam dump. Bottom: the same
production process in the Weizsäcker-Williams approximation.
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where Nμ is the number of incident muons on target, mT is
the mass of a target atom, and X0 and ρ are the unit
radiation length and density of the target, respectively [48].
We parameterize the position along the length of the target
in terms of the dimensionless parameter t from 0 to T, such
that the full length of the target is Ltar ¼ ðX0=ρÞT.
The energy of the beam particle after radiative losses in

the material is modeled by the function IðE1;E0; tÞ.
However, the effective radiation length of a muon in
reasonable target materials (e.g., water or lead) is 50 m
to 1 km [49]. For the proposed experimental setup, we can
safely assume zero radiative losses and replace

IðE1;E0; tÞ ¼ δðE1 − E0Þ: ð9Þ

The differential probability of Z0 decay is given by

dPðzÞ
dz

¼ 1

lZ0
e−z=lZ0 : ð10Þ

As indicated in Eq. (7), the decay length lZ0 is a function of
the Z0 mass mZ0 and energy xE0. After integrating over the
muon beam energy and target thickness, Eq. (8) simpli-
fies to

dN
dx

¼ Nμ
ρlZ0

mT

dσ
dx

× ðeLtar=lZ0 − 1Þe−ðLtarþLshÞ=lZ0 ð1 − e−Ldec=lZ0 Þ; ð11Þ

where the various length scales are illustrated in Fig. 2.
Experimental setup.—The experimental setup of a beam-

dump experiment is shown in Fig. 2. The high energy muon
beam is dumped into a solid material target of length Ltar.
Immediately after the target is a shield of length Lsh
dedicated to removing the residual beam and any back-
ground. This includes both a region with a strong magnetic
field of length lm and a shielding mechanism to remove any
remaining particles. Beyond the shielding is the fiducial
decay region of length Ldec before the detector. To be
detected, signal events must be produced in the target and
decay in the fiducial region.
From Eq. (11) it is clear that the length scales of the

various components of the experiment have dramatic
impact on the number of signal events observed. New
particles that are produced too early get shielded and are

missed, but particles that live too long escape the exper-
imental hall altogether.
For concreteness, we choose experimental parameters

such as length scales at reasonable orders of magnitude.
The purpose of this Letter is to demonstrate the feasibility
of beam-dump experiments at future muon colliders. Since
we cannot know the available technology or experimental
design constraints at this point, we do not attempt to
optimize the experimental design.
Target: In this Letter, we consider a target made of

water at standard temperature and pressure, with a length of
Ltar ¼ 10 m. To avoid overheating and evaporating the
target, the geometric cross section of the tank and therefore
volume of water should be adjusted. For the number of
muons on target considered here, a cross section of 10−2 to
1 m2 target would be sufficient. Other economical and
common choices for a beam dump target include pressur-
ized water, lead, or tungsten. Higher density materials will
increase the cross section as the effective photon flux
increases, but may be too expensive or infeasible to install
at the beam dump site.
Shielding: In order to realize a clean dilepton signal,

various sources of background particles must be removed.
We propose a two-stage shielding region that prevents both
the high-energy beam muons and any secondary particles
from reaching the detector: a magnet to deflect the beam
followed by a block of dense material to absorb any other
emitted particles.
Since the Z0 and its subsequent decay products are highly

boosted, it is imperative to remove the central muon beam
(and electrons it decays to) from the geometric acceptance
of the detector. Since high-energy muons are extremely
difficult to absorb, we instead propose to deflect the beam
using a strong magnetic field. The size of the detector is set
by the opening angle of the dilepton decay products of the
boosted Z0. The decay products are produced extremely
forward with an emission angle in the lab frame of
θmax ≲mZ0=xE0. Note that, in the parameter space of
interest where mZ0 > mμ, the maximum angle of Z0

emission θZ
0

max ∼ ð ffiffiffiffiffiffiffiffiffiffiffiffiffimZ0mμ
p =E0Þ is parametrically smaller

and therefore negligible.
The shielding magnet must be sufficiently strong to

divert a roughly TeV-scale muon beam at a greater angle
θmag > θmax. If we assume the magnetic field is constant
over a length lm just after the target, the field strength B
must be approximately

B
Tesla

∼ θmax ×
E0

GeV
×
meter
lm

: ð12Þ

For the parameter space of interest, this corresponds to sub-
Tesla magnetic fields over a few meters, which is compa-
rable to or smaller than similar shielding mechanisms
proposed in other future beam-on-target experiments [50].
Since bending a high-energy beam of charged particles

will emit some radiation, there must also be a shield beyond

FIG. 2. Schematic of a muon beam-dump experiment. This
diagram is not drawn to scale, but the lengths will be on the order
of Ltar; Lsh; lm ∼ 10 m, Ldec ∼ 100 m, and d ∼ 10 cm.
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the magnetic field. This shield will stop lower-energy
electrons and photons, and can therefore be made of a
dense material to absorb these particles, such as iron or
lead. It may also be necessary to include a charged particle
tracker region either immediately after the shielding or
before the detector in order to reject any residual high-
energy leptons with production vertices outside of the
target. We assume that the total length of this shielding
region will be contained in Lsh ¼ 10 m, but we discuss the
consequences of a larger Lsh later with the results.
Detector: Once a Z0 has been produced in the target

and propagates beyond the shielding region, it must decay
in the fiducial region before the detector in order to be
observed. As previously mentioned, our signal of interest is
a dilepton resonance (eþe− or μþμ−). This signal can be
observed with a relatively simple detector setup: a charged
particle and muon tracker. Again, as the state-of-the-art
detection technology is not yet known, we do not provide a
detailed description of the system. The size of the detector d
must be roughly

d ∼ θmaxLdec: ð13Þ

From Eq. (11), it is clear that a longer experimental hall
increases the number of Z0 particles that decay in accep-
tance. As a reasonable benchmark we set Ldec ¼ 100 m,
which corresponds to a detector size of d≲ 10 cm for the
relevant range of masses. Note that for this exploratory
study, we consider a minimally instrumented scenario.
However, one could envision more sophisticated detection
scenarios that involve instrumenting along the fiducial
region and accounting for missing energy signals as well.
Reach for new gauge forces.—We present the reach of

both a dark photon and Lμ-Lτ Z0 model. For concreteness
we consider the reach with a 1.5 TeV beam (corresponding
to a 3 TeV collider), a standard benchmark in MuC
literature [4].
For the dark photon scenario, we show the existing

constraints from eþe− or μþμ− resonance searches at
BABAR [51], NA48 [52], the A1 Experiment at the
Mainz Microtron [53], KLOE [54–57], and LHCb [58];
previous beam-dump experiments, such as E141 [59] and
E137 [60–62] at SLAC, E774 at Fermilab [63], CHARM
[64,65], and NuCal [66–68]; as well as constraints from
Supernova 1987A [69] in gray. Additionally we plot the
projected reach from other future experiments including
Belle-II [70], LHCb [71,72], SHiP [73], and AWAKE [74].
The projected sensitivity of theMuC beam dump to a dark

photon Z0 is shown in Fig. 3. Since the number of muons
delivered to target cannot be known at this stage, we pro-
vide three reach curves reflecting conservative to optimistic
projections of Nμ. A discussion of these choices can be
found in the Supplemental Material [6,75,76]. The experi-
ment would expand the reach in parameter space not only
beyond existing constraints, but also in complementary

regions to other future experiments. The gain in coverage
occurs mainly in the directions of larger coupling and mass.
This is due to the high energy of the beam, and therefore
production of highly boosted Z0 particles.
The boundary of the discovery region at large couplings

occurs when the Z0 decays too early and the decay products
are caught by the shielding. However, a relativistic Z0 will
live longer in the lab frame and therefore can decay in the
fiducial region. At this unprecedented beam energy, Z0s at
higher masses than before are sufficiently boosted to
survive past the shield. If the shielding length Lsh is
extended, then sensitivity degrades in the large coupling
regime while leaving the bottom edge unmoved. However,
if the beam energy E0 is increased, both the upper and
lower boundaries are shifted upwards to higher couplings.
The parameter space of the Lμ-Lτ model is notably

unconstrained in the region g≲ 10−3 and mZ0 ≳ 10 MeV.
Existing constraints come from measurements of the
primordial abundances of light nuclei [77], from observa-
tions of SN1987A [78], from measurements of the anoma-
lous magnetic moment of the muon [79], limits from
neutrino trident production [82,83], and searches for
eþe− → μþμ−Z0ðμþμ−Þ at BABAR [84]. The current
bounds are shown in gray in Fig. 4. We also show the
projected limits from other muon beam experiments, M3

[85] and NA64μ [29]. Note that other proposed experi-
ments such as Ref. [86] might have comparable reach to
NA64μ andM3. The reach plot, drawn with the same values
ofNμ and beam energy E0, is shown in Fig. 4. The coverage
is completely separated from other constraints on this
model due to the novelty of both the beam of muons
and the energy of the beam.

FIG. 3. Contour plots indicating five signal events detected with
Nμ ¼ 1018; 1020; 1022 with a beam energy E0 ¼ 1.5 TeV. The
dips in the contours near mZ0 ¼ 1 GeV occur when there is
resonant production in the Z0 → hadron decay channel, thus
reducing the dilepton branching ratio.
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Conclusions and future work.—A future multi-TeV
muon beam-dump experiment would provide a window
into previously unexplored parameter space for a variety of
motivated new physics models. The sensitivity improve-
ments beyond other similar proposed experiments, such as
Refs. [23–29], stem from two features of such an exper-
imental setup: the increased beam energy and direct
coupling to muons.
As discussed, the unprecedented beam energy translates

to boosted new particles with extended lifetimes. Therefore
couplings that would otherwise be too large to be detected
at previous beam-dump experiments would be accessible.
Additionally, a muon collider is uniquely well suited to
study models with couplings to muons. In this Letter we
computed the reach of the gauged Lμ-Lτ symmetry as a
motivated example, but this broadly applies to more general
dark sectors with nonuniversal fermion interactions.
In the proposed detection strategy, we have taken a

minimalist approach to instrumentation. However, in the
event of an observed resonance, additional detectors to
identify the rate into taus could be used to determine the
underlying theory. If this experiment were to confirm the
existence of a gauged flavor symmetry, this would be
significant for several areas of particle physics. A gauged
Lμ-Lτ symmetry could explain the near-maximal mixing
between muon neutrinos and tau neutrinos [39]. It has
recently been observed that an SUð3Þ extension of this
group can give rise to a complete model of lepton masses
[87]. Finally, we cannot resist noting that every measured
gauge coupling to date is an Oð1Þ number, while Fig. 4
shows that a discovery of Lμ-Lτ at the beam dump would
necessarily imply a tiny gauge coupling ≲10−5, which
would become a powerful constraint on UV physics [88].
While we have focused on models with new vectors, the

improved reachwould be similarly impressive for other dark

sectors with nonvector mediators. Additional searches
should include models with new muonphilic scalars or
pseudoscalars such as axions. These particles could be
produced either directly from the muon or from photon
fusion by effective interactions. A detailed study of the reach
for these models will be presented in a future publication.
A beam-dump experiment is particularly compelling for

a future muon collider due to the short lifetime of the beam
particles. As muons decay and produce a shower of high-
energy electrons and neutrinos throughout the accelerator
ring, mitigation strategies must be introduced to protect the
instrumentation and ensure a high-quality beam at the
collision. The beam is estimated to lose approximately a
millionth of its energy per meter. Unlike at hadron or
electron colliders, it therefore must be dumped quickly after
some fraction of particles decay. While the exact threshold
beyond which a beam must be dumped requires further
studies, it seems likely thatOð10%Þ of the beam is dumped
[89]. This estimate is consistent with 1020 muons delivered
to the beam dump facility per year.
Since a muon collider is far from guaranteed, we

emphasize that a complete muon collider is not required
to improve our sensitivity. In the necessary research and
development phase of a potential future muon collider,
there will be test beams on the energy scale of
Oð100Þ GeV. Even though this is far from the multi-
TeV energy design of the main collider, a dedicated muon
beam at this lower energy could still improve our reach
especially for the nonuniversal fermion models. Thus, the
success of a muon beam dump program is not strictly tied to
the completion of a muon collider.
In the current era of particle physics, no stone can be left

unturned when searching for new phenomena. A future
muon collider and a corresponding beam-dump experiment
would greatly enhance our sensitivity in novel and com-
plementary regimes to our current and past experimental
program.
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FIG. 4. Same as Fig. 3 but for the Lμ-Lτ model. The sensitivity
is bounded at lower mZ0 by the dimuon production threshold,
since the electron channel is not open in this model.
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