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Quantum gravitational effects become significant at a cutoff that can be much lower than the Planck
scale whenever there is a large number of light fields. This is expected to occur at any perturbative limit of
an effective field theory coupled to gravity, or equivalently, at infinite distance in the field space of the UV
completion. In this note, we present a universal pattern that links the asymptotic variation in field space of
the quantum gravity cutoff Λsp and the characteristic mass of the lightest tower of states m:

ð∇⃗m=mÞ · ð∇⃗Λsp=ΛspÞ ¼ ½1=ðd − 2Þ�, with d the spacetime dimension. This restriction can be used to
make more precise several Swampland criteria that constrain any effective field theory which can be
consistently coupled to quantum gravity.
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Introduction.—Effective field theories (EFTs) are very
useful in high energy physics to describe the physical
phenomena of our world. However, they are characterized
by having a finite regime of validity, meaning that there is
some cutoff energy scale at which the EFT breaks down
and must be modified to incorporate, e.g., new physical
degrees of freedom. In this Letter, we are interested in the
quantum gravity (QG) cutoff at which an EFT weakly
coupled to semiclassical gravity breaks down. In other
words, what is the scale at which quantum gravitational
effects become significant?
The first naive guess is to set this scale to be the Planck

mass (around 1019 GeV), since this determines the strength
of gravitational interactions. However, in certain cases, QG
effects can become significant at a cutoff scale much lower
than the Planck scale. This occurs, for instance, when we
have many light fields weakly coupled to gravity (termed
species), which renormalize the graviton propagator and
lower the QG cutoff to Λsp ¼ MPl=

ffiffiffiffi
N

p
, N being the

number of species. Above this energy scale (known as
the species scale), quantum gravitational effects kick in and
it is no longer possible to have a local EFT description
weakly coupled to gravity. This scale is further motivated

by black hole physics [1,2], unitarity of scattering ampli-
tudes [3–8], and string theory [9–12].
Clearly, the species scale can be made arbitrarily small

Λsp ≪ MPl whenever we get a parametrically large num-
ber of species. This is known to happen whenever we get
an infinite tower of states becoming light (either because
they open up some extra dimension, or they correspond to
oscillator modes of a weakly coupled higher dimensional
object like a string). From a string theory perspective, the
presence of a light tower of states is a universal feature
that occurs whenever we try to engineer an exact global
symmetry, since this pushes us to the boundaries of the
field space. However, the existence of these towers acting
as a censorship mechanism to restore global symmetries is
expected to be a general feature of QG (even beyond
string theory) and plays a central role in the Swampland
program [13–25]. The absence of exact global symmetries
in QG has been shown using AdS=CFT [26–28] and black
hole physics [29–31], in addition to the stringy evidence.
Understanding in a quantitative way the behavior of the
tower of states would allow us to quantify how approxi-
mate a global symmetry can be and put sharp bounds on
the value of gauge couplings and axionic decay constants
(since the limit of a vanishing gauge coupling is equivalent
to restoring a global symmetry). This can have important
phenomenological implications for beyond standard model
particle physics and cosmology.
In this note we present a precise constraint relating the

asymptotic variation rates of the characteristic mass of the
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leading (i.e., lightest) tower of states, mt, and the species
scale Λsp, as follows:

∇⃗mt

mt
·
∇⃗Λsp

Λsp
¼ 1

d − 2
; ð1Þ

where d is the number of macroscopic dimensions in our
theory and every quantity is measured in Planck units. In
the context of string theory, all coupling constants in the
EFT are controlled dynamically by the vacuum expectation
values (vevs) of scalar fields, so the derivatives are taken
with respect to those, as we explain below. Since by
definition, mt ≤ Λsp, we will see that this pattern leads
to sharp bounds on how fast the tower can become light and
the value of the species scale at which QG effects become
significant. Therefore, the pattern (1) can also constrain the
scalar field variation that can be accommodated by an EFT
weakly coupled to gravity, yielding bounds of phenom-
enological interest for cosmological models of inflation or
quintessence [32], as well as other dynamical proposals to
explain the electro-weak hierarchy problem like cosmo-
logical relaxation [33].
In a companion paper [34] we present strong evidence on

its favor by analyzing a plethora of string theory con-
structions in different dimensions and with all allowed
levels of supersymmetry. This pattern makes manifest an
underlying structure behind all different string theory
examples that highly constrains the structure of the possible
towers of states and helps make more precise the distance
conjecture [35,36] in the Swampland program. In this
Letter, we introduce the pattern as well as some of its most
immediate consequences, highlighting the key ingredients
that make it work and providing the first steps towards a
bottom-up explanation for the constraint.
Systematics of the pattern.—We consider in what follows

a d-dimensional EFT containing some light scalars (known
as moduli if exactly massless), weakly coupled to gravity as
follows:

LEFT ⊃
1

2κ2d

�
RþGijðϕÞ∂ϕi · ∂ϕj

�
; ð2Þ

where Mϕ is the moduli space of the theory, namely, the
space of physically distinct vacua parametrized by the
scalar field vevs hϕii. When probing any infinite distance
boundary of Mϕ, the distance conjecture [35] requires
from the appearance of at least one infinite tower of states
becoming exponentially light. Therefore, in terms of the
traversed geodesic distance, which is defined by

Δϕ ¼
Z
γ
dσ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GijðϕÞ

dϕi

dσ
dϕj

dσ

r
; ð3Þ

with γ denoting some geodesic path and σ an affine
parameter, there should exist a tower whose mass scale

decreases asm ∼ e−λΔϕ forΔϕ ≫ 1 (in Planck units), with λ
some Oð1Þ factor.
Note that (2) only displays the relevant piece of the

action needed to check the condition (1) in a given EFT.
This does not mean, however, that our analysis here is
restricted to flat spacetime and exactly massless scalars,
since the existence of the light tower also extends to more
general setups, such as 4d N ¼ 1 theories with, e.g.,
runaway potentials [34].
In the presence of several moduli, it is useful to define

a ζ vector for each tower becoming light, whose compo-
nents read

ζi ≔ −Gij ∂

∂ϕj log m ¼ −∂i log m: ð4Þ

These are denoted scalar charge-to-mass vectors [36–38],
and they encode information about how fast the associated
tower becomes light. In particular, for any given asymp-
totically geodesic direction in moduli space characterized
by some normalized tangent vector T̂, the decay rate of
the tower can be determined as the projection λ ¼ ζ⃗ · T̂.
Moreover, for any such limit, we denote by ζ⃗t the scalar
charge-to-mass vector of the leading one.
Relatedly, the presence of an increasing number of light

particle species in the theory implies a drastic breakdown
of the original EFT. The maximum energy scale at which
such description holds is known as the species scale Λsp

(see, e.g., [39] and references therein), which in general is
given by

Λsp ≃
MPl;d

N
1

d−2
; ð5Þ

where N is roughly the number of species at or below the
species scale itself. Notice that whenever N grows large at
infinite distance, the species scale goes to zero (exponen-
tially) in Planck units. To characterize how this occurs, one
analogously introduces a Z vector as follows [40]

Zi
sp ≔ −∂i logΛsp; ð6Þ

thus providing the asymptotic decay rate of the species
scale.
In principle, there is some degree of independence

between the vectors ζ⃗t and Z⃗sp, meaning that one can
get different casuistics upon exploring distinct asymptotic
corners of moduli space. This is so sinceΛsp knows a priori
about all towers of (sufficiently) light states, such that the
leading one does not always determine it alone.
Nevertheless, the idea that we want to put forward in the
present Letter is that there seems to be a very precise link
between these two quantities via the relation
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ζ⃗t · Z⃗sp ¼ Gijð∂i logmtÞ ð∂j logΛspÞ ¼
1

d − 2
; ð7Þ

valid in the strict infinite field distance limit [41]. This
pattern holds universally regardless of the nature of the
infinite distance limit that is explored as well as the
microscopic interpretation of the towers. Using (5), we
can equivalently rewrite the above relation as follows:

∇⃗mt

mt
·
∇⃗N
N

¼ −1; ð8Þ

where the product is again taken with respect to the field
space metric. Hence, the more fields we get, the slower they
become light, in a very concrete way that is even inde-
pendent of the spacetime dimension.
In the following, we will explain via some (realistic) toy

model how this comes about, as well as commenting on the
consequences that derive immediately from (7). In a
companion paper [34], we present string theory evidence
in a wide range of scenarios supporting the claim.
A simple toy model.—Let us first show how the pattern

works in simple single-field examples. We consider two
cases: First, when dealing with a Kaluza-Klein decom-
pactification of n internal dimensions, we find a KK tower
with characteristic mass mKK;n yielding infinitely many
states becoming light, with a spectrum of the form
mk ¼ k1=nmKK;n, where k ¼ 1;…;∞ [42]. Its associated
species scale is the higher-dimensional Planck mass,
which is given by MPl;dþn¼MPl;dðmKK;n=MPl;dÞ½n=ðdþn−2Þ�.
Hence, the relevant charge-to-mass and species vectors,
which can be obtained via dimensional reduction [43], read
as follows [40]:

ζKK;n¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dþn−2

nðd−2Þ

s
; ZKK;n¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n

ðdþn−2Þðd−2Þ
r

: ð9Þ

It is easy to check that these always reproduce the
pattern (7), regardless of the number of dimensions
decompactifying.
Second, we can also get an infinite tower of states when

having a higher dimensional object (like a weakly coupled
string) becoming tensionless. In this case, the tower of
string oscillator modes behaves as mk ¼

ffiffiffi
k

p
mosc where

k ¼ 1;…;∞, with an exponential degeneracy of states per
level k. This leads to the following relevant vectors [38]

ζosc ¼
1ffiffiffiffiffiffiffiffiffiffiffi
d − 2

p ¼ Zosc; ð10Þ

since the species scale coincides with the string scale [39].
From this, it automatically follows that ζosc · Zosc ¼
½1=ðd − 2Þ�, in agreement with (7).

However, this is not yet enough to show that the pattern
holds in full generality, since when dealing with theories
with more than one scalar field and more than one tower,

the vectors ζ⃗t and Z⃗sp will not be necessarily parallel to
each other. Still, the structure of the towers and the angles
subtended by the vectors are always such that (7) is
satisfied. For example, consider the case where several
KK towers (associated to different internal cycles) become
light. Then, the species scale is always given by some
higher dimensional Planck mass, as in the one-modulus
example above. For simplicity, we focus on a two-
dimensional slice spanned by two KK towers decompacti-
fying to dþ n and dþ n0 dimensions, respectively, with
associated canonically normalized volume moduli ρ̂ and ρ̂0.
The ζ vectors are given by [36]

ζ⃗KK;n ¼
 
0;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dþn−2

nðd−2Þ

s !
;

ζ⃗KK;n0 ¼
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dþnþn0−2

n0ðdþn−2Þ

s
;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n
ðdþn−2Þðd−2Þ

r !
; ð11Þ

while the relevant Z vectors are [40]

Z⃗KK;n ¼
n

dþ n − 2
ζ⃗KK;n;

Z⃗KK;n0 ¼
n0

dþ n0 − 2
ζ⃗KK;n0 ;

Z⃗KK;nþn0 ¼
nζ⃗KK;n þ n0ζ⃗KK;n0
dþ nþ n0 − 2

: ð12Þ

The species scale will correspond to the lightest Planck
scale for any chosen asymptotic trajectory T̂ (i.e., that with

the largest value of the exponential rate λsp ¼ Z⃗ · T̂).
Hence, it will always be given by the Planck scale

associated to full decompactification, Z⃗KK;nþn0 , unless
we move parallel to either one of the individual species
vectors. The leading tower, on the other hand, will always
be one of the two individual KK towers unless we move

precisely parallel to Z⃗KK;nþn0 , where all the internal
geometry decompactifies homogeneously. In any event,
the pattern is always satisfied for any intermediate direc-
tion, since one can check that

ζ⃗KK;n · Z⃗KK;nþn0 ¼ ζ⃗KK;n0 · Z⃗KK;nþn0 ¼
1

d − 2
: ð13Þ

Similarly, when exploring some perturbative string limit in
higher dimensions, the species scale is given by the string
scale, as in (10), but the leading tower might be a KK tower
rather than that of string oscillator modes. Upon restricting
again to a 2D slice parametrized by the overall volume
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modulus and the d-dimensional dilaton, one finds the
following relevant vectors (in a flat frame) [36,40]:

ζ⃗osc ¼ Z⃗osc ¼
�

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dþn−2

p ;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n
ðdþn−2Þðd−2Þ

r �
; ð14Þ

while ζ⃗KK;n and Z⃗KK;n are computed as in (12). Recall that
the leading tower (species) becomes that with maximal
projection along a given normalized tangent vector T̂.
Therefore, for intermediate directions [i.e., not aligned with
any ζ-vector in (14) above], Λsp will be given by the string
scale, while having the KK tower as the leading one.
However, even in such case the pattern is still fulfilled, since

ζ⃗KK;n · Z⃗osc ¼
1

d − 2
: ð15Þ

Let us mention that all the previous considerations can be
easily understood in a geometric way, upon depicting the
different charge-to-mass and species vectors that enter in the
game as illustrated below. Interestingly, despite the apparent
simplicity of the previous “toy models” it turns out that all
the different asymptotic corners of the moduli spaces arising
from string theory constructions fit into one of these two
sub-cases [44]. In fact, essentially the same type of pictures
are always drawn, as analyzed in detail in the companion
paper [34], differing only in how the diagrams are glued
together in a way that respects the pattern, which puts non-
trivial constraints on howdifferent perturbative dual descrip-
tions of the theory can fit together. This will also be further
explored in [45].
Derived bounds on the exponential rates.—We would

like to stress that a sharp relation like (7) becomes rather
constraining. In fact, several bounds in the Swampland
literature immediately follow from imposing the pattern, as
we now explain. First, (7) implies a lower bound for the
scalar charge-to-mass ratio of the leading tower of states.
This is a direct consequence of the consistency condition
mt ≤ Λsp—assuming an exponential behavior for both

scales [35], from where one deduces that jζ⃗t · Z⃗spj ≤ jζ⃗tj2
(by Cauchy-Schwarz) and therefore

jζ⃗tj2 ≥
1

d − 2
: ð16Þ

This leads precisely to the following lower bound for the
exponential rate of the lightest tower

λt ¼ jζ⃗tj ≥
1ffiffiffiffiffiffiffiffiffiffiffi
d − 2

p ; ð17Þ

which was recently proposed in [36]. Relatedly, the fact
that any infinite tower always satisfies the pattern with its
own species scale, i.e., ζ⃗t · Z⃗sp ¼ jζ⃗tjjZ⃗spj ¼ ½1=ðd − 2Þ�,

implies via the same argument, that there is an upper bound
for the decay rate of Λsp:

λsp ¼ jZ⃗spj ≤
1ffiffiffiffiffiffiffiffiffiffiffi
d − 2

p : ð18Þ

This coincides with another recent proposal in [10] based
both in string theory examples and consistency of the EFT
description [46].
Moreover, the pattern (7) constrains the structure of the

possible towers of states and how they can fit together as we
move in moduli space. It is clearly related to the emergent
string conjecture (ESC) [44], which proposes that any
infinite distance limit is either a decompactification or a
perturbative string limit, since these are the obvious cases
that fulfill the pattern. However, it is important that, when
having several KK towers becoming light and signaling
different decompactification limits, they can all be inter-
preted as KK towers in the same dual frame. Otherwise, the
pattern will not hold, as we further discuss later on.
Computing the quantum gravity cutoff.—Let us now use

the pattern to compute the scaling of the QG cutoff from the
behavior of the mass of the tower, but without assuming
anything else about its microscopic origin nor the asso-
ciated density of states. This does not fix by itself the
overall magnitude of Λsp, but provides enough information
to identify the QG resolution of the limit taken; see
Ref. [34] and references therein.
Consider first a single tower of states with a scalar

charge-to-mass vector (4), denoted by ζ⃗I. The species scale
associated to this tower has Z⃗I parallel to ζ⃗I , satisfying
moreover (7). This scale sets the QG cutoff if we move
along an asymptotic direction parallel to ζ⃗I , so that the
exponential rates are related as

λsp ¼ λ−1t =ðd − 2Þ: ð19Þ

Notice that the structure and density of states of the tower
determine the relation between Λsp and mt, while the
pattern forces this relation to be fully fixed by the variation

of the mass in the field space, so that Λsp ∼m1=½ðd−2Þλ2t �
t in

this particular case.
As we start moving along other asymptotic directions,

there might be additional towers becoming light, thus
contributing to the species scale. This is illustrated in
Fig. 1, where we have another tower with vector ζ⃗J. Hence,
the species scale along any other intermediate asymptotic
direction T̂ will not be given by Z⃗I but rather determined by
another vector Z⃗sp that receives contributions from both
towers. Interestingly, the pattern (1) determines uniquely
the species scale Z⃗sp once the mass of the leading towers is
known. First, notice that satisfying the pattern for both
towers, i.e., ζ⃗I · Z⃗sp ¼ ζ⃗J · Z⃗sp ¼ ½1=ðd − 2Þ�, implies that
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Z⃗sp must be perpendicular to ζ⃗J − ζ⃗I . Second, the projec-

tion of Z⃗sp over ζ⃗I must be precisely Z⃗I since

ζ⃗I · Z⃗I ¼ ζ⃗I · Z⃗sp. Finally, Z⃗sp sets the value of the species

scale as soon as we cease to move parallel to ζ⃗I, which is
only consistent if the second tower ζ⃗J starts contributing
(i.e., its mass gets below ΛI) at the same moment, implying
that the projection of ζ⃗J over ζ⃗I must also be Z⃗I . All this
determines the magnitude of Z⃗sp and forces the vectors to
be geometrically related as illustrated in Fig. 1.
In summary, the exponential decay rate of the QG cutoff

for any direction T̂ ¼ ðcos θ; sin θÞwithin the cone spanned
by ζ⃗I and ζ⃗J reads

λspðθÞ ¼ T̂ · Z⃗sp ¼
1

d − 2

�
∇⃗ log mI

mJ

�
⊺
εT̂

ð∇⃗ logmIÞ⊺ε∇⃗ logmJ

; ð20Þ

where for simplicity we work in a local basis of flat
coordinates in the tangent bundle of the moduli space such
that Gij ¼ δij, and ε ¼ ð0

1
−1
0
Þ. This gets reduced to (19) in

the particular case that T̂ is parallel to ζ⃗I .
Therefore, the maximum (geodesic) variation of the

scalar fields that can be consistently described by an
EFT coupled to gravity in some perturbative corner reads

Δϕmax ¼
1

λsp
log

MPl

Λsp
; ð21Þ

where we have used that the QG cutoff Λsp decays
exponentially with the field distance, and the exponential
rate λsp can be either computed or bounded as explained
above. If replacing Λsp ↔ mt and λsp ↔ λt, we get the
maximum scalar field range before we encounter the first
state of the tower.
Towards a bottom-up rationale.—The pattern introduced

in this note has been tested for a wide range of string theory

compactifications, with different amounts of supersym-
metry and diverse internal manifolds [34]. It is natural to
wonder whether this relation is a general feature of
quantum gravity or just a lamp-post effect of the string
landscape. While we do not have yet a purely bottom-up
argument (e.g., based on black hole physics), we are still
able to identify and motivate some sufficient conditions that
allow the pattern to hold in a general way.
The distance conjecture [35] ensures that the mass of the

leading tower—and consequently the species scale—
decreases exponentially with the moduli space distance (3).
This can be further motivated from a bottom-up perspective
by the emergence proposal [14,15], by which all the IR
dynamics emerges from integrating out the dual massive
degrees of freedom. This guarantees that ζ⃗t · Z⃗sp approaches
to some constant asymptotically, but not necessarily the
same one for all infinite distance limits. To argue for this,
we propose three sufficient conditions which together ensure
that (1) is fulfilled along any asymptotic direction.
Condition 1: The exponential rates λI of the different

towers mI are continuous over the asymptotic regions
where they are defined. Furthermore, ζ⃗t · Z⃗sp must be well
defined along any asymptotic direction.
This means that the exponential rate λt ¼ T̂ · ζ⃗t of the

leading tower is purely determined by the asymptotic
direction T̂, regardless of the particular geodesic we follow
towards it. This does not require ζ⃗t to remain constant along
parallel trajectories, being allowed to change or slide in the
components perpendicular to T̂ [47]. It implies, though, that
the change in ζ⃗t has to be seen as a discrete jump in terms of
the asymptotic direction. This can occur either because
(i) the microscopic interpretation of the leading tower
changes as a different tower starts dominating, in whose
case the decay rate for both towers automatically coincide in
the transition and λt is continuous, or (ii) because a
complicated moduli dependence of the mass makes ζ⃗t to
jump when crossing some sliding loci (see Ref. [38] for a
detailed example when decompactifying to running solu-
tions). In this latter case, we further need to require that
ζ⃗t · Z⃗sp remains well defined, otherwise the product will
depend on the trajectory taken. The consequence of this
condition is that we can divide the set of infinite distance
limits into regions over which the ζ⃗t and Z⃗sp take fixed
expressions, and thus their product is constant.
Condition 2: For every infinite distance limit along which

several towers decay at the same rate, there must exist bound
states involving all of them, such that the species scale is
given by the associated multiplicative species.
Consider several towers fm1;…; mkg becoming light at

the same rate along some trajectory (or interface) with unit
tangent vector T̂, so that λt ¼ T̂ · ζ⃗1 ¼ … ¼ T̂ · ζ⃗k. These
towers span a lattice of “charges” ðn1;…; nkÞ given by the
tower levels mni;i ∼ n1=pi

i mi (with pi > 0 depending on the

FIG. 1. Sketch on how the pattern (1) and the ζ vectors
associated to the leading towers mI and mJ , depending on some
scalars x̂ and ŷ, uniquely determine the multiplicative species
scale Z⃗eff .
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nature and multiplicities of the tower [42]). If a (sub-)lattice
of these charges is populated by particle states, then the total
number of species is N ∼

Q
k
i¼1Ni (i.e., multiplicative)

rather than N∼
P

k
i¼1Ni (i.e., additive). It can be shown [40]

that in the former case the resulting Z⃗sp is orthogonal to
the hull spanned by the ζ vectors, and moreover dominates
over the individual species scales. This implies that
ζ⃗1 · Z⃗sp ¼ … ¼ ζ⃗k · Z⃗sp, such that the product (7) takes
the same value in the different adjacent regions (as well as in
the interface). For additive species, though, we do not obtain
any additional species vector, and ζ⃗t · Z⃗sp would generically
change upon crossing the interfaces. This is why Condition
2 requires the existence of the (sub-)lattice of bound states
yielding a multiplicative number of species, which can be
further motivated by Swampland considerations [48].
Condition 3: For every connected component of the

space of infinite distance limits, there exists at least one
direction associated to an emergent string limit or the
homogeneous decompactification of an internal cycle to a
higher dimensional vacuum.
With the previous two conditions, we have divided the

moduli space into different regions and shown that ζ⃗t · Z⃗sp

remains constant across those. The only thing left is to set
this constant to ½1=ðd − 2Þ�, which occurs if there exists at
least one asymptotic direction resulting in a string pertur-
bative limit or a decompactification to a higher dimensional
vacuum. This resembles but it is a weaker condition than
the emergent string conjecture [44].
Conclusions.—We propose a very concrete relation (1)

between the quantum gravity cutoff Λsp in an EFT con-
sistently coupled to quantum gravity, and the mass scalemt
of the lightest tower, which holds asymptotically in moduli
space. At the moment, it is a common thread underlying all
known string theory examples that have been explored so
far. Finding a purely bottom-up rationale would have
profound consequences for the consistency of EFTs
coupled to gravity, since it constrains the possible towers
of states predicted by the Swampland distance conjecture
and implies a precise lower bound on how fast they can
become light. It also provides a clear recipe to determine
the species cutoff upon knowledge of the leading tower of
states, which puts further constraints on how different
perturbative limits can fit together in the field space of a
QG theory.
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